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ABSTRACT

Automatic speech recognition systems can benefit from cues in
user voice such as hyperarticulation. Traditional approaches typi-
cally attempt to define and detect an absolute state of hyperarticula-
tion, which is very difficult, especially on short voice queries. We
present a novel approach for hyperarticulation detection using pair-
wise comparisons and demonstrate its application in a real-world
speech recognition system. Our approach uses delta features ex-
tracted from a pair of repetitive user utterances. Results show signif-
icant improvements in WER (word error rate) by using hyperartic-
ulation information as a feature in a second pass N-best hypotheses
rescoring setup.

Index Terms— Hyperarticulation Detection, Human-Computer
Interaction, Speech Recognition Rescoring

1. INTRODUCTION

There have been a lot of scientific efforts on hyperarticulation de-
tection in audio signal processing field. Understanding special cues
from a speaker’s voice has generated a lot of research, but with lim-
ited practical applications. With the increase in number of applica-
tions for automatic speech recognition (ASR), the need for under-
standing the meta information in the speaker’s voice rather than just
the spoken words is becoming important. This work targets one such
trait in speaker’s voice which is hyperarticulation, to improve the
speech recognition of voice-enabled personal assistants. The com-
mon use-cases of personal assistants are web-search, command and
control, navigation and many other applications on mobile phones
and desktop computers. The way users interact with such a system
is being studied extensively in order to better understand the perfor-
mance quality and to improve it further.

One of the common behaviors of users of these systems is query
reformulation. When users are not satisfied with the results shown
by the personal assistants, they tend to repeat or paraphrase their
queries in order to get better results. There could be multiple rea-
sons leading to the reformulation. In this work, we target those that
follow from errors in speech recognition. These cases can be iden-
tified for targeted improvements to the ASR system. Unlike other
work on reformulation that is based on lexical and semantic similar-
ities of consecutive queries, we consider comparative traits in voice
such as hyperarticulation as an evidence for mis-recognition. Previ-
ous work suggests that speakers speak more clearly and slowly after
evidence of mis-recognition [1]. This paper talks about new methods
for detecting hyperarticulation in voice query reformulations. The
specific questions we try to answer through this work are: 1. How
accurately can we detect signs of hyperarticulation given the audio
of consecutive query pairs? 2. Can we use the predictions of our

hyperarticulation models to improve speech recognition in a second
pass rescoring setup?

2. RELATED WORK

Hyperarticulation detection is a challenging task for humans and
computers alike. Not knowing the user’s normal speaking style
makes it challenging to come to a conclusion that the user is actually
hyperarticulating. Most current approaches are designed to classify
a single utterance irrespective of the previous one(s) which could
lead to poor classification performance. Our approach alleviates this
problem by focusing on a pair of user utterances spoken consecu-
tively within a short time frame and have certain lexical overlap.
Pairwise comparisons help in two ways. When we collect reference
labels for training purposes, it is easier for a human judge to do com-
parative labeling as opposed to giving absolute labels on a subjective
question [2]. It also helps in creating a non-speaker-specific model
as every user has his or her own way of emphasizing or articulat-
ing speech. We extract comparative features from the two repetitive
voice queries that we believe help identify changes in articulation
in user voice. Several studies on the changes in the acoustic signal
of repeated speech in human-computer interaction have been per-
formed [1, 3, 4, 5]. They show changes in fundamental frequencies,
duration and loudness. The work in [3] collects data by artificially
simulating speech recognition errors and asking the users to repeat
their utterances until they get it right. They show that there were
significantly higher chances of clear-speech adaptations when the
system made errors. The work in [3, 4] present studies on hyperar-
ticulation behavior as a function of error correction. Another group
of research, on repetitive speech analysis such as [5], also come to
conclusions that repeated voice queries have significantly different
characteristics as opposed to original queries which added to the mo-
tivation of our work.

In the same vein as these efforts, our goal is to predict hyperar-
ticulation accurately and use it to improve user experience with the
speech recognition systems. However, our work deals with real data
where users are interacting with a real speech recognition system.
In contrast to [3, 4] efforts, we use detailed features with pairwise
comparison of aligned word-segments between two utterances by the
same user. Although there are many publications in this area, to our
knowledge, this is the first published work that tackles the problem
of hyperarticulation detection in the context of real user sessions and
utterance reformulation. Compensation for hyperarticulation mod-
eling articulatory features has been proposed in [6] in a controlled
experiment. However, our work is the first of its kind to successfully
integrate this knowledge into a real-world speech recognizer.
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3. DATA

3.1. Data Sampling

In our approach, we use human labeled data for hyperarticulation
detection. The data is sampled from Cortana, Microsoft’s virtual
personal assistant on mobile and desktop devices, and then labeled
using crowd sourced judges according to strict guidelines where con-
sensus is sought. We collected around 5000 speech query pairs from
user sessions while naturally interacting with the personal assistant.
In this section, we discuss our criteria in sampling the data, the an-
notation guidelines and then the quality of the crowd sourcing judg-
ments.

3.1.1. Sampling Criteria

As we described earlier, we are working with consecutive speech
queries in order to obtain pairwise comparison judgments. Apart
from the condition that they were consecutive query pairs issued by
the same user, the following conditions were applied to increase the
coverage of the signal of hyperarticulation. The conditions exclude
query pairs that are not direct repetitions or very significant reformu-
lations. The three conditions that we applied are as follows.

1. The time difference between the two queries was ≤ 2 mins
as in [7].

2. The two queries are phonetically similar. We used three dif-
ferent ways to identify these cases.

(a) Metaphone edit distance < 2 : Levenshtein edit dis-
tance is measured after converting both the query texts
to metaphones [8].

(b) Phonetic edit distance < 2 : PD =
latticeDist(L1, L2) is the distance between phonetic
lattices L1 and L2. Li = g2p(queryi) where queryis
are word sequences and Lis are phonetic lattices. the
g2p() function is a weighted finite state transducer
that accepts grapheme (letter) sequences and produces
a weighted lattice of phonemes. Paths through this
lattice are possible pronunciations of the input letter
sequence. g2p() is trained on (grapheme sequence,
phoneme sequence) pairs.

(c) Second query’s 1-best recognition result was one of the
candidates in the N-best hypotheses of the first query’s
recognition.

3.2. Annotation Guidelines

To obtain annotations for our sampled query pairs we utilized a
crowd sourcing tool. Through the tool we presented the audio for
every query pair followed by questions.

We asked the judges to answer whether or not both queries are
trying to achieve the same task. This was asked in order to make
sure one query is truly a second attempt of the other. We then asked
the judges to compare what they heard in the first query to what they
heard in the second query. They were asked to look for acoustic cues
of hyperarticulation in any part of the first query compared to the
second query or vice versa, or there was no difference. We wanted
to make sure to include both directions—the first query compared to
the second and the second compared to the first—to avoid biasing
the judges to the direction we ultimately care about. This was done
through a simple three choice question.

3.3. Annotation Quality

In this section, we discuss the inter annotator agreement. Each query
pair in the data sample was judged by 3 to 5 judges in order to reach
a consensus of at least 3 judges like in [9]. Otherwise, we do not
consider the pair for training our models.

We compute Fleiss’ Kappa [10] for inter-annotator agreement.
As expected, Fleiss’ kappa takes the high value of 0.82 when the
judges are checking if the second query is related to the first query.
This is due to our biased data selection towards related queries.
However, judging if there is hyperarticulation in the second query
was not easy and the judges had low Kappa value of 0.38. To over-
come the low Kappa value, we train our models only on data with
majority consensus (at least 3 judges).

4. HYPERARTICULATION DETECTION

4.1. Approach

We apply our detection approach on a pair of consecutive user ut-
terances that match the criteria discussed above. We extract features
that help identify changes in the articulation from the first utterance
to the next one.

4.1.1. Utterance Level Features

For each utterance we extract prosody and spectral features from the
speech signal as described in Table 1 using internal Microsoft tools.
The min/max for F0 obtained by Getf0 [11] were 50/500Hz. Loud-
ness here, is an energy estimate derived from the log-Mel features.
These features were calculated for frames of 100 ms with a step of
10 ms. We average those features over the word-segments and retain
each segment’s average value for the feature. The time segmenta-
tion information is computed using forced-alignment technique of
the audio to the speech recognition hypothesis. The duration of each
word-segment is added to the segment level features to make a total
of 17 features per segment.

Table 1. Features computed for each segment of speech.
Features Group Description Dimension

Prosodic F0, Loudness, Pitch acceleration 3
Spectral Log Filter-bank Energies 13

Time Duration 1
Total 17

4.1.2. Utterance Pair Features

We use dynamic programming to align the segments of the query
pairs based on lexical and time information from the word-segments
in the hypotheses for the two utterances. This helps comparing
the articulation differences on a word-by-word (i.e. segment-by-
segment) basis. For each of the aligned segments we compute the
deltas of the pre-computed segment-level average features and the
deltas between the duration of the aligned segments. Further we
group these deltas into positive values and negative values for a given
utterance pair. Out of both the groups and the overall set we pick
minimum, maximum, average, and ratios for all the deltas. Ratio
is the number of positive values or negative values over the total
number of aligned segments. Table 2 summarizes these functional
features.

Figure 1 shows an utterance pair example for the query “can
you connect me with Mazilla?” plotted using Praat [12]. The top

4986



part shows the spectrogram for the first recognized utterance with
the word segmentation and the bottom part shows that of the second
utterance. We also show the pitch frequency contours in blue. The
speaker is dissatisfied with the recognition and system response of
the first attempt. The speaker repeats the same utterance hyperar-
ticulating the contact name “Mazilla” which was incorrectly recog-
nized as “my zillah”. Hyperarticulation is evident in the duration
of the segments of that particular word and also in the pitch fre-
quency which are longer and higher in the second utterance than in
the first utterance respectively. In addition, in the second utterance
the speaker seems to pause for a short time before hyperarticulating
the contact name as shown by the additional silence segment just be-
fore the hyperarticulation location which is colored in yellow. The
forced-alignment segmentation produces 9 segments in the first ut-
terance and 10 segments in the second one. The word-segments align
to each other in a straight forward fashion and functional features are
computed over the aligned segments. We discard aligned segments
that have SIL (silence) in them, whether it is silence-to-silence or
silence-to-word alignment.

Table 2. Functional acoustic features computed for each utterance
pair.

Functional Layer Description Dimension
1 Average of word-segments features 17
2 Deltas over aligned segments 17 x #Segments

3A Min, Max, Ave, Ratio of positive deltas 4 x 17
3B Min, Max, Ave, Ratio of negative deltas 4 x 17
3C Min, Max, Ave over all deltas 3 x 17
3 Total 187

(a) First Utterance.

(a) Second Utterance.

Fig. 1. Utterance pair example for the query “can you connect me
with Mazilla?”.

4.2. Experiments and Results

In this section, we discuss the intrinsic evaluation of our hyperarticu-
lation approach. We explain our experiments setup and then discuss

our results.

4.2.1. Experiments Setup

In our experiments, we use ≈3000 annotated utterance pairs for
training and 660 utterance pairs for testing. We down-sampled neg-
ative examples to have balanced priors in both training and test data,
to simplify the experimentation.

In our models, we use gradient boosted decision tree binary clas-
sification. Decision trees as a classifier are easier to visualize and
integrate into practical solutions. We optimized the parameters sep-
arately for each feature group and then all the features together vary-
ing the number of trees and iterations. The best performing setup is
a decision tree with 100 trees and 100 iterations.

4.2.2. Results

Table 3 shows the results of our experiments on the different feature
groups discussed in section 4.1 and their combinations. We measure
the performance in terms of accuracy, positive precision, positive
recall, negative precision, negative recall and area under the curve.
Within feature groups, our results show that the highest accuracy and
positive precision comes from the duration features. This could be
explained by the fact that users tend to elongate the words as a way
of emphasizing them.

We combined all the feature groups and we get the best perfor-
mance of 67.5% accuracy. Prosody and spectral features by them-
selves don’t show good performance but adding them to duration
improves the performance significantly. This shows the importance
of spectral and prosody features when there is not enough evidence
in the duration features of hyperarticulation. However, duration fea-
tures alone showed the best performance in terms of negative recall.

When examining the top features in the best performing model,
we found that the top features are mainly duration features which
are later complemented with prosody and spectral features. We also
found that max and min functional features play a more important
role than the other functional features. This shows that users usually
stress on a part of the utterance and not all. This part of the utter-
ance mainly contains the gist of the request or the hardest word to
recognize; for example, the contact name “Mazilla” in Figure 1.

5. SECOND PASS RESCORING

In addition to intrinsic evaluations that focus on hyperarticulation
classification quality, in this section, we present an extrinsic evalua-
tion to show usefulness of the hyperarticulation detection task in im-
proving speech recognition overall. The speech recognition system
under consideration comprises of a first pass decoder and a second
pass of re-ranking of the candidate hypotheses using additional sig-
nals as described in [13]. Some details of the rescoring feature space
and the ranker are presented below. Further details of speech rec-
ognizer such as the first pass acoustic and language model are pro-
prietary, and also not central to our experimental results as the only
change we introduce is adding the hyperarticulation related features
to the rescoring feature space, while everything else remains fixed.

5.1. Approach

The re-ranking algorithm learns to rescore the N-best list using WER
of each hypotheses as the ranking target. The ranker is a Lamb-
daMART [14] model [13], which is based on gradient boosted de-
cision trees and considered among the strongest models for learn-
ing supervised rankers. To set the parameters of LambdaMART, we
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Table 3. Hyperarticulation results in terms of Accuracy, Precision, Recall and Area Under Curve (AUC).
Model Accuracy Pos. Precision Pos. Recall Neg. Precision Neg. Recall AUC
Prosody 55.4 55.5 57.3 55.4 53.5 57.2
Spectral 61.4 61.1 63.7 61.7 59.1 63.8
Duration 65.8 66.6 64.3 65.2 67.4 69.0
Duration+Prosody+Spectral 67.4 67.5 67.7 67.3 67.1 69.8

performed a parameter sweep over the number of trees, number of
leaves per tree, learning rate and the minimum number of instances
per leaf. Since LambdaMART optimization is beyond the scope of
this paper, we only report the results with the best combination of
parameters. The feature space of the ranker contains acoustic and
language model scores from the first pass decoder as well as lan-
guage model scores computed over several additional corpora such
as large scale web queries, as well as title, body and anchor text of
web documents. These language models are bigger than a single
machine’s memory or SSD can handle, and kept in a distributed key
value store (similar to Amazon’s DynamoDB [15]), and therefore
much more powerful than the language model used in the first pass.

Hyperarticulation information is added to the feature space in
a soft decision form using the probability of hyperarticulation. For
every utterance in our dataset, we fetch the previous utterance in
the same session, if present. If it does not have a previous utterance
within 5 mins, we treat the hyperarticulation features as missing. We
pass this utterance pair through our hyperarticulation detection setup
to get the hyperarticulation classifier probability and the label using
the top hypothesis and replicate them for the N-best list. Note that we
used the version of the classifier with all the feature groups that gave
the maximum gains in accuracy for the hyperarticulation detection
task. In addition, we also added the distance metrics that were used
as the sampling criteria into the feature space. Table 4 describes
all the features that we consider in addition to the standard set of
features described in [13]. NbestCandidateEqualsPrevQuery feature
captures information from previous query at the N-best candidate
level.

Table 4. Additional features for rescoring.
Feature Name Description

Hyperarticulation classifier outputs
HAClassifierProbability Decision tree output probability
HAClassifierOutput Binary label as provided by the classi-

fier
Query Similarity Features

MetaphoneSimilarity Edit distance between metaphone rep-
resentations

PhoneticSimilarity Edit distance between phoneme lattices
Q2inNbestQ1 True if the recognition result of current

query was in the N-best of the previous
one

NbestCandidateEqualsPrevQuery True if the N-best candidate is the same
as the previous query

5.2. Experiments and Results

In this section, we describe the second pass rescoring experiments
we ran and the results we obtained. The data used for these ex-
periments are human transcriptions for randomly sampled real user
data from the same voice enabled personal assistant. The size of the
training set for the ranker was 70000 and the test set used was 4000
utterances. The coverage of our additional feature groups mentioned
in Table 4 is 54%, which is the number of utterances in this dataset

that had a preceding audio query in the same session. We measure
the improvements as percentage word error rate reduction (WERR)
relative to pre-rescoring WER. The result of adding different feature
groups is described in Table 5. Over the standard feature set, we
are seeing improvements after adding the hyperarticulation proba-
bility and label given by the classifier. Note that we did not apply
our data selection criteria described in Section 3.1 in the rescoring
experiments. Hence the HAClassifierProbability feature is not very
reliable for all the instances. In the following three lines of the table,
we see the additional improvements gotten by adding the sampling
criteria as features. This indicates that the rescoring classifier learns
that HAClassifierProbability is more reliable for the cases that fit
our sampling criteria. In the last line of the table, we get the best
improvements by adding an N-best candidate level feature Nbest-
CandidateEqualsPrevQuery which in essence captures if the query
is very similar to a previous recognition result, and intuitively al-
lows the ranker to down-weight such candidates in the presence of
hyperarticulation.

Table 5. 2nd pass rescoring experiment results. WERR is the relative
WER reduction compared to the pre-rescoring WER
Feature Set WERR( % )
Standard Features 9.82
+ Hyperarticulation classifier output 10.33
+ Query Similarity Features 10.53
+ NbestCandidateEqualsPrevQuery 10.77

When we slice the dataset into only those cases which have a
preceding audio query in the same session we get WERR of 11.43%
with all the features. The remaining slice which does not have a
preceding audio query in the same session has a WERR of 10.14%.
This shows that we make significantly higher improvements on the
subset of the data which has a preceding audio query as opposed to
the subset that does not have a preceding audio query.

6. CONCLUSION

Hyperarticulation detection provides useful signal that could help
improve automatic speech recognition experience, specifically
through second pass rescoring. We show results for predicting hy-
perarticulation in repetitive voice queries accurately. We find that
aligning and computing segment deltas for prosodic, spectral and
duration features help in the hyperarticulation detection task. Us-
ing hyperarticulation along with auxiliary features results in further
word error rate reduction in a speech recognition rescoring experi-
ment on real user test data. Future extension of applications to this
technique are detecting user dissatisfaction, using it as end-to-end
metrics and frustration detection. As further improvements to the
model, we plan to explore other acoustic properties, such as speech
rhythm [16].
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