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ABSTRACT

This paper presents a novel noise suppression method to en-
hance soft speech recorded with a special body-conductive
microphone called nonaudible murmur (NAM) microphone.
NAM microphone is capable of detecting extremely soft
speech, but the recorded soft speech easily suffers from ex-
ternal noise due to its faint volume. To effectively suppress
noise on the body-conducted signals, an external noise mon-
itoring framework using an air-conducive microphone has
been proposed. In this study, we propose a noise suppression
method for this framework based on a probabilistic observa-
tion model robust against phase variations. In the proposed
method, noise suppression process is formulated as a special
case of non-negative tensor factorization of the observed air-
and body-conducted signals. Experimental results demon-
strate that 1) the proposed method consistently outperforms
the conventional method under real noisy environments and
2) the proposed method effectively deals with speech acoustic
changes caused by the Lombard reflex.

Index Terms— Silent speech communication, nonaudi-
ble murmur, noise suppression, external noise monitoring,
non-negative matrix factorization

1. INTRODUCTION

Speaking is the most efficient way of human communica-
tion. In recent decades, the style of speech communication
has been changed as a result of advancement of information
and communication technologies, such as mobile phones or
smartphones. These technologies allow us to talk to each
other beyond geographic distances and also make such a
speech communication style common today. This newly de-
veloped speech communication style has reminded us that
there are some situations where we hesitate to talk; e.g.,
we have difficulty in talking about private information in a
crowd; or speaking by yourself would sometimes annoy oth-
ers in quiet environments. To address this issue, silent speech
interfaces [1] have recently attracted attention as a technol-
ogy to make it possible for us to talk without the necessity of
emitting an audible signal. There are several ways to detect
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silent speech, such as body-conductive microphones [2, 3],
electromyography [4], ultrasound imaging [5], and so on.

In this paper, we focus on the nonaudible murmur (NAM)
microphone [3], which is one of the body-conductive mi-
crophones. The NAM microphone was designed to detect
an extremely soft whispered voice called NAM, which is so
quiet that people around the speaker barely hear its emitted
sound. It can also detect various types of speech, such as
a whispered voice, a soft voice, and normal speech. Al-
though severe degradation of speech quality is caused by
body-conductive recording [6], the recorded body-conducted
speech is still comprehended if people get used to this special
kind of sound. Moreover, some attempts have been made to
apply statistical voice conversion (VC) techniques with the
aim of further improving the quality and intelligibility of the
recorded body-conducted speech [7, 8]. Thus, the NAM mi-
crophone has a great potential to be used as one of the silent
speech interfaces.

To practically use the NAM microphone for silent speech
communication, there still remain some issues. Robustness
against external noise is one of the advantages of NAM micro-
phone, but the detected unvoiced soft speech (such as NAM)
is still significantly deteriorated as the surrounding noise level
increases. Such a noisy NAM signal also causes severe fail-
ure in the conversion process of the VC-based enhancement
system [9]. To address this issue, we have proposed a noise
suppression method based on external noise monitoring using
an air-conductive microphone [10]. This method utilizes the
air-conductive microphone to detect only the external noise
signal leveraging a property of NAM (i.e., its faint volume).
It has been reported in [10] that the air-conducted signal is
effectively used as a reference signal to suppress the exter-
nal noise on the body-conducted signal in over 60 dBA noise
condition (corresponding to about −20 dB SNR at the air-
conductive microphone).

As the conventional noise suppression method based on
the external noise monitoring, we proposed the semi-blind
source separation (semi-BSS) techniques to estimate a time-
invariant linear filter and reported that it worked well under
a particular situation where only one fixed sound source ex-
ists in a sound-proof room. As a result of further investiga-
tion, we also found that its performance tended to degrade
in more realistic experimental conditions, including environ-

4960978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



ments with many moving sound sources. In such situations,
the consistency of the interchannel phase differences of the
external noise can be easily destroyed, making it difficult to
deal with noise suppression using a time-invariant system. To
develop a noise suppression algorithm that is robust against
the phase variations of noise, one possible approach is to treat
the interchannel phase differences between the two channel
inputs as latent variables to be marginalized out so that the
algorithm becomes less sensitive to that factor. Based on this
idea, we formulate a probabilistic model of the two channel
observations within the external noise monitoring framework
and develop a parameter inference algorithm. It turns out that
the proposed noise suppression algorithm is a special case
of non-negative tensor factorization of the observed air- and
body-conducted signals. Experimental results demonstrated
that 1) the proposed method consistently outperformed the
conventional method under real noisy environments and 2)
the proposed method effectively deals with speech acoustic
changes caused by the Lombard reflex [11].

2. NOISE SUPPRESSION BASED ON EXTERNAL
NOISE MONITORING

2.1. External noise monitoring [10]

NAM is an extremely soft whispered voice and it is prac-
tically difficult to be detected with an usual air-conductive
microphone in noisy environments. By leveraging this prop-
erty, only external noise signal can be detected with the air-
conductive microphone placed away from mouth. Although
the NAM signal is actually leaked into the air-conductive
microphone from mouth, the signals detected with the air-
conductive microphone can be well approximated with only
the external noise signals if the sound pressure level of the
external noise is higher than 60 dBA. It is also expected that
this setting position of the air-conductive microphone close to
the NAM microphone is helpful to detect the external noise
signals well corresponding to noise signals detected with the
NAM microphone. Consequently, the mixing process of the
observed body- and air-conducted signals in noisy environ-
ments is assumed as follows:

y1(t) = s1(t) +

U∑
u=0

ft(u)s2(t− u) (1)

y2(t) ≈ s2(t) (2)

where s1(t) is a clean body-conducted NAM signal, s2(t) is
an air-conducted external noise signal, and {ft(0), · · · , ft(U)}
is an acoustic transfer function to transfer the air-conducted
external noise signal into the body-conducted external noise
signal.

2.2. Noise suppression based on semi-BSS

Let us denote the frequency components of the source signals
by sω,τ = [s1,ω,τ , s2,ω,τ ]

⊤ and those of the observed signals

by yω,τ = [y1,ω,τ , y2,ω,τ ]
⊤, where ω and τ are frequency

and time indices, respectively. By assuming that the acoustic
transfer function is time-invariant, the mixing process given
by Eqs. (1) and (2) is modeled as instantaneous mixture in
the frequency domain as follows:

yω,τ = Fωsω,τ (3)

where Fω is a (2 × 2) time-invariant mixing matrix. In a
standard BSS problem, the (2 × 2) demixing matrix Dω is
the parameter to be estimated, for example using independent
component analysis. By contrast, our noise monitoring prob-
lem assumes that one of the two source signals (i.e., s2,ω,τ )
is known, and some elements of the demixing matrixDω can
be fixed as follows:

Dω =

[
1 d1,2,ω
0 1

]
. (4)

Therefore, only the component d1,2,ω needs to be estimated
by maximizing independence between the separated NAM
signal and the observed air-conducted signal. This estimation
can be done using the natural gradient algorithm [12].

3. PROPOSED NOISE SUPPRESSION METHOD

3.1. Probabilistic observation model

Although the effectiveness of the semi-BSS-based noise sup-
pression method was confirmed on synthetic data in [10], the
method had an essential problem when used in real environ-
ments. In real environments, there can be many moving sound
sources including the user itself. In such situations, the im-
pulse response between the air- and body-conducted external
noise signals varies over time, which is not easy to handle
with a time-invariant filter. Thus, we must consider a time-
variant system. One possible approach for this problem is to
treat a time-variant factor as a latent variable to be marginal-
ized out. This idea has been adopted in some challenging
task, e.g., a speech dereverberation robust against speaker’s
movement [13], a blind source separation robust against sam-
pling rate mismatch of an ad-hoc microphone array [14] and a
reverberation-robust blind source separation [15]. Inspired by
these studies, the proposed method takes a similar approach
to develop a robust noise suppression algorithm that is de-
signed to be less sensitive to the phase variation caused by
many sound sources and those movements.

When the acoustic transfer function is time-variant, the
mixing process in Eqs. (3) is rewritten as

yω,τ =
∑
i

ai,ω,τsi,ω,τ (5)

where ai,ω,τ is the steering vector of the ith source signal de-
pending on time τ . We assume that the time-frequency com-
ponent of each source signal independently follows a com-
plex Gaussian distribution, i.e., si,ω,τ ∼ NC(0, pi,ω,τ ) where
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pi,ω,τ is the power spectrogram of the ith source signal.
Here, we assume that the magnitude part of the steering

vector is less sensitive to a slight movement of the sound
sources, and we decompose the steering vector into its mag-
nitude and phase parts as follows:

ai,ω,τ =

[
|a1,i,ω| 0

0 |a2,i,ω|

]
︸ ︷︷ ︸

Ai,ω

[
ejϕ1,i,ω,τ

ejϕ2,i,ω,τ

]
︸ ︷︷ ︸
ψi,ω,τ

, (6)

where the number of sources I = 2 and a1,ω,τ = [1, 0]⊤

in the external noise monitoring framework. Thus, the time-
frequency components of the observed signals follow a com-
plex Gaussian distribution as follows:

yω,τ ∼ NC

(
0,
∑
i

pi,ω,τAi,ωψi,ω,τψ
H
i,ω,τA

H
i,ω

)
. (7)

To treat the time-variant factor ϕc,i,ω,τ as a latent variable to
be marginalized out, we make the following assumptions:

• ϕc,i,ω,τ and ϕc′,i,ω,τ (c ̸= c′ or τ ̸= τ ′) are statistically
independent of each other.
• ϕc,i,ω,τ follows a uniform distribution in [0, 2π).

Finally, the following probabilistic observation model is ob-
tained: yc,ω,τ ∼ NC

(
0,
∑

i pi,ω,τ |ac,i,ω|2
)
.

3.2. Non-negative tensor factorization (NTF) of air- and
body-conducted signals

From Eqs. (7), the log-likelihood function of the modeled
power spectrogram xc,ω,τ =

∑
i pi,ω,τ |ac,i,ω|2 is given by

L(xc,ω,τ ) = − log πxc,ω,τ −
|yc,ω,τ |2

xc,ω,τ
. (8)

Eqs. (8) is maximized when xc,ω,τ = |yc,ω,τ |2, and we can
replace the maximization problem of this function with a min-
imization problem of the following difference function

L(|yc,ω,τ |2)−L(xc,ω,τ )=
|yc,ω,τ |2

xc,ω,τ
−log |yc,ω,τ |2

xc,ω,τ
−1, (9)

i.e., the Itakura-Saito divergence DIS(|yc,ω,τ |2 |xc,ω,τ ) [16].
Here, we assume that the power spectrogram pi,ω,τ is

modeled as a product of two non-negative matrices in the
same manner as the conventional non-negative matrix fac-
torization (NMF) [17], pi,ω,τ =

∑
k wi,ω,khi,k,τ where k

shows an index of spectral templates. wi,ω,k and hi,k,τ repre-
sent the ith spectral template and the corresponding temporal
activation function. From this assumption, the maximum like-
lihood estimation of the parameters (A′ = (|ac,i,ω|2)2×2×Ω,
W = (wi,ω,k)2×Ω×K and H = (hi,k,τ )2×K×T ), where
|ac,1,ω|2 is fixed, is formulated as a special case of non-
negative tensor factorization of the observed power spectro-
gram tensor Y ′ = (|yc,ω,τ |2)2×Ω×T .

Now, we can define the objective function as

DIS(Θ)
c
=
∑
c,ω,τ

(
|yc,ω,τ |2

xc,ω,τ
+ log xc,ω,τ

)
(10)

where Θ is the set of the parameters, and c
= denotes equality

up to constant terms. By using an auxiliary function method
[18], the update rules for the parameters can be obtained as

|ac,i,ω|2←|ac,i,ω|2
(∑

k,τ |yc,ω,τ |2wi,ω,khi,k,τ/x
2
c,ω,τ∑

k,τ wi,ω,khi,k,τ/xc,ω,τ

) 1
2

, (11)

wi,ω,k←wi,ω,k

(∑
c,τ |yc,ω,τ |2|ac,i,ω|2hi,k,τ/x

2
c,ω,τ∑

c,τ |ac,i,ω|2hi,k,τ/xc,ω,τ

) 1
2

, (12)

hi,k,τ←hi,k,τ

(∑
c,ω |yc,ω,τ |2|ac,i,ω|2wi,ω,k/x

2
c,ω,τ∑

c,ω |ac,i,ω|2wi,ω,k/xc,ω,τ

) 1
2

, (13)

where |a1,1,ω|2 and |a2,1,ω|2 are fixed to 1 and 0, respectively,
and the spectral template w1,ω,k is pre-trained and fixed dur-
ing the parameter updating process.

4. EXPERIMENTAL EVALUATION

4.1. Experimental Conditions

We simultaneously recorded clean body- and air-conducted
NAM signals uttered by one Japanese male speaker using
the NAM microphone and the air-conductive microphone, re-
spectively in a sound-proof room. We also recorded the fol-
lowing 7 kinds of noise.
• Babble(50, 60, 70)dBA: (50, 60, 70) dBA babble noise
• Crowd5dB: Real crowd noise (5 dB SNR)
• Traffic5dB: Real traffic noise (5 dB SNR)
• Restaurant0dB: Real restaurant noise (0 dB SNR)
• Station0dB: Real station noise (0 dB SNR)

The first three babble noise signals were recorded in the
sound-proof room by using a loud speaker to present them,
and they were directly superimposed on the clean air- and
body-conducted NAM signals. The sound pressure levels
of the individual noise signals were measured by a sound
level meter placed at around the speaker’s head. The human
speech-like noise [19] generated by superimposing 20 dif-
ferent speaker’s speech signals was used as the babble noise.
The other four noise signals were recorded in real noisy envi-
ronments. These signals include unspecified number of sound
sources which were not controlled by us. The sound volumes
of real noise signals were adjusted before the superimposition
in order to minimize gain mismatches of the recording con-
dition between real noisy environments and the sound-proof
room.

To investigate the adverse effect of the Lombard reflex
[11], which was naturally caused in also speaking NAM un-
der noisy conditions [20], on the semi-supervised frameworks
(e.g., the semi-supervised NMF [21] and the proposed NTF),
we additionally recorded clean Lombard NAM signals uttered
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(a) Only one fixed sound source exists. (b) Unspecified number of moving sound sources exist.
Fig. 1. SNR of the enhanced NAM signals.

by the same speaker by presenting the noise signals to him
using headphones. Three sound levels of babble noise (Bab-
ble50, 60, 70dBA) were used in this recording. Fifty sen-
tences in a phoneme balanced sentence set [22] were uttered
in NAM. The sampling frequency was set to 16 kHz. The
window length of STFT was set to 64 ms and the shift length
was set to 32 ms.

The following 4 methods were evaluated in this paper.

• Unprocessed: no noise suppression
• Semi-BSS: semi-BSS (conventional method)
• IS-NMF: semi-supervised NMF with the IS div.
• IS-NTF: proposed semi-supervised NTF with the IS div.

For the Semi-BSS, the step-size parameter η and the num-
ber of iteration times were set to 0.01 and 200, respectively.
The element of the demixing matrix d2,2,ω was additionally
updated to obtain better performance. For the IS-NMF and
IS-NTF, the number of spectral templates for each sound
source signal was set to 20. The spectral templates of target
NAM signal were pre-trained by the conventional NMF using
clean NAM signals, and they were fixed during the parame-
ter updating process. The leave-one-out cross-validation was
used in the evaluation. Noise suppression performance was
measured by averaged SNR of the estimated body-conducted
NAM signals.

4.2. Robustness against the change of environments

To verify the effectiveness of the proposed method, we in-
vestigated performance differences caused by changes of a
surrounding situation. Figure 1 shows the results. If only
one fixed source exists, the conventional method (Semi-BSS)
consistently yields about 10 dB SNR. Especially, Semi-BSS
outperforms the others when the noise level is 70 dBA. How-
ever, the performance of Semi-BSS deteriorates in case of
using real environment noise signals. This tendency can be
confirmed by comparing the result of 70 dBA noise condition
in Figure 1 (a) and all noise conditions in Figure 1 (b). By
contrast, for the proposed method (IS-NTF), there is no per-
formance degradation caused by the change of the surround-
ing environments, and it is found that IS-NTF always outper-
forms IS-NMF thanks to the external noise monitoring.

Fig. 2. SNR of the enhanced Lombard NAM signals.

4.3. Robustness against the change of speaking style

To investigate the adverse effect of the Lombard reflex on
the proposed method, We used the simulated noisy Lombard
NAM, which were generated by superimposing the noise sig-
nals on the clean Lombard NAM signals, as the input of each
noise suppression method. There are two possible factors
causing performance degradation under real noisy situations.
One is an acoustic mismatch between the spectral feature of
the input Lombard NAM and that of the spectral templates
trained using normal NAM. The other is deterioration in the
approximation accuracy of the external noise monitoring due
to increase in sound intensity of NAM emitted from mouth.

Figure 2 shows the result. It is found that the conven-
tional semi-supervised NMF (IS-NMF) is ineffective when
the noise level raised to 70 dBA. On the other hand, the pro-
posed method (IS-NTF) still work in such case. These results
reveal that the proposed method is robust against the acous-
tic mismatches caused by the Lombard reflex and the external
noise monitoring is still effective even for the Lombard NAM.

5. CONCLUSION

This paper presented a novel noise suppression method for the
body-conducted soft speech. To deal with the real environ-
ment noise, we applied a probabilistic observation model into
the external noise monitoring framework, and formulated its
process as a special case of non-negative tensor factorization
of the observed signals. Experimental results demonstrated
that the proposed method consistently outperformed the con-
ventional method under real noisy environments.
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