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ABSTRACT

The paper proposes a convex combination fusion function based on
a sigmoid function for the estimation of the a priori SNR in a speech
enhancement framework with critical frequency band processing.
The proposed method does not only eliminate the one frame de-
lay generated by the well-known decision directed approach but also
increases the adaptation speed during abrupt changes in the SNR
estimation. As a result, the advantage of low musical noise has
been maintained while more weak speech components have been
preserved. Experimental results using instrumental and subjective
measures also indicate improvement in speech quality compared to
the reference methods.

Index Terms— Single channel speech enhancement, a priori
SNR estimation, critical band processing.

1. INTRODUCTION

In many circumstances such as normal voice communications, the
application of hearings aids and automatic speech recognition, the
speech signals can be severely degraded due to different types of
background noises. Therefore, the removal of the noise components
from the degraded speech has been the main purpose of research
work in the field of acoustic signal processing over the past few
decades and it still remains an open problem today. The main task
of a single channel speech enhancement is to reduce the background
noise without generating musical artifacts while preserving the de-
sired speech components [1, 2].

Most of the speech enhancement techniques are designed in the
frequency domain where short time Fourier transform (STFT) is
used as a tool to process the input data in overlapping blocks [3,
4, 5, 6]. Processing methods using STFT directly has a constant
bandwidth which is different from the natural filtering operation of
the human auditory system. Therefore, many recent research pa-
pers have employed the human auditory system in the noise reduc-
tion process in order to improve the speech quality and intelligibility
[7, 8, 9, 10]. The human auditory system works as a banks of band-
pass filters known as critical band filters, frequency components in
the same critical band perceived equally by human auditory system
[8]. In [8] the over-subtraction factor and the floor of the spectral
subtraction gain function are adapted in time and frequency based on
auditory masking properties along a Bark scale. In [10] an analysis-
synthesis filterbank based on Gammatone filters has been employed
in single channel noise reduction algorithm, which yields a compa-
rable estimated speech quality as STFT based approach.

The gain function of a STFT based speech enhancement pro-
cessing is usually a function of the a posteriori signal to noise ratio
(SNR) and/ or the a priori SNR [11]. Among the many methods pre-
sented in the literature [6, 11, 12, 13, 14], the most common a priori

SNR estimator is the decision directed (DD) approach proposed in
[12], which consists of a weighted sum of two terms, the a priori
SNR estimate from the previous frame and a maximum likelihood
(ML) SNR estimate from the current frame. The main advantage of
this approach is its ability to eliminate the musical noise artifacts by
reducing the variance of the a priori SNR estimate especially during
noise frames. The drawback is that it leads to a slow adaptation to-
wards speech onsets and offsets since it uses a constant weighting
factor close to unity. As the DD approach depends on the a priori
SNR estimation in the previous frame, an extra one frame delay is
obtained during speech transient and that leads to a degradation in
the speech quality.

A modified decision directed approach (MDD) proposed in [6]
overcomes the one frame delay problem by matching the current
noisy speech spectrum with the a priori SNR estimate rather than
the previous one. However, since the value of the constant weight-
ing factor is close to one, the adaptation speed of the a priori SNR
estimate between non-speech and speech frames is still not as fast as
the a posteriori SNR’s.

In this paper, we propose an improved a priori SNR estimation
approach by utilizing a fusion function based on a sigmoidal shape
in order to control the adaptation speed of the a priori SNR estima-
tion. The fusion function can be viewed as a convex combination
function that selects either the DD term or the ML estimate in the
a priori estimate update. We observed that for positive SNR values
the a priori estimate and the a posteriori are almost the same. Thus
a flexibility to select either of the two terms for SNR values below
or above a certain threshold is plausible, which can be achieved by
the sigmoidal function. By utilizing a tuned threshold and sigmoid
shape, an improved adaptation of the a priori SNR estimate is ob-
tained, which results in better preservation of weak speech compo-
nents. In conjunction with that, we utilize a critical band mapping
from STFT analysis-resynthesis system in the speech enhancement
framework for human perceptual processing and lower complexity.

The remainder of this paper is organized as follows. In section 2,
a single channel speech enhancement framework with critical band
processing is presented. Section 3 shows the decision directed based
a priori SNR estimators. Section 4 presents the proposed a priori
SNR estimation approach. Section 5 demonstrates the results of the
experimental evaluation and section 6 concludes the paper.

2. CRITICAL BAND SPEECH ENHANCEMENT

Let s(n) and v(n) denote clean and additive noise signals respec-
tively, and y(n) = s(n) + v(n) is the noisy signal where the clean
speech and noise signals are assumed to be uncorrelated. The time-
frequency domain of the noisy signal can be obtained by applying
the short time Fourier transform (STFT) as follows
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Y (k,m) = S(k,m) + V (k,m) (1)

where k is the frequency index and m is the time frame index. An
analytical expression to describe the relationship between frequency
f (in Hz) and critical band z (in bark scale) can be approximately
formulated [15] by

f = 650 sinh
(z
7

)
. (2)

The number of critical bands I depends on the sampling fre-
quency fs and frequency band limits (minimum frequency=0 Hz and
maximum frequency=fs/2). The noisy spectrum is then expressed
in terms of the critical band numbers i and frame index m by com-
bining the FFT frequency bins into I critical bands as follows

Ycb(i ,m) =

K/2+1∑
k=0

M(i, k) |Y (k,m)| (3)

where i = [1, 2, · · · , I], and M(i , k) is the critical bandpass filter
coefficients which can be defined [16] by

M(i, k)=


10(z(k)−zc(i)+0.5) z(k) < zc(i)− 0.5

1 zc(i)−0.5<z(k)<zc(i)+0.5

10−2.5(z(k)−zc(i)−0.5) z(k) > zc(i) + 0.5
(4)

where zc(i) denotes to the center frequency of the ith critical band.
An estimate of the clean speech signal can be obtained by ap-

plying a spectral gainG(i,m) to each time-frequency component of
noisy spectrum

Ŝ(i,m) = G(i,m)Ycb(i,m) (5)

where 0 < G(i,m) < 1, which is a function of the a priori SNR
ξ(i,m) and/or the a posteriori SNR γ(i,m). In this work, we have
chosen Wiener gain as given by

G(i,m) =
ξ(i,m)

1 + ξ(i,m)
(6)

which is a function of the a priori SNR. The a priori SNR ξ(i,m)
and the a posteriori SNR γ(i,m) can be defined by

ξ(i,m) =
λs(i,m)

λv(i,m)
(7)

and

γ(i,m) =
|Ycb(i,m)|2

λv(i,m)
(8)

where λv(i,m)= E
[
|Vcb(i,m)|2

]
, λs(i,m) = E

[
|Scb(i,m)|2

]
are the power spectral density of noise and clean speech, respec-
tively. Since only the noisy signal is given and both PSD of noise
and speech are unknown, the a priori SNR and the a posteriori SNR
have to be estimated.

The enhanced speech is then reconstructed by first transforming
back into STFT form by

Ŝs(k,m) =W (k,m)Y (k,m) (9)

where W (k,m) is obtained from W = Ag. Here, g is a vec-
tor given by g = [G(1,m), G(2,m), ..., G(I,m)]T and A is the
K × I rescaling matrix and can be defined by least square approx-
imation as A = (MTM)−1MT , with M denotes the matrix form

of M(i, k). From empirical findings, a better result can be obtained
by simplifying the reconstruction matrix as

A = diag

(
1

1M

)
MT

where 1 is 1× I row vector, then taking the inverse STFT of the en-
hanced speech spectrum by using the phase of the noisy observation
and overlap-add method

ŝ(n) = IFFT
(∣∣∣Ŝs(k,m)

∣∣∣ ej arg(Y (k,m)
)
. (10)

3. CONVENTIONAL A PRIORI SNR ESTIMATION

3.1. Decision Directed Approach (DD)

The most commonly used method to estimate the a priori SNR from
noisy speech is the decision directed (DD) approach [12], which
is updated based on the amplitude estimate from previous frames.
Specifically, the estimate consists of two terms, where the first one
indicates the amplitude estimator of the previous frame, and the sec-
ond term represents Maximum Likelihood (ML) estimate of the a
priori SNR as a function of the a posteriori SNR. This approach is
defined by

ξ̂DD(i,m) = β
|Ŝ(i,m− 1)|2

λ̂v(i,m− 1)
+ (1− β)P [γ̂(i,m)− 1] (11)

where λ̂v(i,m − 1) is the noise PSD estimate at previous frames,
P is the half wave rectification, and β denotes a weighting factor
that controls the trade-off between the a priori SNR from previous
frames and the a posteriori SNR estimate γ̂(i,m) at current frames.

The advantage of the DD approach is its capability to signifi-
cantly reduce background noise while avoiding musical noise phe-
nomenon, given that the weighting factor is a value very close to 1
(β = 0.98) [17]. In particular, during speech onsets when the a pos-
teriori SNR is�1, the first term of the DD approach will correspond
to the a posteriori SNR estimate from the preceding frames, such that

ξ̂↑↑DD(i,m)=β
G2(i,m−1)|Ycb(i,m−1)|2

λ̂v(i,m)
+(1−β)P [γ̂(i,m)−1]

≈ βG2(i,m− 1)γ̂(i,m− 1) +(1−β)P [γ̂(i,m)−1] .

Since β is close to 1, the second term of the above equation would
not have a significant impact on the estimation process and could
be assumed negligible. That means the a priori SNR estimate will
follow the a posteriori SNR with a one frame delay during abrupt
changes in SNR. When the a posteriori SNR is≤ 1 (noise frame), the
second term of the DD approach is equal to zero and the a priori SNR
estimate corresponds to a scaled version of the a posteriori SNR. A
priori SNR estimate can be defined by

ξ̂↓DD(i,m) = βG2(i,m− 1)γ̂(i,m− 1).

From the above discussion it can be noticed the following: 1)
As observed from the first term of both scenarios, the DD approach
utilizes the estimate of the clean speech in the preceding frames in-
stead of the current ones, which leads to a one frame delay. 2) Dur-
ing abrupt changes in SNR, given that the parameter β is chosen
very close to 1, the second term gives little influence in the update
of the a priori SNR estimate. In this case, the a priori SNR esti-
mate becomes a weighted version of the a posteriori SNR estimate
at previous frame.
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3.2. Modified Decision Directed Approach (MDD)

The modified decision directed (MDD) approach is proposed in [18],
which has resolved the problem of extra one frame delay by match-
ing the a priori SNR and clean speech estimation with the current
noisy frame instead of the previous one. So this approach reduces
the speech transient distortion resulting from an extra frame delay.
This approach can be defined by

ξ̂MDD(i,m)= β
G2(i,m−1) |Ycb(i,m)|2

λ̂v(i,m)
+(1−β)P [γ̂(i,m)−1] . (12)

This method is not a first order recursive averaging as it em-
ploys the current noisy frame instead of the previous one which can
increase the variance of the a priori SNR estimate and increase the
amount of musical noise. So in order to reduce the sensitivity of
the estimated a priori SNR and reduce the musical noise, the mag-
nitude square of noisy signal has been smoothed by using first order
recursive smoothing procedure as given by [6]

λy(i,m) = αyλy(i,m− 1) + (1− αy) |Ycb(i,m)|2 (13)

where αy is the smoothing constant. Then, λy is used to smooth the
a posteriori SNR from (8). Similar to the DD approach, the draw-
back lies in the large smoothing constant which reduces the influence
from the second term towards the a priori SNR update, causing it to
become a scaled down estimate when compared to the true a priori
SNR.

4. PROPOSED A PRIORI SNR ESTIMATION

In this work, we view the modified a priori SNR estimation not as
a recursion but as a convex combination filter, where the weighting
factor β is a fusion function that combines the weighting of the first
and second term in Eq. ((12)) based on a sigmoid function. The sig-
moid function is a function that varies between 0 to 1. It consists of
two parameters, a to control the transition speed and c to determine
the threshold for active speech signal versus only noise. As we know
that the a priori SNR and a posterior SNR will be the same for high
SNR, this can be utilized in the parameter selection for the sigmoid
function. With this in mind, a fusion function β̂(i,m) is proposed
based on the instantaneous SNR as given by

β̂(i,m) =

∣∣∣∣ 1

1 + exp [−a (κ̂(i,m)− c)] − ς
∣∣∣∣ (14)

where 0 < β̂(i,m) < 1 and κ̂(i,m) = γ̂(i,m) − 1 is the instan-
taneous SNR, and ς denotes the parameter controlling the upper and
lower limits of the fusion function values. The modified a priori SNR
estimation approach is then defined by

ξ̂prop(i,m)= β̂(i,m)
|G(i,m−1)Ycb(i,m)|2

λ̂v(i,m)
+(1−β̂(i,m))P [γ̃(i,m)−1]

(15)
where γ̃(i,m) is the a posteriori SNR estimate employing the
smoothed estimate of the noisy speech from Eq. ((13)).

Figure 1 shows the variation of the proposed adaptive fusion
function with the instantaneous SNR. For κ̂(i,m) ≤ 0dB (noise
frame), the second term is zero, fusion function takes the maximum
value (close to 1), which means that the proposed method will have
the same behavior as MDD approach during noise frames, and as a
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Fig. 1. A fusion function as a function of instantaneous SNR with
a = −2, c = 2.7 and ς = 0.015.

result, the a priori SNR estimate will corresponds to a scaled version
of the a posteriori SNR estimate as given by

ξ̂↓prop(i,m) = β̂(i,m)G2(i,m− 1)γ̂(i,m).

When 0 dB < κ̂(i,m) < 7 dB, the value of κ̂(i,m) decreases
with the increment in the a posteriori SNR. As a consequence, the a
priori SNR estimate in (12) will be given by

ξ̂↑prop(i,m) = β̂(i,m)G2(i,m−1)γ̂(i,m)+(1− β̂(i,m))P [γ̃(i,m)− 1]

where the second term in the above equation feeds the a priori SNR
estimation in order to track the abrupt SNR changes. In this case,
the a priori SNR estimate corresponds to a combination of a scaled
amplitude estimate and the smoothed instantaneous SNR estimate.
A higher influence of that second term results in the capability of the
estimator to pick up more weak speech components, which is shown
in the next section. For κ̂(i,m)> 7 dB, the fusion function takes the
lowest value (close to 0) and as a result, the a priori SNR estimate
corresponds to the smoothed a posteriori SNR as given by

ξ̂↑↑prop(i,m) = (1− β̂(i,m))P [γ̃(i,m)− 1].

5. EXPERIMENTAL EVALUATION

In order to evaluate the proposed a priori SNR estimation method,
we performed experiments using speech sequences and noise from
NOISEUS and NOISEX database respectively. The speech se-
quences are corrupted by pink noise at input SNRs of 0 dB and 10
dB. A sampling frequency of fs = 8000 Hz with K = 512 fre-
quency bins were used, and square root hanning window with 50%
overlapping was applied for STFT analysis. The noisy spectrum was
then processed by critical band processing and grouped into I = 17
critical bands as shown in Eq. (3). The overlap-add method were
used to reconstruct the estimated signal. The value of the smoothing
constant in Eq. (13) was chosen as αy = 0.2. The values of the
parameters in Eq. (14) are chosen, respectively, as a = −2, c = 2.7
and ς = 0.015. The fixed weighting constant for DD and MDD
approaches was chosen as value of β = 0.98. In this work, noise
PSD was estimated based on the probability of speech presence [19]
for all the a priori SNR estimators.

Figure 2 shows an example of the behaviour of the a priori SNR
estimated by DD, MDD and the proposed method. The a priori SNR
estimates are displayed at 9th critical band. During noise frames, it
can be seen that the behaviour of the a priori SNR estimation of the
evaluated methods are almost identical since at low SNR the pro-
posed fusion function takes the maximum value (close to 1). As a
result, the estimated a priori SNR estimation is a highly scaled ver-
sion of the a posteriori SNR. However, during speech transition, ξ̂DD
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Fig. 2. Comparison of the a priori SNR estimation over a short time
period between κ̂ (green solid line) , ξ̂DD (blue solid line), ξ̂MDD

(black solid line), and ξ̂prop (red solid line), at 9th critical band, and
10 dB SNR white noise.

and ξ̂MDD follow the instantaneous SNR with delays, which result in
degradation in speech quality. Meanwhile, ξ̂prop eliminates the de-
lay and improve the adaptation speed to follow any abrupt changes
in the a priori SNR estimation. Figure 3 depicts five spectrograms
represent the clean signal, noisy speech corrupted by pink noise at 10
dB, enhanced speech estimated by DD, MDD and proposed method,
respectively. It can be observed that the proposed method preserved
more weak speech components when compared to DD and MDD
approaches.

The a priori SNR estimators were also evaluated in the critical
band based speech enhancement system in terms the musical noise
measurement (KurtR), perceptual speech quality (PESQ), and seg-
mental signal to noise ratio (SNRseg) [6]. Lower values of KurtR
with a larger PESQ and SNRseg indicate an improved performance.

Table 1 shows the mean performance of KurtR, PESQ, and
SNRseg measurement for different a priori SNR estimation methods
for NOIZEUS databse corrupted by pink noise. It can be clearly seen
that the proposed method has an improvement in terms of PESQ and
segmental SNR with higher scores comparing to DD and MDD
methods. For musical noise measure KurtR, the proposed method
maintain the advantage of DD and MDD approaches in eliminating
the musical noise in low SNR case. Meanwhile at high SNR, the
proposed method generates slightly higher musical noise comparing
to the MDD approach because of the sensitivity of the a priori SNR
estimation to abrupt changes.

DD MDD Proposed
SNR 0 10 0 10 0 10

KurtR 1.0484 1.5930 1.0046 1.1714 1.0301 1.2590
PESQ 1.8720 2.5864 1.8571 2.6246 2.0561 2.7439

SNRseg -0.2356 4.3209 -0.1361 4.5123 1.2753 5.7417

Table 1: Objective measurement mean performance for pink noise.

0dB 10dB
DD MDD Proposed DD MDD Proposed

Speech 2.50 2.63 3.13 2.63 3.50 3.88
Noise 1.88 2.25 2.88 2.50 3.13 3.50

Musical
Noise 3.38 3.13 3.38 3.50 3.75 4.13

Table 2: Informal listening test results for pink noise.
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Fig. 3. Spectrogram comparison between different a priori SNR es-
timators at 10 dB input SNR with pink noise.

5.1. Listening test

A subjective evaluation was performed by organising an informal
listening test with eight participants to validate the results from ob-
jective measurement [20]. The listeners were asked to rate the en-
hanced signals in three criteria: the audibility of speech, the amount
of suppressed background noise and musical noise, using a 5 point
scale. The results are tabulated in Table 2, where it can be clearly
noticed that the listeners preferred the signals estimated by the pro-
posed method more than the other aforementioned approaches.

6. CONCLUSION AND RELATION TO PRIOR WORK

We presented a novel method for the a priori SNR estimation based
on a convex combination sigmoidal fusion function. Apart from
combining the benefits of the conventional decision directed estima-
tion (DD) in [12] and the modified decision directed (MDD) estima-
tion in [6], where a fixed weighting factor has been used, the fusion
function in this approach provides a much faster adaptation when
there is a speech input. This improved tracking capability of the
abrupt changes in SNR improves the preservation of weak speech
components which is important for speech quality and intelligibil-
ity. The objective comparison and listening test both indicate that
the proposed method is the preferred approach over DD and MDD
methods.

In addition, we employed a critical band speech enhancement
framework with a different speech reconstruction approach com-
pared to the algorithms in literature that utilize a normal STFT struc-
ture [5, 7, 8] or an auditory filterbank [9, 10]. The study has been
performed for Wiener filter gain function but can also be applied to
other types of spectral gain functions.
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