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ABSTRACT

The benefits of both a logarithmic spectral amplitude (LSA)

estimation and a modeling in a generalized spectral domain

(where short-time amplitudes are raised to a generalized

power exponent, not restricted to magnitude or power spec-

trum) are combined in this contribution to achieve a better

tradeoff between speech quality and noise suppression in

single-channel speech enhancement. A novel gain function

is derived to enhance the logarithmic generalized spectral

amplitudes of noisy speech. Experiments on the CHiME-3

dataset show that it outperforms the famous minimum mean

squared error (MMSE) LSA gain function of Ephraim and

Malah in terms of noise suppression by 1.4 dB, while the good

speech quality of the MMSE-LSA estimator is maintained.

Index Terms— single-channel spectral speech enhance-

ment, generalized statistical-model based algorithms

1. INTRODUCTION

Despite the recent success of neural networks for speech

enhancement, there is still an interest in parametric single-

channel spectral speech enhancement algorithms, since they

tend to require less computational and memory resources than

neural networks and since they do not need a training phase.

Starting with the seminal paper [1] introducing the spectral

subtraction algorithm for noise suppression of short-time

spectral amplitudes of noisy speech signal much research

has been devoted to finding an optimal tradeoff between

high noise suppression and low speech distortion. One line

of research was concerned with finding better spectral gain

functions. Thus the MMSE-LSA estimator derived in [2] was

shown to successfully reduce the musical noise phenomenon

as reported in [3]. However a closer look at the shapes of the

MMSE-LSA gain curves revealed that the price to pay for the

good quality of the enhanced speech signals was a weaker

noise suppression in regions with low speech energy [4].

Further it was proposed to carry out the enhancement in

domains other than the magnitude or power spectral domain

[4–10]. The generalized spectral subtraction (GSS) gain func-

tions in [4] were derived, e.g., in the domain of the spectral

amplitudes raised to a generalized power exponent α ∈ R>0

denoted further as generalized spectral amplitude (GSA) do-

main, where α = 1 and α = 2 correspond to the magnitude

and the power spectral domain, respectively. According to [4]

the constrained parametric MMSE-GSS estimator results in a

respectable ability to suppress noise.

Recently we applied the spectral speech enhancement

with a generalized power exponent for the a priori SNR

estimation and discovered that this is beneficial for noise

suppression without any loss in speech quality [11]. Moti-

vated by this observation the goal of this contribution is to

combine the advantages of the LSA estimation with those of

GSA domain processing. Indeed, it will be shown that the

logarithmic GSA (LGSA) gain function derived in this paper

achieves high noise suppression and good speech quality at

the same time, thus improving the noise suppression of the

MMSE-LSA method while maintaining its good speech qual-

ity, which is better than that of the MMSE-GSS estimator.

In the next section we introduce a statistical modeling in

the GSA domain, and derive a maximum a posteriori (MAP)

LGSA estimator of the spectral amplitude of the clean speech.

In Section 3 we introduce an additional parameter to achieve

more modeling freedom and thus a better approximation to

the true distributions. A parameterization of the proposed

gain function and experimental results are presented in Sec-

tions 4 and 5, while Section 6 offers some conclusions.

2. DERIVATION

Observing a speech signal distorted by an additive uncorre-

lated noise results in the short-time Fourier transform (STFT)

coefficients Y (k, ℓ) of the noisy signal according to

Y (k, ℓ) = S(k, ℓ) +D(k, ℓ), (1)

where S(k, ℓ) and D(k, ℓ) are the STFT coefficients of the

clean speech and noise signal, respectively, with a frequency

bin index k and a frame index ℓ. Motivated by the Central

Limit Theorem, the STFT coefficients S(k, ℓ) and D(k, ℓ)
are modelled as non-stationary complex-valued zero-mean

Gaussian random processes with power spectral densities

λS(k, ℓ) = E

[

|S(k, ℓ)|2
]

and λD(k, ℓ) = E

[

|D(k, ℓ)|2
]

,

where E[·] denotes the expectation operator [12, 13].
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2.1. Generalized spectral amplitudes

The notion of GSA domain refers to raising the involved spec-

tral amplitudes to the power of an arbitrary constantα ∈ R>0:

Xα(k, ℓ) = |X(k, ℓ)|α for X ∈ {Y, S,D}. (2)

In consideration of (1) and under the made statistical assump-

tions, the GSAs of the involved processes are non-stationary

real-valued Weibull-distributed random processes with prob-

ability density function (PDF)

pXα(k,ℓ)(x) = Weib(x; λX(k, ℓ), α) (3)

where the Weibull PDF introduced in [14] is defined here as

Weib(x; λX , α) ,
2

αλX

· x
2

α
−1 · exp

(

−
x

2

α

λX

)

· ǫ(x), (4)

and where λX ∈ R>0, α and ǫ(x) are a scale parameter, a

shape parameter and the unit step function, respectively. The

raw moment of κ-th order is given by

E[Xκ
α] = Γ

(

κ ·
α

2
+ 1
)

· λ
κ·α

2

X , (5)

where Γ(x) is the gamma function. Note that the Weibull

PDF simplifies to the Rayleigh distribution for α = 1 and

to the exponential distribution for α = 2. The additivity of

Eq. (1) results in λY (k, ℓ) = λS(k, ℓ) + λD(k, ℓ).

2.2. Approximation by consistent Gaussian

As a computationally efficient LGSA estimator is pursued as

our ultimate goal, that is analytically intractable for Weibull-

distributed GSAs, we suggest to approximate the Weibull

PDFs of involved GSAs by a Gaussian distribution

pXα(k,ℓ)(x) = Weib(x; λX , α) ≈ N
(
x;µX , σ2

X

)
(6)

using moment matching for mean and variance, resulting in

µX , E[Xα] = Γ
(α

2
+ 1
)

· λ
α

2

X (7)

σ2
X =

[

Γ(α+ 1)− Γ2
(α

2
+ 1
)]

︸ ︷︷ ︸

cα

·λα
X =

cα · µ2
X

Γ2
(
α
2 + 1

) . (8)

Admittedly the reasons for such an approximation are not ob-

vious prima facie. But taking a closer look at the Weibull

PDF reveals, that at least for a certain range of α ∈ (0.5; 0.6),
where the skewness of the Weibull PDF is around zero, such

an approximation is indeed well justified.

Note that the Gaussian distribution introduced in (6) ex-

hibits some specific properties. First, the mean from (7) has

to be positive µX ∈ R>0, and second, µX and σ2
X are not two

independent parameters, since they are connected via (8) with

cα > 0. As a consequence larger values of µX are accompa-

nied with larger values of σ2
X . Normal distributions with this

linkage between mean and variance are sometimes referred to

as consistent Gaussian distributions [15].

2.3. MMSE estimator of GSA

Before deriving a desired LGSA estimator let us first consider

a MMSE-GSA estimator denoted further as a GSS estimator

as named by its developers in [4]. Based on the introduced

approximation by the consistent normal distributions and as-

suming similar to [4, 9] the additivity

Yα(k, ℓ) = Sα(k, ℓ) +Dα(k, ℓ) (9)

a MMSE-GSA estimator can be derived in contrast to [4] via

the following conditional expectation

ŜGSS
α (k, ℓ) = E [Sα |Yα ] = GGSS

α (k, ℓ) · Yα(k, ℓ). (10)

Since all involved GSAs are approximated by Gaussian distri-

butions, one can easily obtain E [Sα |Yα ] using the moments

given in eqs. (7) and (8) resulting in the GSS gain function

GGSS
α (k, ℓ) =

ξα

ξα + 1

(

1−
Γ
(
α
2 + 1

)

γ
α

2

(
1− ξ−

α

2

)

)

, (11)

where ξ → ξ(k, ℓ) and γ → γ(k, ℓ) are the a priori SNR and

the a posteriori SNR, respectively, defined as in [12]

γ(k, ℓ) ,
|Y (k, ℓ)|2

λD(k, ℓ)
, (12) ξ(k, ℓ) ,

λS(k, ℓ)

λD(k, ℓ)
. (13)

Note, that (10) describes the denoising of the generalized

α-order spectral magnitudes of the noisy signal by a gain

function GGSS
α (k, ℓ), which depends on the parameter α.

As we discovered, the gain function from (11) rewritten as

GGSS(k, ℓ) = [GGSS
α (k, ℓ)]

1

α to be applied to the noisy spec-

tral amplitudes was already derived in [4], however using

another problem formulation. There, a parametric GSS esti-

mator defined as Ŝα(k, ℓ) = a ·Yα(k, ℓ)− b ·E[Dα(k, ℓ)] was

derived by minimizing the mean squared error cost function

E{[Sα(k, ℓ)− Ŝα(k, ℓ)]
2} w.r.t. the parameters a and b. This

accordance provides another justisfication for the approxima-

tion (6) leading to the Gaussian conditional PDF

pSα|Yα
(s|y) = N (s;µS|Y , σ

2
S|Y ), (14)

µS|Y = GGSS
α ·Yα, (15) σ2

S|Y =
cα
γα

·
ξα

ξα + 1
· Y 2

α . (16)

Note, that in contrast to [4] the approximation (6) allows us

to get a closed form conditional PDF (14), which now can be

used to derive a desired estimator of LGSA.

2.4. MAP estimator of logarithmic GSA

To derive an estimator of LGSA denoted as Zα = lnSα,

pSα|Yα
(s|y) from (14) has to be modified in a way that it

is defined only for s > 0, as a prerequisite for going to the

logarithmic domain. Since all realizations of Sα are positive

according to the definition (2) we suggest to approximate (14)
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by a normal distribution truncated at s = 0 while maintaining

the mode of distribution, resulting in

p̃Sα|Yα
(s|y) =

ǫ(s)

Q
(

−
µS|Y

σS|Y

) · N (s;µS|Y , σ
2
S|Y ), (17)

where Q(x) is the complementary cumulative distribution of

the standard normal density. A change of variable leads to the

following PDF of the LGSA

pZα|Yα
(z|y) =

ez · N (ez;µS|Y , σ
2
S|Y )

Q
(

−
µS|Y

σS|Y

) ∝ e
1

2
·f(z) (18)

with f(z) = 2 · z −
(
ez − µS|Y

)
2/σ2

S|Y . Since the deriva-

tion of the MMSE-LGSA estimator Ŝα = exp(E[Zα|Yα]) is

analytically intractable, we suggest to employ the maximum

a posteriori based LGSA estimator defined as

ŜLGSA
α = exp

(

argmax
z

pZα|Yα
(z|y)

)

. (19)

Finding a maximum of pZα|Yα
(z|y) and using it in (19) re-

sults in the desired simple MAP-based LGSA estimator

ŜLGSA
α =

µS|Y

2
+

√
(µS|Y

2

)2

+ σ2
S|Y . (20)

Using (15) and (16) in (20) provides the resulting MAP-

LGSA gain function GLGSA(k, ℓ) = [GLGSA
α (k, ℓ)]

1

α with

GLGSA
α (k, ℓ) =

GGSS
α

2
+

√
(
GGSS

α

2

)2

+
cα
γα

·
ξα

ξα + 1
. (21)

Note, GLGSA
α (k, ℓ) > GGSS

α (k, ℓ) holds always for a given α.

To our knowledge GLGSA(k, ℓ) is a first gain function in log-

arithmic domain among the MAP-based gain functions [16].

3. ADDITIONAL MODELING FREEDOM

Following George E. P. Box’ statement that ’Essentially, all

models are wrong, but some are useful’ [17], we suggest a

mechanism to increase the flexibility of our modeling similar

to [18] and allow the models in (3) to have a shape parame-

ter β different from the used power exponent α as follows

pXα(k,ℓ)(x) = Weib(x; λX(k, ℓ), β). (22)

Thus we model spectral amplitudes raised to the powerα with

a Weibull PDF by using a shape parameter β not necessarily

equal to α. Such modeling causes in (11) and (21) a substitu-

tion of α by β. With this additional parameter β it is possible

to better approximate the true distributions of GSAs and to

increase usefulness of introduced statistical models.

Thus, in contrast to (10) we suggest to denoise the

noisy GSAs Yα(k, ℓ) by the gain functions GGSS
β (k, ℓ) or

GLGSA
β (k, ℓ), which are dependent on β resulting in

GEST(k, ℓ) =
[
GEST

β

] 1

α for EST ∈ {GSS, LGSA}. (23)

4. PARAMETERIZATION

In order to use the gain functions (23) for speech enhancement

a power exponent α and a shape parameter β have to be set

appropriately. For this some experiments are conducted with

speech signals distorted by white noise. Clean speech sig-

nals for male and female speakers are taken from the TIMIT

database [19] and are concatenated to a total length of 1 min-

utes each. These are distorted by a white noise signal taken

from the signal processing information base (SPIB) data [20]

at global SNR values SNRIN ∈ {−5, 0, 5, 10, 15} dB. To ob-

tain a frequency representation of signals sampled at 16 kHz,

a STFT transformation with a Hamming analysis window of

512 samples length with a shift factor of 0.25 is used. As

a noise power spectral density estimator λ̂D(k, ℓ), the mini-

mum statistics (MS) approach is applied with a length of the

MS window for minimum search of 96 frames divided into

UMS = 8 sub-windows of length of VMS = 12 frames [21].

A minimum value of the MS smoothing parameter is set to a

constant value αMS,min = 0.3 For the a priori SNR estima-

tion the decision-directed (DD) approach [12] is applied with

a weighting factor of 0.975 and a minimum a priori SNR of

ξmin = −25 dB [22]. The gain functions are delimited by an

upper bound of 1 and a lower bound of Gmin = −25 dB [23].

Values of α and β are varied in the ranges of [0.01; 3] and

[0.2; 5], respectively. As an objective performance measure,

the wide-band mean opinion score - listening quality objec-

tive (MOS-LQO) measure is used [24]. Note, higher MOS-

LQO values indicate better performance.

Fig. 1 shows the resulting MOS-LQO values averaged

over signals of male and female speakers at SNRIN = 5 dB

for the GSS and LGSA gain functions entitled by the values

’MOS-LQOmax(αopt, βopt)’, where the parameters (αopt, βopt)
depicted by big black points maximize the MOS-LQO scores.

The experiments show, that both gain functions achieve simi-

lar MOS-LQOmax values but for different optima (αopt, βopt).
Further, the GSS gain function provides high MOS-LQO val-

ues for a larger range of (α, β) values than the LGSA gain

α

β

1.476 (1.1, 1.6)

0

1

1

2

2

3

3

4

5

(a) GSS

α

β

1.472 (0.8, 1.2)

0

1

1

2

2

3

3

4

5

(b) LGSA

Fig. 1. Averaged MOS-LQO scores for white noise at 5 dB.
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Fig. 2. The proposed LGSA, GSS and LSA gain functions.

function. However, the optimal values (αopt, βopt) for differ-

ent SNRIN values depicted by small black points scatter for

the GSS more than for the LGSA. In general the points with

smaller values of αopt and βopt correspond to higher SNRIN

values and vice versa. None of the points (αopt, βopt) lies

on a constraint β = α depicted by a white line justifying

usefulness of the additional modeling freedom proposed in

Section 3. It is preferable to choose the shape parameter βopt

of the Weibull distribution higher than the power exponent

αopt of the GSAs, which means that distributions with higher

kurtosis are favoured as for β = α.

The curves of the gain functions from (23) for (αopt, βopt)
at SNRin = 5 dB are depicted in the Fig. 2 over the instanta-

neous SNR γ−1 at a priori SNR ξ ∈ {-10, -5, 5} dB together

with the curves of the MMSE-LSA gain from [2] denoted by

LSA. A desired ability of the LSA gain concerning reducing

the musical tones is decreasing of its curves with increasing γ
values [3,4]. In contrast to the GSS gain, the proposed LGSA

gain approximately maintains this desired behavior even for

the higher region of ξ values (e.g., for ξ = 5 dB). As the gain

curves of the LSA gain for ξ < -5 dB show, the price to pay

for good speech signal quality is a poor noise suppression.

On the contrary, using β 6= α in (23) causes a higher noise

attenuation for both generalized gain functions.

5. EXPERIMENTAL RESULTS

In order to evaluate the performance of the gain functions, we

carried out single-channel speech enhancement experiments

on the development dataset of the third computational hear-

ing in multisource environments (CHiME-3) challenge [25],

where signals are sampled at 16 kHz and represent in total

about 2.88 hours of audio data. The simulated isolated data

consist of 410 utterances in every of 4 different noise environ-

ments: on the bus (bus), in a cafe (caf), in a pedestrian area

(ped) and on a street junction (str). We used recordings of the

5th tablet microphone with an averaged global input SNR of

SNRin ≈ 5.8 dB and denoised them by the same enhancement

system as in the experiments with white noise. In the gener-
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Fig. 3. Average improvement in terms of ∆MOS-LQO and

∆SNR for development set of the CHiME-3 database [25].

alized gain functions the fixed parameters (αopt, βopt) given

in Fig. 1 are used with resulting gain curves as in Fig. 2. Be-

side the speech quality improvement measured in terms of

∆MOS-LQO = MOS-LQOout − MOS-LQOin calculated for

every enhanced output and noisy input signal, we evaluated

the increase in global SNR measured on the output of the sys-

tem regarding to its input via ∆SNR = SNRout − SNRin to

show the ability of the estimators to suppress noise.

The resulting ∆MOS-LQO values averaged over all ut-

terances of a certain noise type are depicted in Fig. 3 over the

averaged ∆SNR values for the LGSA, GSS and LSA estima-

tors. Additionally, ∆MOS-LQO and ∆SNR values averaged

(avg) over all noise types are pointed out. As expected the

LSA estimator delivers enhanced signals with a good speech

quality but poor noise suppression. On the contrary the GSS

estimator achieves good noise suppression, however at the

cost of poorer signal quality. Amazingly, the proposed LGSA

gain function almost achieves the speech quality of the LSA

estimator and at the same time outperforms the GSS estima-

tor in terms of noise suppression. Compared to the LSA, the

proposed LGSA estimator improves noise suppression by ap-

proximately 1.4 dB on average (from 4.2 dB to 5.6 dB) almost

without loss in speech quality. Thus, the proposed LGSA gain

function provides a better tradeoff between speech quality and

noise suppression than both other estimators.

6. CONCLUSIONS

A novel short-time spectral gain function is derived in this

work in the domain of logarithmic generalized spectral ampli-

tudes. Using the MAP criterion here leads to a computation-

ally efficient estimator which achieves a better tradeoff be-

tween speech quality and noise suppression compared to the

famous MMSE-LSA estimator from [2] and to the MMSE-

GSS estimator proposed in [4]. The achieved improvement

comes at virtually no increased computational cost.
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