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ABSTRACT

In this paper, various regularizations on the room impulse response
(RIR) are proposed to obtain better single-channel speech derever-
beration in the non-negative matrix factorization (NMF) framework.
The regularizations on the RIR are motivated by the spectral domain
representation of the RIR. To obtain better estimates of the RIR and
clean speech, we propose three modifications (i) to obtain a sparse
RIR (ii) a frequency envelop constrained RIR and (iii) to include the
early part of the RIR. The performance of the proposed regularizers
are evaluated by considering speech enhancement measures. While
it is observed that the regularizers lead to an improved estimate of
the RIR, they do not necessarily lead to speech enhancement in all
the cases. For the experiments conducted using the RIRs from the
REVERB 2014 challenge and sentences from the TIMIT database,
the regularizer that includes the early part of the RIR shows reason-
able improvement in speech enhancement measures.

Index Terms— speech dereverberation, NMF, RIR, regulariza-
tion

1. INTRODUCTION

Distant speech enhancement and recognition has been gaining im-
portance over the past decade due to the prevalence of audio captur-
ing instruments [1]. Speech processing (for recognition or enhance-
ment) in such environments differs from traditional speech process-
ing as it has to compensate for reverberation effects in the captured
data. While speech dereverberation has been an active research area
for a long time [2], it has gained interest recently [3] for the reason
mentioned above. The effect of reverberation depends on both the
speech signal and the room impulse response (RIR) under consider-
ation. The characteristics of this RIR have a significant effect on the
reverberant signal, and hence a good understanding of this is rele-
vant for dereverberation. Speech dereverberation can be done using
single- or multi-channel data depending on the application of inter-
est. In this research we address single-channel dereverberation in the
distant speech scenario.

Dereverberation methods can be classified as those which (i)
cancel reverberation, e.g., blind deconvolution based methods (ii)
suppress reverberation, e.g., spectral subtraction, linear predic-
tion (LP) based methods, and statistical methods for spectral en-
hancement [2]. Here we consider reverberation suppression using
non-negative matrix factorization (NMF). This uses the magnitude
spectrum of the reverberant signal, and with minimal prior knowl-
edge of the RIR, to obtain the dereverberated speech signal. The
earliest work on NMF based dereverberation [4] used a convolutive
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NMF (referred to as N-CTF) and provided a statistical motivation
for the use of NMF. More recently there have been several im-
provements over N-CTF in both single-channel [5, 6, 7, 8, 9], and
multi-channel [10], [11], [12] scenarios. In [5, 7] the initial N-CTF
model for speech dereverberation is improved by incorporating var-
ious NMF models for the speech signal within the original model
leading to several N-CTF+NMF approaches. In [6], supervised
N-CTF+NMF approaches have been proposed to handle reverber-
ation in noisy environments. While most of these methods use the
short-time Fourier transform (STFT) representation of the signal
when performing NMF, the method proposed in [9] uses a Gamma-
tone filtered spectrum and has shown improvements in automatic
speech recognition (ASR) word error rates (WER) over the earlier
NMF based methods [4]. These methods also have proposed incor-
porating a sparsity constraint on the speech signal as a regularizer
to improve speech estimates. While the approaches in [4], [6],[5]
have shown improvement in speech enhancement measures, other
approaches [9], [8] have shown improvement in ASR tasks.

Single-channel NMF dereverberation problem is treated as a de-
convolution in the sub-band domain. Obtaining the RIR from the
observed reverberant signal is a unconstrained problem with pos-
sibly many solutions. Hence, it is required to impose appropriate
regularizers or constraints to obtain the solution. Earlier NMF ap-
proaches obtained reasonable estimates for speech by imposing a
sparsity constraint or by using appropriate models for speech. While
the estimation accuracy of the speech signal is considered in all these
approaches, they do not provide an evaluation of the accuracy of the
RIR estimates. Though [6] claims to estimate the RIR, it does not
provide any analysis or results on the RIR estimation.

While regularization of RIRs in single-channel scenario has not
been considered before, multi-channel RIR regularization has been
proposed in [11] leading to speech enhancement. The objective in
this work is to obtain better single-channel RIR estimates using ap-
propriate constraints on the RIR. These constraints are motivated
both from time- and frequency-domain models of the RIR [2]. The
improved estimates are expected to provide better estimates of both
the clean speech signal and RIR. The proposed regularizations on the
RIR are evaluated using speech enhancement measures such as per-
ceptual evaluation of speech quality (PESQ), speech-reverberation
modulation ratio (SRMR), and cepstral distance (CD) [3].

2. NMF BASED SPEECH DEREVERBERATION

For NMF to be used in speech dereverberation the spectral represen-
tation of the observed or reverberated signal needs to be understood.
In time-domain, the observed signal x[n] in a microphone as result
of a clean speech signal s[n] in a reverberant room with room im-
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pulse response (RIR) h[n], can be represented as

x[n] = s[n] ∗ h[n] =

M−1∑
m=0

h[m]s[n−m], (1)

where ∗ represents convolution in time-domain, and M is the length
of the RIR. In NMF, we are interested in a STFT representation
of (1). It has been shown that the magnitude STFT of x[n] [5],

X[k, n] ≈
Lh−1∑
m=0

H[k,m]S[k, n−m], k ∈ {0, 1, ...,K − 1}, (2)

where H[k, n], S[k, n] are the magnitude STFTs of h[n], s[n], re-
spectively, Lh is the length of the RIR in the STFT domain, and K
is the number of frequency bands in the STFT domain. To be con-
sistent with [5] we will refer to (2) as the non-negative convolutive
transfer function (N-CTF) model for reverberation. In matrix form,
the reverberant spectrogram (2) can be represented as

X ≈
∑
m

Hm

m→
S , (3)

where the clean speech spectrogram of length T frames is

S =
[
s0, s1, . . . , sT−1

]
(4)

with si ∈ RK×1, m→ indicates a column-shift by m − 1 positions
to the right, and the RIR spectrogram for a fixed frame m

Hm = diag (H[0,m], . . . , H[K − 1,m]) (5)

a diagonal matrix. As observed in [4], this representation for the re-
verberant signal comprises of components of clean speech spectrum
being blurred by the temporal evolution of the H components.

Given an observed reverberant magnitude spectrogram Y , we
are interested in obtaining H and S, which minimize the error be-
tween Y and X . In [5], the Kullback-Leibler (KL) divergence be-
tween them is minimized under non-negativity constraints on S and
H , and an additional constraint on H[k,m] to avoid indeterminacy
in the estimates. The general form of the cost-function is

J(S,H) = DKL(Y ,X)

= DKL(Y ,
∑
m

Hm

m→
S )

s.t.
∑
m

H[k,m] = 1, k ∈ {0, . . . ,K − 1},Hm ≥ 0,S ≥ 0, (6)

where X is from (3) and DKL(Y ,X) is defined as,

DKL(Y ,X) =
∑
k,m

(Y [k,m]ln(
X[k,m]

Y [k,m]
)−X[k,m] +Y [k,m]),

and can be solved using multiplicative update rules to obtain the esti-
mates Ŝ and Ĥ . The cost function in (6) can be modified to include
sparsity constraint on S leading to better estimates. The N-CTF
model was further improved by incorporating a NMF model for the
speech spectrum (S = WA). The corresponding updated cost-
function is

J(W ,A,H) = DKL

(
Y ,
∑
m

Hm

m→
S

)

= DKL

(
Y ,
∑
m

Hm

m→
(WA)

)
+ ‖ A ‖1

s.t.
∑
m

H[k,m] = 1,Hm ≥ 0,W ≥ 0,A ≥ 0. (7)

where ‖ · ‖1 denotes l1-norm and promotes sparsity. They also sug-
gested another weighted method that combined the N-CTF model
for dereverberation along with the NMF speech model. However,
their experiments and results suggest that the integrated model in (7)
performs better and hence not discussed here. They proposed three
possible NMF models for the speech signal which are either unsu-
pervised or semi-supervised. In the unsupervised method of speech
modeling the basis vectors W were learnt online from the rever-
berant signal and referred to as N-CTF+NMF. The other two meth-
ods were semi-supervised approaches where the basis matrix W
was learnt offline from training data and are not discussed here.
Their results indicate improved speech enhancement measures and
do not provide any speech recognition results. In [6], NMF based
approaches in [4], [5] have been extended to do both dereverberation
and denoising in a supervised setting. Based on their speech en-
hancement results, they conclude that the N-CTF+NMF in a super-
vised context provides a better estimate of the RIR if only the speech
estimates are used than using both speech and noise estimates.

All the NMF based methods discussed have demonstrated im-
provements in either speech enhancement or speech recognition
measures (WER) indicating successful dereverberation. However,
these existing approaches have not considered the estimates obtained
for the RIR, i.e., H . In the next section, we motivate this problem
and present our proposed modification to handle this.

3. PROPOSED REGULARIZATION FOR RIR (H)

As seen in (2), the underlying assumption in NMF based approaches
to solve the dereverberation problem is that the reverberant signal
spectrum for a specific frequency band can be considered as a con-
volution of the clean speech spectrogram and H for that band.

It should be noted that the magnitude spectrogram H in (2) does
not correspond to the magnitude STFT of h[n], but is an approxima-
tion assuming cross-band effects can be neglected in the reverberant
signal spectrum [5], [13]. However, it is still valid to use (2) and
operate in the sub-band domain to perform dereverberation [11]. We
will not be able to verify the accuracy of estimated H by compar-
ing it to the STFT of the true or actual RIRs H true . However, we
can compare the estimated H to the STFT of an approximate RIR
H̃ obtained from H true. Following the approach suggested in [13],
we compared H̃ and H for different frequency bands and found
them to be similar. Hence, we can compare the estimated Ĥ with
H , to evaluate the accuracy of RIR estimation from the reverberated
speech signal.

We compare the narrow band estimate of the RIR (Ĥk) obtained
using N-CTF to Hk for a RIR of T60 ≈ 700 ms in Fig. 1. It can be
seen that the estimated RIR matches the expected RIR more closely
during the later part of the RIR. In the early part of the RIRs, the
estimates are more erroneous, when compared to the later parts. This
is one of the main motivations for the proposed approach, where we
intend to use appropriate regularizer on H in the NMF framework so
that Ĥ is improved. Such an improved estimate for RIR, will also
lead to a better estimate of the speech signal leading to improved
speech enhancement and automatic speech recognition measures.

We propose three possible regularizations to H for obtaining
better estimates of H . We discuss the three choices and the corre-
sponding cost function.

3.1. Sparsity of RIR

The time-domain model by Pollack [2] is a reasonable characteriza-
tion based on the T60 of a room. In time-domain the RIR is expo-
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Fig. 1. Comparison of normalized estimates of the RIR (Ĥk) with
the actual RIR (Hk) for a specific RIR with T60 = 700 ms and
frequency band (k = 10). It can be seen that while their late parts are
closer, early parts are different. Further, the proposed regularizers
Hgain, Hsparse do not lead to a better RIR estimate when used
with just the N-CTF approach.

nentially decaying with a decay factor dependent on the T60. Corre-
spondingly the magnitude STFT domain representation of the RIR
has larger magnitude values during the early part of the reverberation
and dies down to smaller values during the late part, indicating that
most entries in H have values close to zero. Hence, the simplest
constraint is to assume that H has a sparse structure. We incor-
porate this into the basic N-CTF framework and have the modified
cost-function,

J(S,H) = DKL

(
Y ,
∑
m

Hm

m→
S

)
+ λ ‖H ‖1

s.t.
∑
m

H[k,m] = 1, k = 0, . . . ,K − 1;Hm ≥ 0,S ≥ 0. (8)

and λ decides the weight given to sparsity of H . The value of λ
was chosen empirically based on enhancements obtained during the
experiments. This method will be referred to as N-CTF+Hsparse.
The multiplicative updates for H and S can be obtained in a way
similar to that in [5].

3.2. Sub-band gains constrained RIR

Depending on the T60 of the room and the distance between the
source and microphone the sub-band gain (g[k]) for the RIRs can
be modelled as a function of the frequency k for a fixed frame. Such
models can be obtained by fitting polynomial functions on existing
magnitude STFTs of the RIRs. If the RIRs for a room are available,
this can be included in the N-CTF framework as opposed to con-
straining the sub-band sums of H to be unity. The corresponding
cost function is,

J(S,H) = DKL

(
Y ,
∑
m

Hm

m→
S

)
s.t.
∑
m

H[k,m] = g[k], k = 0, . . . ,K − 1;Hm ≥ 0,S ≥ 0. (9)

This method will be referred to as N-CTF+Hgain.

3.3. Inclusion of early part of the RIR

The RIR can be broadly divided into two regions - early reverber-
ation and reverberation tail (late reverberation) [2]. The early part
accounts for the reflections up to 50 ms after the direct path and the
rest forms the reverberation tail. The early part modifies the spec-
trum within a phone region, whereas the late reverberation results
in changing the spectral characteristics of the present phone by the
preceding phone. It is shown in the literature that late reverberation
causes degradation of speech and need to be removed [2]. However,
retaining the early part improves speech intelligibility and ASR per-
formance [14]. Once the clean speech spectrum is estimated (Ŝ)
using the N-CTF framework, we propose to use the early part of
the estimated RIR (Ĥearly) as shown below to obtain an improved
dereverberated spectrum (Snew).

Snew(n, k) = Ŝ(n, k)∗Ĥearly(n, k), k ∈ {0, 1, ...,K−1} (10)

This method will be referred to as N-CTF+Hearly .

3.4. Analysis of estimated RIRs

In Figures 1 and 2 we compare the RIR estimates (Ĥ) obtained for
various regularization on the RIR for a particular narrow band. From
Fig. 1 it can be seen that the estimates Ĥ obtained with regulariza-
tion when using the basic N-CTF model do not show any improve-
ment, i.e., N-CTF+Hgain and N-CTF+Hsparse do not improve the
RIR estimate as compared to N-CTF. However, when regularization
is used in addition to the speech model, the estimated Ĥ is closer to
H as seen in Fig. 2, i.e., H estimation improved in regularized N-
CTF+NMF+Hsparse method as compared to the reference method
N-CTF+NMF. Though not included here, we also considered mean
squared error between Ĥ and H across all bands. This did not show
any significant improvement. We attribute this to the fact that the
measure is an average across multiple frequency bands where some
bands show improvement, while others do not. Together it can be in-
ferred that regularization of the RIR when used with speech models
leads to better RIR estimation in many frequency bands.

4. RESULTS

The performance of the algorithms discussed in Sec. 3 were evalu-
ated for speech enhancement.

4.1. Database and measures

The speech enhancement performance was compared using the
TIMIT database [15]. A sub-set of 16 different sentences spoken
by 16 distinct speakers was used. Measured RIRs available from
the REVERB challenge [3] were used for the evaluation. The
RIRs correspond to an 8 channel circular array of diameter 10 cm.
Each TIMIT sentence was convolved with each of these RIRs to
obtain 8 independent reverberated recordings. Hence for each re-
verberant condition, we have used 8 × 16 sentences to conduct
the experiments. The improvement in speech enhancement task
was compared using improvement in three objective measures -
PESQ, CD and SRMR [3], [16]. Dereverberated speech has larger
PESQ, SRMR scores and lower CD when compared to the rever-
berated speech. The effectiveness of the dereverberation algorithms
is obtained using the relative change in these measures ∆PESQ,
∆CD and ∆SRMR when comparing the dereverberated to the
reverberated speech.
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Fig. 2. Comparison of normalized estimates of the RIR (Ĥk) with
the actual RIR (Hk) for a specific RIR with T60 = 700 ms and
frequency band (k = 10). It can be seen that the proposed regu-
larizer Hsparse leads to a better RIR estimate when used with N-
CTF+NMF approach.

Table 1. SRMR improvements obtained using the proposed meth-
ods are compared with existing NMF based approaches for four
different RIRs. The RIRs labeled as RIR1, RIR2, RIR3 and
RIR4 have (T60, source - microphone separation) of (700ms, 2m),
(700ms, 0.5m), (600ms, 2m), and (600ms, 0.5m), respectively.

Methods RIR1 RIR2 RIR3 RIR4

N-CTF [5] 1.2000 1.3177 0.9544 1.2804
N-CTF + Hsparse 1.2000 1.3177 0.9544 1.2804
N-CTF + Hgain 1.0080 1.1144 0.5893 1.1456
N-CTF + NMF [5] 1.7100 1.9496 0.9798 1.3655
N-CTF + NMF + Hsparse 1.8830 1.9576 1.0389 1.3993

4.2. Experiment setup

The magnitude spectrogram of the reverberant signal was obtained
using a 64 ms window with a hop-size of 16 ms. The square root of
Hanning window was used in analysis and synthesis. The magnitude
spectrogram of the RIR (H) was represented usingLh = 20 frames,
with the first 2 frames (length of Hearly) representing the combina-
tion of direct path and early reverberation. Each narrowband Hk

was initialized as a linearly decreasing function, and S was initial-
ized using the spectrogram of reverberated speech. For algorithms
with speech model, initial values for the basis and the activations
were obtained by performing NMF decomposition on the spectro-
gram of reverberated speech. Since the algorithms converge fast, 20
iterations are performed for each algorithm to obtain the estimates
of Ŝ and Ĥ .

4.3. Speech enhancement using the proposed methods

The performance of the proposed algorithms was compared to two
dereverberation algorithms, N-CTF and N-CTF with speech model
(N-CTF+NMF) [5], for 4 different reverberation conditions. Initially
the comparison was based on SRMR improvements and is shown in
Table 1. As observed in Fig. 1 and Sec. 3.4 the RIR regularization on

Table 2. The improvement in objective measures obtained using the
proposed RIR regularization are compared with existing NMF based
approaches for a RIR with T60 = 700 ms. The reverberant sig-
nal has an average PESQ=1.39, average SRMR=2.13, and average
CD=3.85. The best three values are shown in bold.

Methods ∆PESQ ∆CD ∆SRMR

N-CTF [5] 0.286 0.671 1.200
N-CTF + Hsparse 0.286 0.671 1.200
N-CTF + Hgain 0.278 0.659 1.008
N-CTF + Hearly 0.356 0.722 1.611
N-CTF + Hearly + Hgain 0.364 0.718 1.557
N-CTF + NMF [5] 0.570 0.909 1.236
N-CTF + NMF + Hsparse 0.527 0.730 1.710
N-CTF + NMF + Hearly 0.525 0.914 1.883

N-CTF does not improve the RIR estimates, and hence the SRMR
does not improve in these cases (Rows 1, 2, 3 in Table 1). How-
ever, similar regularization on N-CTF+NMF resulted in better RIR
estimates and leads to SRMR improvements (Rows 4, 5 in Table 1).

Among the RIRs considered, since the SRMR improvement
was significant for RIR1, other objective measures for RIR1 were
also considered and this is shown in Table 2. It can be observed
from Table 2 that the baseline dereverberation algorithms N-CTF
and N-CTF+NMF are able to enhance the reverberated speech. In-
ducing sparsity (N-CTF+Hsparse) or frequency envelope on H
(N-CTF+Hgain) does not improve performance. The reason for
the sparse Hsparse showing no improvement could be that narrow
band H roughly has the exponentially decaying structure which
we hope to achieve. The multiplicative update for the cost func-
tion in (9) is obtained such that it minimizes the error in each
narrowband independently. Hence, effectively the cost-function
remains the same even after having a frequency envelope on H .
All the objective measures show improvement for N-CTF+Hearly .
Both, N-CTF+NMF+Hsparse and N-CTF+NMF+Hearly show
significant improvements in SRMR, and other measures change
marginally. One possible explanation can be that the regularization
reduces reverberation, but also adds distortion to the dereverberated
speech.

5. CONCLUSIONS

The estimated RIRs (Ĥ) obtained using the proposed regularizers
on H are better approximations to the H when compared to those
obtained without any regularization on H . But, these improvements
were substantial only in the late reverberant part. Speech enhance-
ment results were also obtained using the proposed constraints on
the RIR. The addition of sparsity and frequency envelope of the RIR
does not change the speech enhancement performance of the algo-
rithm, when compared to the baseline N-CTF model. However, in-
clusion of the early part of the estimated RIR (Ĥearly) with the
estimated speech lead to speech enhancement. The objective mea-
sures for an existing N-CTF method that uses a speech model (N-
CTF+NMF) also showed improvement when the proposed Hearly

was included. Though there were improvements in speech enhance-
ment using the proposed regularizers, our initial experiments with
speech recognition have not shown such clear improvements in the
ASR WER. Future work will consider this and other modifications
to the N-CTF model for representing reverberant speech.
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