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ABSTRACT

Statistical methods for Spoken Dialogue Systems have been shown
to reduce the cost of development, while successfully handling a
variety of applications. However, such systems are usually trained
with simulated users or paid subjects in controlled settings. While
this may be sufficient to jump-start learning in the various sub-
components, learning is very much dependent on the complete
knowledge that we have about the interaction. Relatively few works
have focused on this problem, and we here propose to extract low-
level audio descriptors and use them as input to various classifiers,
namely support vector machines, Gaussian process regressors, and
random forests, to predict metrics that are constituents of user sat-
isfaction from acoustic features. While our approach is not directly
comparable to the current state of the art, results show that models
using the proposed feature set outperform models that use state of
the art features extracted from the belief state.

Index Terms— spoken dialogue management, acoustic fea-
tures, dialogue quality, user satisfaction

1. INTRODUCTION

Following the recent advances in Statistical Spoken Dialogue Sys-
tems (SSDS) [1, 2, 3, 4, 5, 6, 7, e.g.], the need for hand-tuning
the various components has largely been alleviated, provided that
labeled data are available for each component. End-to-end SSDS [8,
9, 10], on the other hand, do not need labels for each sub-component,
but still require some overall measure of dialogue quality. Accord-
ingly, the aim of this work is to propose an innovative way to mea-
sure the dialogue quality directly from the user’s speech signal.

Traditionally, data collection for SSDS is performed in con-
trolled environments, where the ground truth is always available and
can be used to train and assess the system’s performance under this
“constructed” partial observability. Specifically, information about
the true intentions of the user (i.e. the user’s goal) is usually pre-
determined, and dialogue success is judged based on this premise.
However, outside this controlled environment, it is impossible to
unobtrusively retrieve information about the user’s goal, which may
possibly be changing over time. Therefore, assessing dialogue suc-
cess is not trivial in real-world applications. Prior work has proposed
various approaches to this problem (presented in the next section),
however, to the best of our knowledge, no work has explored the
use of acoustic features to predict metrics of dialogue quality. We
propose to use simple acoustic features to predict dialogue success,
naturalness, and length of the interaction, and we show that we
achieve higher accuracy rates than when using the best performing
feature set that was proposed in the literature for data similar to ours.

1.1. Prior Work

A limited number of studies appear in the literature that take acoustic
features into account to improve the quality of SSDS. For example,
the system that appears in [11] takes advantage of pitch, energy and
duration features that are given as input to Support Vector Machines
(SVMs) so as to discriminate between 8 dialogue acts. The ultimate
aim is to understand the structure of spoken language. The same
classifier is also used in [12] in order to detect reported speech in di-
alogue systems. Specifically, prosodic and timing features are used
to analyse phone conversations aiming to understand their structure.
In an additional work [13], classification trees were used in order
to detect sarcasm based on prosodic and spectral features, aiming to
create a dialogue agent that is able to understand sarcasm. Finally,
phonetic distances have been used in [14]. In that case, SVM as well
as Repeated Incremental Pruning to Produce Error Reduction Repe-
titions (RIPPER) classifiers are used. The motivation of the authors
is that repetition can be a symptom of problematic communication
between users and systems. In all those works, the speech signal has
been used to augment the SSDS’s efficiency. [15] propose a clas-
sifier for problematic or normal dialogues using multiple types of
features but not directly derived from the speech signal. [16] use
acoustic features to predict the type of anger (hot or calm), but not
metrics of dialogue quality, as proposed in this paper. To the best of
the authors’ knowledge, this is the first attempt to use features from
the speech signal to predict metrics relevant to dialogue quality, that
can subsequently be used to improve the dialogue experience.

Prior work has also suggested frameworks and metrics that cor-
relate with user satisfaction, which most often is what SSDS really
want to optimise. PARADISE [17] is a very well known example
of frameworks that suggest a number of metrics related to user sat-
isfaction, such as: task success, dialogue length, ratio of system’s
inappropriate actions, etc. [17] also propose to estimate dialogue
success based on the k coefficient using labelled data. [18] propose
a reward inference scheme, called Task Completion Transfer Learn-
ing, to estimate dialogue quality on-line and evaluate it on simu-
lated dialogues. In order to classify a dialogue as successful or not
in dialogues with humans, [19] and [20] propose to use Recurrent
Neural Networks trained with an agenda-based simulated user. This
approach was shown to have potential to generalise to interactions
with human users, and since it is the closest work to our approach,
we here regard it as the state of the art.

In this paper, we propose to use simple acoustic features that can
be easily extracted from real-world interactions. We aim to predict
metrics related to dialogue success as well as naturalness of interac-
tion that indicate user satisfaction [17, 21], and can be used to train
dialogue policies or end-to-end SSDS. The rest of the paper is or-
ganised as follows. In the next section we briefly introduce SSDS
and dialogue management in particular, in section 3 we present our
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System: Hello! I’m here to help you find a suitable laptop.
Now please tell me your requirements.
User: I want a laptop for business.
S: What’s the price range you have in mind for the laptop?
Such as a cheap laptop, an expensive laptop, or a moderately
priced laptop?
U: I don’t care.
S: Satellite u920t-117 is a very good computer for business
computing.
U: Is that in the mid-weight range?
S: The weight of Satellite u920t-117 is 1.52 kilograms.
. . .

Table 1. Excerpt of the transcript of an interaction between an AMT
worker and our SSDS.

dataset and discuss data pre-processing, in the following section we
present our experiments and results and in section 5 we conclude.

2. STATISTICAL SPOKEN DIALOGUE SYSTEMS

Partially Observable Markov Decision Processes (POMDP) [22]
have been preferred in dialogue management due to their ability to
handle uncertainty, which is inherent in human communication. A
POMDP Dialogue Manager (DM) typically receives an n-best list
of language understanding hypotheses, which are used to update
the belief state (reflecting an estimate of the user’s goals). Using
Reinforcement Learning (RL), the system selects a response that
maximises the long-term return of the system. This response is
typically selected from an abstract action space and has to be con-
verted to text through language generation. Concretely, a POMDP
is defined as a tuple {S,A, T,O,Ω, R, γ}, where S is the state
space, A is the action space, T : S × A → S is the transition
function, O : S × A → Ω is the observation function, Ω is a
set of observations, R : S × A → < is the reward function and
γ ∈ [0, 1] is a discount factor of the expected cumulative rewards
J = E[

∑
t γ

tR(st, at)]. A policy π : S → A dictates which action
to take from each state. An optimal policy π? selects an action that
maximises the expected returns of the POMDP, J . Learning in RL
consists exactly of finding such optimal policies; however, due to
state-action space dimensionality, approximation methods [23, e.g.]
need to be used for practical applications.

Moreover, the definition of the reward function is crucial to
learning, as it dictates the optimality of policies. Typical reward
functions for SSDS are of the form:

R(s, a) =


−1, if s /∈ ST

20, if s ∈ ST
success

0, if s ∈ ST
failure

(1)

where s ∈ S, a ∈ A, ST ⊂ S is the set of terminal states,
ST
success ⊆ ST , and ST

failure = ST \ ST
success. A dialogue is

considered successful if the retrieved item matched the user’s pref-
erences. ST

success, therefore, contains all terminal states for which
the dialogue is successful. While this reward function works well
in controlled environments, in real-world applications it may not be
possible to define ST

success and ST
failure as the true user’s goal is

unobservable. Moreover, ST
success ∩ ST

failure may not be empty, if
the system partially meets the user’s goal. Using surrogate methods
to estimate metrics of dialogue quality, as proposed in this paper,
has the potential to alleviate this shortcoming.

Fig. 1. Histograms showing the value distributions of the metrics of
interest, in our dataset.

3. PREDICTING DIALOGUE SUCCESS, NATURALNESS,
AND LENGTH

To train our models and predict the metrics of interest, we used a
dataset of spoken dialogues between humans and a dialogue system,
collected through Amazon Mechanical Turk (AMT).

3.1. Spoken Dialogue Data

The dataset consists of 1,456 dialogues (10,431 user utterances) be-
tween people and a statistical SDS. The interactions concerned find-
ing appropriate Toshiba laptops or restaurants in Cambridge. Each
person, therefore, was given a set of preferences, for example: “You
want a laptop for business use that is in the mid weight range. Make
sure you get the size of its hard drive, and its dimensions”. The
person then interacted with the dialogue system until the item was
retrieved or until the person decided to hung up. At the end of each
dialogue, people were asked to provide feedback by answering the
following two questions:

Q1 Did you find all the information you were looking for?
Answer is on a 6-point Likert Scale.

Q2 The system understood me well.
Answer is Yes or No.

In this work, we useQ1 andQ2 as indicators of user satisfaction
[17, 21]. Therefore, a high mark in Q1 and a ‘Yes’ in Q2 indicate
more satisfied users. Apart from these, two objective metrics were
computed for each dialogue: dialogue success and number of (di-
alogue) turns. Dialogue success was determined by comparing the
retrieved item against the set of preferences given to the user for the
specific dialogue. A turn is defined as one system and one user utter-
ance; a dialogue can therefore be thought of as a sequence of turns.
Last, for each dialogue we have a complete log of the input and out-
put to all components of the SSDS, from user’s speech to system’s
speech (including partial ASR, SLU, beliefs, system actions, etc.)
and we are thus able to extract acoustic and belief state features for
each dialogue turn. Figure 1 shows the metrics’ value distributions 1

in our dataset and Table 1 shows an example interaction.

1Note that there are some missing values in our dataset, e.g. success.
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Acoustic Features Belief State Features [20]
Mean of RMS Top user dialogue act
St. dev. of RMS Entropy of belief state slots
Mean of RMS derivative System act
Mean pitch Current turn
St. dev. of pitch
Pitch range
Diff. of mean pitch
values in consecutive turns
Mean of pitch derivative

Table 2. Acoustic Features and Belief State Features.

3.2. Input Features

Acoustic Features. Our feature set is based on the Root Mean
Square (RMS) and the pitch of the speech signal. More specifically,
we used the following 8 acoustic features as input to our predic-
tors: mean RMS (µRMS), mean pitch (µp), standard deviation of
RMS (σRMS), standard deviation of pitch (σp), pitch range (rp),
difference of RMS in consecutive utterances (δRMS), difference of
mean pitch values in consecutive utterances (δp̄), and the mean of
the derivative of the pitch (µ dp

dt
). RMS was computed using equa-

tion 2 and pitch information was extracted using the autocorrelation
method (equation 3).

RMS =

√√√√ 1

N

N∑
i=1

x(t)2 (2)

where x(t) = {x(1), ..., x(N)} is the speech signal.

rt(τ) =
1

W

t+W∑
j=t+1

x(j)x(j + τ), (3)

where t is the time the calculation is made, τ is the time lag,
and W is the window size. The rt(τ) function has a series of global
maxima at zero, and then at all multiples of the period. The pitch
period is determined by scanning this pattern, and is estimated by
the location of the first global maximum with non-zero abscissa.

Belief State Features. We here briefly describe the features pro-
posed in [20] that we used as a benchmark for our system. It should
be noted here that [20] followed a different approach, utilising a sim-
ulated user and allowing their model access to turn-by-turn returns;
this type of feedback is not possible in our case since we are using
un-annotated spoken dialogue data. Regardless of this, [20] propose
three feature sets containing information about the user’s dialogue
act, the system’s dialogue act, current turn number and belief state
information. The major difference among the three sets lies in the
belief state information: a) F is defined as the full belief, b) F28

contains no belief state information, and c) F74 contains the entropy
of each slot in the belief state. We selected F74 to compare against
our approach, as it was the best performing set according to [20].
Table 2 summarizes the belief state feature set.

Acoustic and Belief State Features. Since the two feature sets
described above essentially capture different kinds of information -
relevant to how the user spoke (acoustic features) and the perceived
meaning of what they said (belief state features) - we also explore
how a joint feature set fares in predicting our metrics. An early fu-
sion strategy, specifically feature-level fusion is adopted here. In
other words, the fused feature vector is the concatenation of the
acoustic features and the belief state features.

3.3. Metrics

As mentioned in the previous section, we use Q1 (subjective di-
alogue success) and Q2 (interaction naturalness) as constituents
of user satisfaction. Other than these two metrics, we also predict
the objective dialogue success and the number of dialogue turns.
Since it was not feasible to ask users to provide ratings (i.e. answer
questions Q1 and Q2) after every dialogue turn, we do not have a
reliable way of telling “how responsible” each dialogue turn is for
the final user rating. This means that we are not likely to achieve
good accuracy in our predictions if we train our models on each ut-
terance. To address this problem, we use the summary statistics of
each feature over the course of a dialogue. Therefore, we calculated
some summary statistics for each acoustic and belief state feature,
specifically: mean, minimum and maximum value, standard devia-
tion, skewness and kurtosis. Table 3 shows the accuracy of our pre-
dictors when using the acoustic features, the belief features or both
sets of features. We deliberately selected mean over median for our
summary statistics, as the median is less affected by sudden peaks,
thus making it less informative in our case. This assumption was
confirmed by running our models with median instead of mean and
achieving lower prediction accuracies (not reported here).

4. EXPERIMENTS

We tried several classification and regression methods to predict the
four metrics, and the best performing were binary SVM (with radial
basis function or polynomial kernels), Gaussian Process Regressors
(GPR, with squared exponential kernels), and Random Forests (RF).
All our experiments were conducted with a 75-25 training-testing
protocol, averaged over 10 repetitions. We scaled Q1 and Number
of Turns that take multiple values, into various scales in order to see
at what level of granularity we can reliably make good predictions.
For example, we scaled the Number of Turns from {1, ..., 29} to
{0, ..., 2} which can be interpreted as “low”, “medium” or “high”
number of turns. Q1 was scaled in a similar fashion. Specifically for
the Number of Turns, we defined a binary metric that indicates when
the dialogue is shorter than the mean length of successful dialogues:

DialogueLength(d) =

{
1, if NTd ≤ µNTDs

0, if NTd > µNTDs

(4)

where NTd is the number of turns of dialogue d ∈ D, Ds ⊆ D
is the set of successful dialogues, and µNTD = 1

|D|
∑D

d {NTd}.

4.1. Results

Table 3 summarises the results of our experiments, when using the
summary statistics of the acoustic features extracted from users’ ut-
terances and using scaled versions of the metrics of interest. In the
same table, the results for the belief state features and the fusion of
acoustic and belief state features are demonstrated. We see that for
binary metrics GPRs are the best performing models. GPR also per-
forms best on all non-binary features, except when classifying the
unscaled Q1 responses, where RF perform best. Regarding the fea-
tures sets, with the exception of predicting the number of turns scaled
to {0, 1}, it is evident that belief state features alone cannot perform
as well as the acoustic features or the joint acoustic and belief feature
set. In fact, in some cases adding belief state information may not
be helpful and can indeed hurt accuracy. This is a significant finding
because it shows that acoustic features are rich in information that is
useful for predicting constituents of user satisfaction.

5012



Metric Alg. AF BF ABF
SVM 0.691 0.696 0.677

Q1 {0, 1} GPR 0.746 0.697 0.746
RF 0.704 0.683 0.698

Q1 {0− 2} GPR 0.700 0.580 0.658
RF 0.582 0.577 0.574

Q1 {0− 6} GPR 0.334 0.295 0.333
RF 0.400 0.296 0.373

SVM 0.864 0.816 0.817
Q2 GPR 0.882 0.867 0.903

RF 0.831 0.835 0.818
SVM 0.579 0.571 0.580

Success GPR 0.775 0.766 0.774
RF 0.586 0.576 0.621

SVM 0.704 0.762 0.714
DialogueLength GPR 0.951 0.795 0.671

RF 0.880 0.837 0.926
SVM 0.950 0.961 0.947

Turns {0, 1} GPR 0.947 0.948 0.979
RF 0.945 0.982 0.952

Turns {0− 2} GPR 0.972 0.880 0.964
RF 0.846 0.895 0.879

Turns {0− 3} GPR 0.922 0.741 0.945
RF 0.792 0.845 0.837

Turns {0− 29} GPR 0.716 0.193 0.389
RF 0.492 0.619 0.619

Table 3. Classification results on the various metrics, when using
the summary statistics of the acoustic features (AF), the belief state
features (BF) or the all of them (ABF).

Another important observation is that even though the acoustic
features do not have access to the current turn number, they per-
form better than the belief state features which do include such in-
formation when predicting the DialogueLength metric. AF or ABF
features also perform better in predicting the number of turns 2, com-
pared to BF. This could be because AF capture changes in the speak-
ers’ signal when the dialogue is longer than usual (e.g. speakers may
be getting annoyed or impatient).

A general trend, therefore, is that AF lead to better accuracy than
what can be achieved with BF alone. As further evidence to support
this, we examine the confusion matrices, where due to space limita-
tions we focus on the DialogueLength metric. The confusion matrix
when AF are used can be seen in Table 4, for the BF can be seen in
Table 5, whereas the feature-level fusion results are demonstrated in
Table 6. Since we adapted a holdout validation with stratification,
10 individual confusion matrices are produced. However, here we
report the mean value followed by the standard deviation for each
of the individual elements of the confusion matrix, e.g. the mean
of the 10 values of the dialogues that had a length less than µNTDs

and the algorithm predicted so. It can be deducted that the correctly
classified instances when the AF are utilised (Table 4) are more than
when the BF are used (Table 5). However, combining the two types
of features (ABF) leads to more correctly classified instances, as
shown in Table 6. We also observe that the standard deviation is
low, especially for the case of the correctly classified instances, thus
proving the stability and robustness of the proposed method.

2Again with the exception of number of turns scaled to {0, 1}.

Predicted DL
NTd ≤ µNTDs

NTd > µNTDs

Tr
ue

D
L NTd ≤ µNTDs

199.3 (1.3) 3.3 (1.2)
NTd > µNTDs

43.3 (6.3) 118.1 (6.4)

Table 4. Confusion matrix for the RF on Dialogue Length (DL)
when using the AF set.

Predicted DL
NTd ≤ µNTDs

NTd > µNTDs

Tr
ue

D
L NTd ≤ µNTDs

171.0 (3.7) 31.5 (3.8)
NTd > µNTDs

29.3 (4.9) 132.2 (5.1)

Table 5. Confusion matrix for the RF on Dialogue Length (DL)
when using the BF set.

Predicted DL
NTd ≤ µNTDs

NTd > µNTDs

Tr
ue

D
L NTd ≤ µNTDs

196.9 (2.5) 5.7 (2.2)
NTd > µNTDs

19.0 (4.0) 142.4 (3.8)

Table 6. Confusion matrix for the RF on Dialogue Length (DL)
when using the ABF set.

Contrary to [19, 20], who use simulated data to train deep neu-
ral networks (DNN), we use acoustic data from human users which
are richer in information but also significantly less in terms of num-
ber of dialogues. Therefore, we could not apply DNN methods and
this is why our work cannot be directly compared to [19, 20]. In
both of these works, the authors apply their pre-trained RNN models
to train dialogue policies on-line but do not learn the RNN models
themselves from real user data. Another difference lies in the nature
of the data which restricts the training methods. Specifically, we did
not have access to per-turn return for the two user-provided metrics,
Q1 and Q2; we therefore used features extracted for each dialogue.
The output of our predictors, however, can be used to train end to
end SSDS or specific components such as dialogue policies.

5. CONCLUSION

We proposed an innovative method to estimate metrics related to user
satisfaction and dialogue quality when interacting with SSDS, that
uses simple acoustic features and achieves better performance than
when using belief state features as is the current state of the art. The
proposed method is the first, to the best of the authors’ knowledge,
to predict such metrics by exploiting audio features. The methodol-
ogy combines signal processing for feature extraction, namely RMS
and pitch related features with supervised classification, specifically
SVMs, GPRs and RFs. Results indicate that using audio features
enhances the classifiers’ performance either when used alone or in
conjunction with belief state features.

In the future, we will incorporate the proposed acoustic features
in the dialogue state and let policy learning (whether RL or DNN)
solve the credit assignment problem while optimising for dialogue
success. Moreover, we will explore linguistic features that could be
strong predictors of our metrics. This richer dialogue state will be
used to guide not only the system’s output at system act level, but
provide information to Text To Speech and Language Generation as
well, in an effort to handle dialogues other than information-seeking.
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