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ABSTRACT

The use of deep neural networks (DNNs) for feature extraction and
Gaussian mixture models (GMMs) for acoustic modelling is often
termed a tandem system configuration and can be viewed as a Gaus-
sian mixture density neural network (MDNN). Compared to the di-
rect use of DNN output probabilities in the acoustic model, the tan-
dem approach suffers from a major weakness in that the feature ex-
traction stage and the final acoustic models are optimised separately.
This paper proposes a joint optimisation approach to all the stages
of the tandem acoustic model by using MDNN discriminative se-
quence training. A set of techniques is used to improve the training
performance and stability. Experiments using the multi-genre broad-
cast (MGB) English data show that the proposed method produced
a 6% relative lower word error rate (WER) than that of a traditional
discriminatively trained tandem system. The resulting jointly opti-
mised tandem systems are comparable in WER to hybrid DNN sys-
tems optimised using discriminative sequence training with the same
number of parameters.

1. INTRODUCTION

DNNs are included in hidden Markov model (HMM) based auto-
matic speech recognition (ASR) systems either using the “tandem”
approach in which DNN produced features, such as the bottleneck
(BN) features, are modelled using GMMs (i.e. BN-GMM-HMMs)
[1–3], or by directly employing the DNN posterior probabilities in
the HMM acoustic model in a “hybrid” configuration (i.e. DNN-
HMMs) [4–7].

Although hybrid systems have recently drawn more attention,
there are several reasons that make the tandem approach still of inter-
est. First, the DNN and GMMs can be combined to form an MDNN
[8], which is a general framework for modelling non-Gaussian con-
ditional probability distributions. This is in contrast to the distri-
butions generated by a conventional DNN acoustic model with a
softmax output function that have equivalent terms to single Gaus-
sians with a shared covariance matrix [8, 9]. Secondly, it is straight-
forward to improve the performance of tandem systems by apply-
ing techniques developed for GMMs to MDNN such as adaptation
methods [10, 11]. Finally, tandem and hybrid systems are known to
produce complementary errors, and hence significant performance
improvements can be obtained by system combination [12–16].

Conventional tandem systems use GMMs independently esti-
mated using features from a pre-trained DNN, and therefore, it is not
guaranteed that the features are the most appropriate to be modelled
by the selected GMM setup. To overcome this weakness, we propose
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a tandem system joint optimisation method that has the features and
acoustic models trained together based on the minimum phone error
(MPE) criterion [17, 18]. From a hybrid system view, the MDNN
is initialised with a conventional tandem system, then refined by lat-
tice based MPE sequence training. Although MPE is used in this
paper as the joint optimisation criterion, other related discriminative
sequence criteria [19–21] could also be used with the method. Stan-
dard GMM-HMM MPE training is first revisited, and the related pa-
rameter smoothing and variance floor methods are modified for use
with stochastic gradient descent (SGD). Next, tandem system joint
optimisation is investigated. A number of methods are used to im-
prove the system performance which include linear to rectified lin-
ear unit (ReLU) [22, 23] function conversion, relative update value
clipping, amplified GMM learning, and various different parameter
update schemes. The final combination yields comparable perfor-
mance to MPE trained DNN-HMMs. Further experiments show that
the jointly optimised tandem system is useful in DNN-HMM con-
struction and system combination. Previously, cross-entropy (CE)
and maximum likelihood (ML) based tandem system joint training
were studied based on MDNNs [24] and standard DNNs with a pa-
rameterised softmax output function [25, 26]. MPE training has also
been applied to the task with the GMMs still optimised by the ex-
tended Baum-Welch (EBW) algorithm [27].

The rest of the paper is organised as follows. Section 2 reviews
the tandem system configuration and build procedure. SGD based
MPE training is discussed in Section 3, which is followed by the
joint optimisation approach in Section 4. The experimental setup and
results are presented in Section 5 and 6, followed by conclusions.

2. CONVENTIONAL TANDEM SYSTEMS

2.1. GMM-HMM Acoustic Models

GMMs are widely used to represent the state output distributions
in HMM acoustic models for ASR. By ignoring HMM transition
probabilities, the log-likelihood of an HMM state s is defined as

ln p(z(t)|s) = ln
∑

g
ωsgN (z(t)|µsg, σsg), (1)

where z(t) is the input vector at time t; N (z|µsg, σsg) is the g th
Gaussian component with µsg and σ2

sg the mean and variance vec-
tors, and ωsg is the corresponding weight. Note that by using a vari-
ance vector instead of a covariance matrix, it is assumed that all of
the dimensions of z, zd, can be treated as independent variables.

In this paper, GMMs are trained using SGD, an unconstrained
optimisation method. The following parameter transformations are
used to ensure σsgd > 0 as well as ωsg is positive and sums to one,

σsgd = exp(σ̃sgd), (2)
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ωsg = exp(ω̃sg)/
∑

g
′ exp(ω̃sg′ ), (3)

where σ̃sgd and ω̃sg are the actual parameters updated by SGD.
Therefore, the partial derivatives of a criterion F are

∂F
∂ω̃sg

=
∑

t
P (s, g|z(t)) · (1− ωsg), (4)

∂F
∂µsgd

=
∑

t
P (s, g|z(t)) · zd(t)− µsgd

σ2
sgd

, (5)

∂F
∂σ̃sgd

=
∑

t
P (s, g|z(t)) ·

(zd(t)− µsgd)2 − σ2
sgd

σ2
sgd

, (6)

∂F
∂zd(t)

= −
∑

g
P (s, g|z(t)) · zd(t)− µsgd

σ2
sgd

, (7)

where p(s, g|z(t)) is

∂F
ln p(z(t)|s) ·

ωsgN (z(t)|µsg,Σsg)∑
g
′ ωsg′N (z(t)|µsg′ ,Σsg′ )

. (8)

It is worth noting that Eqns. (1) and (5)-(7) can be rearranged and
computed using the highly optimised BLAS general matrix multipli-
cation or GEMM functions [28], to fully utilise the power of GPUs.

2.2. DNN Acoustic Feature Classifier

A DNN is a multi-layer classifier that maps an input vector xin(t)
to an output vector yout(t) that defines the class. xin(t) is usually
formed by stacking the acoustic feature vector o(t + c), where c is
any integer in a context shift set c that represents a time shift [29]. In
a DNN layer l, the input to the nodes is called the activation, denoted
as al(t), where al(t) = Wlxl(t) + bl; Wl and bl are the weight
matrix and bias vector. al(t) is then transformed by the activation
function to acquire the output value yl(t) = fl(al(t)). Layer l is
connected with its next layer by yl(t) = xl+1(t). If l is a hidden
layer, fl(·) is often either sigmoid, yl(t) = (1+exp(−al(t)))−1, or
ReLU, yl(t) = max(0,al(t)); otherwise l is the output layer, and
f out(·) is the softmax funtion defined by Eqn. (3), which normalises
the activations into posterior probabilities associated with the HMM
states. To train a DNN with SGD based on a criterion F , ∂F/∂Wl

and ∂F/∂bl are computed by propagating ∂F/∂yout(t) from the
output layer to l using error backpropagation (EBP) [8].

2.3. Tandem System Construction

A common setup for DNN feature extraction is to use a reduced di-
mension hidden layer, i.e., a BN layer [2, 3], whose output vector,
ybn(t), is very compact and suitable to be directly used as GMM
input features. The BN DNN training procedure is similar to nor-
mal DNN acoustic model construction with a CE objective function.
Once the model is trained, the BN layer is changed to a linear acti-
vation function ybn(t) = abn(t), and the layers beyond the BN layer
are removed. The use of the linear activation function keeps the dis-
crimination ability in ybn(t) [12], which, in this paper, is directly
used as GMM input vector z(t) without any modification.

To construct a high performance tandem system, monophone
BN-GMM-HMMs are first built using ML training, which are later
expanded to initial triphone BN-GMM-HMMs. The final ML tri-
phone system is trained using a two-model re-estimation method
[30], with the alignments for decision tree clustering [31] produced
by the well-trained initial triphone system. The system can be fur-
ther refined by discriminative GMM-HMM training. It should be
noted that the BN-GMM-HMMs can be viewed as MDNN-HMMs
from a hybrid approach point of view.

3. MPE TRAINING FOR GMMS WITH SGD

3.1. Lattice based MPE Training

MPE is a criterion that directly optimises the expected error rate at
the phone level [17, 19, 32]. MPE is defined as

FMPE =

∑
h p(O|h)κP (h) PhoneAccuracy(r, h)∑

h p(O|h)κP (h)
, (9)

where O is the input observation sequence, κ is the inverse language
model scaling factor; r and h are the reference and hypothesis la-
bels; PhoneAccuracy(r, h) measures the raw phone accuracy of h.
To reduce the computation cost in calculating the statistics over all
possible hypotheses, lattices are used as a compact representation of
the hypothesis space. Further MPE details can be found in [17, 18].

3.2. Parameter Smoothing and L2 Regularisation

It was observed that directly applying MPE training to GMM-HMMs
using the EBW algorithm caused severe over-fitting issues, which
can be solved by the use of I-smoothing [17]. I-smoothing applies a
data dependent interpolation between a discriminative criterion and
the ML criterion. It takes the data availability of each Gaussian com-
ponent into account with a component dependent interpolation coef-
ficient τML(s, g) = τML/PML(s, g|o(t)), where PML(s, g|o(t)) is
P (s, g|o(t)) calculated with the ML criterion FML = ln p(O|s) at
t. τML(s, g) is viewed as a constant when differentiated. Meanwhile,
if the maximum mutual information (MMI) criterion [33] is used to
replace ML in smoothing, it is further referred to as a dynamic MMI
Prior. The MMI objective function is defined as

FMMI = ln
p(O|r)κP (r))∑
h p(O|h)κP (h)

. (10)

In order to simulate I-smoothing and an MMI prior in the
SGD framework, we use the H-criterion [34] to intepolate FMPE

with FMMI, with a weighting coefficient of τMMI. FMMI is pre-
smoothed by I-smoothing with τML(s, g), which adds a constant
τML to PMMI(s, g|o(t)) [17]. Furthermore, the use of L2 regulari-
sation is also investigated, which adds a term λ·θ2/2 to the objective
function, and hence is also termed L2 regularisation, where λ is the
coefficient and θ is the parameter to penalise. The full objective
function is

FMPE + τMMI (FMMI + τML(s, g)FML) +
λ

2
θ2. (11)

3.3. Percentile based Variance Floor

In MPE training with EBW, the use of a variance floor is beneficial
to stabilise training after each parameter update. In particular the
use of percentile based variance floor [18] is useful. This floors vari-
ances smaller than σ2

d(p%), where σ2
d(p%) is the value ranked at p%

among all variances of d. When applying the method in the SGD
framework, it is applied after every 10 updates, to avoid causing
σ2
d(p%) to increase. Furthermore, to save the cost from computing

the exact σ2
d(p%) by sorting algorithms, we use µ̄(d) + Φ−1( p

100
) ·

σ̄(d) as an approximate value, where µ̄(d) and σ̄(d) are the mean
and standard deviation of all variance values of d, and Φ(·) is the
standard normal cumulative distribution.
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4. TANDEM SYSTEM JOINT OPTIMISATION

Tandem system joint optimisation is performed using MDNN-HMM
discriminative sequence training. This section addresses various is-
sues with this approach.

4.1. Use of ReLU to Replace Linear Activation Functions

In practice, we found that the use of linear activation functions in the
BN layer can cause a stability issue in training. This happens when
the average of ∂F/∂ybn(t) over a mini-batch moves from positive
to negative, and the parameters can become stuck at a very poor
solution. We solve this issue by replacing the linear function with a
ReLU function. In order to avoid the information loss caused by rec-
tification, ybn(t) is transformed to ỹbn(t) = ybn(t)− µbn + 6σbn by
modifying bbn, where µbn and σbn are the mean and standard devi-
ation vectors of ybn estimated over the training set. This guarantees
99.99966% of ybn(t) samples are rectified without information loss,
assuming ybn(t) follows a multivariate Gaussian distribution. Mean-
while, N (ybn(t)|µsg, σsg) can be transformed to N (ỹbn(t)|µsg −
µbn + 6σbn, σsg) without retraining.

4.2. Relative Update Value Clipping

In SGD training, a fairly large learning rate, which is necessary for
fast convergence, can sometimes cause severe performance degrada-
tion. This can be due to large inaccurate gradients being generated
due to various reasons such as poor acoustic conditions and erro-
neous reference labels etc. A widely used solution to prevent the
parameters changing too much in a single update is to use update
value clipping [35]. However, as the standard method requires spe-
cific clipping thresholds, it is tedious to use this here as the MDNN
has both GMM and DNN parameters which are rather different in
range.

Here we propose a method to find a relative threshold for clip-
ping a particular collection of parameters, Θ. Let uθ[n] be the pro-
posed change of θ at the nth update, the mean and standard deviation
of |uθ[n]| for θ ∈ Θ are µΘ[n] and σΘ[n], and then |uθ[n]| is clipped
according to a threshold of µΘ[n]+mσΘ[n], wherem is the relative
threshold. Θ can be {ωsg}, {µsgd}, and {σsgd} for all s and g, or
Wl or bl for a particular layer l.

4.3. Amplified GMM Learning

The MDNN output layer has a rather different functional form than
other DNN layers, and we found that the learning rate suitable for
GMM parameters is significantly larger than a normal DNN learning
rate. Thus, in MDNN-HMM sequence training, different learning
rates, η and α · η are used for the BN DNN and GMMs separately
where α is the amplification factor. To regularise training properly,
the L2 regularisation coefficient λ for GMMs is also scaled by α.

4.4. Parameter Update Schemes

This paper investigates three different parameter update schemes for
tandem system joint optimisation:

1. Update GMMs and hidden layers in an interleaved manner,
which may also be useful as a regulariser; or

2. Update all parameters concurrently without restriction; or

3. Update all MDNN parameters concurrently, then update the
GMMs only to make them fit the BN features better.

The various update schemes are compared in Section 6.2.

5. EXPERIMENTAL SETUP

The proposed techniques were evaluated by training systems on data
from the ASRU 2015 Multi-Genre Broadcast (MGB) challenge [36].
The audio consists of seven weeks of BBC television programmes
covering a wide range of genres, e.g., news, comedy, drama, sports,
quiz shows, documentaries etc. 200 hours of data randomly se-
lected from 2,180 shows is used as the full training set for which
the difference between the sub-titles and the lightly supervised out-
put had a phone matched error rate < 20%. A 50 hour subset was
evenly sampled from the 200 hour set. A trigram word level lan-
guage model with a 160k word vocabulary was used in all experi-
ments. The test set, dev.sub, contains 5.5 hours of audio data from
12 shows and is the official subset of the full MGB transcription de-
velopment set [16, 36, 37]. The reference segmentation was used
with automatic speaker clustering resulting in 8,713 utterances and
285 speaker clusters. Further details of the data preparation etc. were
presented in [16, 37].

All experiments were conducted with HTK 3.5 [29, 38]. A 40d
log-Mel filter bank (FBK) analysis was used and expanded to an 80d
vector with its ∆ coefficients. The inputs to all DNNs were pro-
duced with c = [−4,+4] [29] and normalised at the utterance level
for mean and at the show-segment level for variance [16]. Triphone
GMM-HMM systems with 4k/6k non-silence decision tree clustered
tied-states were used for the 50h/200h training sets. The GMMs
have 16 Gaussian components per state, except for the 3 silence
states, which have 32 Gaussian components per state. The DNNs
were built with a hidden layer structure of 720× 10005 for acoustic
modelling and 720× 10004× 39× 1000 for feature extraction, and
the BN layer size was 39. Their output layer sizes are 4k/6k, accord-
ing to the number of GMM-HMM tied-states. CE DNN training was
performed using our previous setup [37]. DNN layer MPE training
used a fixed learning rate of 1.0 × 10−4 and a relative update value
clipping threshold of m = 3, whereas a threshold of m = 9 for the
GMMs in joint optimisation.

6. EXPERIMENTAL RESULTS

6.1. GMM MPE Training

EBW and SGD based GMM-only training were performed on the
50h training set, and compared in Fig. 1. Both EBW and SGD
MPE training started from a baseline ML BN-GMM-HMM system
with a WER of 38.4%. EBW MPE training with an MMI prior,
I-smoothing, and a percentile based variance floor, can reduce the
WER to 36.1% after 4 iterations. Unlike EBW, SGD based MPE
GMM training with a learning rate of 5.0× 10−3 and no regularisa-
tion can also reduce WER, though the results fluctuate over 8 epochs.

Next, the smoothing method (described in Section 3.2) and L2
regularisation were added. τMMI and τML per frame were set to
3.0×10−5 and 2.0×10−6, and λwas 4.0×10−4. It can be seen that
both smoothing and L2 regularisation help stabilise and improve the
performance. When the percentile based variance floor is finally ap-
plied, SGD based MPE training consistently reduced the WER with
every epoch and gave a WER of 35.8% after the 4th epoch. It can
be seen from Fig. 1 that the final SGD based MPE GMM training
works at least as well as the EBW based method.

6.2. Joint Sequence Training

From the experiments in Section 6.1, the learning rates suitable for
the GMM layer are 50 times larger than for the hidden layers. Here,
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different parameter update schemes and GMM learning amplifica-
tion factors were compared with η = 1.0 × 10−4 and λ = 4.0 ×
10−5. For concurrent updates, it can be seen that α = 1 and 20 gave
a consistent WER reduction across epochs, and a WER of 34.5%
was obtained when α = 20. If α is further increased to 50, a WER
of 34.6% was found at the 2nd epoch, but severe over-fitting oc-
curred thereafter. In the interleaved update scheme, the GMM layer
was updated first, and a WER of 35.1% after updating GMMs and
hidden layers each for two epochs was achieved. If three epochs of
the concurrent update and one epoch of SGD based GMM-HMM
MPE training were applied, both with α = 20, the best 50h SI tan-
dem system WER of 33.8% was obtained. Therefore, this combined
scheme is adopted in the following experiments.

6.3. Further Experiments

Table 1 contains the results on the 50h training set. H50h
0 is the base-

line CE DNN-HMM system, which has a WER of 3.9% relative
lower than the ML trained BN-GMM-HMM system. After MPE
training, the WER is further reduced by 7.3% relative and H50h

1 is
produced. T50h

2 outperformed H50h
1 since tandem system joint opti-

misation gives a larger improvement than DNN-HMM MPE train-
ing. Note that H50h

1 and T50h
2 also have similar numbers of param-

eters (8.7M and 8.8M respectively). By using the alignments from
T50h

2 for DNN-HMM training, a 0.6% absolute WER reduction was
obtained, which was slightly better than using alignments produced
by the MPE DNN-HMM system H50h

1 . If the training targets were
derived from the tied-states of T50h

2 , another 0.4% absolute WER re-
duction was acquired, as T50h

2 decision trees were constructed on BN
features that are more suitable for clustering DNN output targets [9].

ID System WER%

T50h
0 ML BN-GMM-HMMs 38.4

T50h
1 MPE BN-GMM-HMMs 36.1

T50h
2 MPE MDNN-HMMs 33.8

H50h
0 CE DNN-HMMs 36.9

H50h
1 MPE DNN-HMMs 34.2

H50h
2 MPE DNN-HMMs+H50h

1 align. 33.7
H50h

3 MPE DNN-HMMs+T50h
2 align. 33.6

H50h
4 MPE DNN-HMMs+T50h

2 align. & tree 33.2

Table 1. %WER on dev.sub for various 50h systems.

The proposed approach was then validated on the larger 200h
training set. All MDNN-HMM MPE training parameters are
the same as for the 50h systems, except for the learning rate of
2.5× 10−5. Based on the results in Table 2, the jointly trained MPE
MDNN-HMMs, T200h

1 , is comparable to the MPE DNN-HMMs,
H200h

1 , both in performance and size, which is consistent with the
50h system results. Finally, the use of traditional GMM-HMM
techniques, such as maximum likelihood linear regression (MLLR)
[10] and joint decoding [14, 15], was studied for MPE MDNN-
HMMs. With test-time unsupervised MLLR adaptation based on the
hypotheses produced by T200h

1 , the SD system T200h
2 outperformed

the SI system T200h
1 by a 4.0% relative WER reduction. Joint de-

coding was used to combine H200h
2 with either T200h

1 or T200h
2 , and

the resulting systems J200h
1 and J200h

2 outperformed their constituent
systems which showed the complementarity between DNN-HMMs
and MDNN-HMMs.

ID System WER%

T200h
0 ML BN-GMM-HMMs 33.7

T200h
1 MPE MDNN-HMMs 29.8

T200h
2 MPE MDNN-HMMs+MLLR 28.6

H200h
0 CE DNN-HMMs 31.9

H200h
1 MPE DNN-HMMs 29.6

H200h
2 MPE DNN-HMMs+T200h

1 align. & tree 29.0

J200h
1 T200h

1 ⊗H200h
2 joint decoding 28.3

J200h
2 T200h

2 ⊗H200h
2 joint decoding 27.4

Table 2. %WER on dev.sub for various 200h systems.

7. CONCLUSIONS

In this paper, conventional EBW based GMM-HMM MPE training
is extended to the SGD framework and applied to MDNN discrimi-
native sequence training for the joint optimisation of tandem systems
that model features produced by a DNN. A set of methods are mod-
ified or proposed to improve the training performance, which results
in an average of an 11.8% relative reduction in WER over tradi-
tional ML tandem systems. The refined tandem system is compara-
ble to MPE trained hybrid system both in performance and number
of parameters, and is furthermore useful for hybrid system construc-
tion and system combination. The jointly trained tandem system can
also benefit from existing GMM based approaches, such as MLLR,
which can further reduce the system WER.
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