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ABSTRACT

This paper presents a variational manifold learning for speaker
recognition based on the probabilistic linear discriminant analysis
(PLDA) using i-vectors. A latent variable model is introduced to
compensate the constraints of the linearity in PLDA scoring and the
high dimensionality in using i-vectors. A deep variational learning
is formulated to jointly optimize three objectives including a reg-
ularization for variational distributions, a reconstruction based on
PLDA and a manifold learning for neighbor embedding. A stochas-
tic gradient variational Bayesian algorithm is developed to optimize
the variational lower bound of log likelihood where the expectation
in the objectives is estimated via a sampling method. Interestingly,
the latent variables in the proposed variational manifold PLDA
(vm-PLDA) are capable of decoding or reconstructing the i-vectors.
The experiments on visualization and speaker recognition show the
merits of vm-PLDA in manifold learning and classification.

Index Terms— Probabilistic linear discriminant analysis, deep
learning, variational manifold learning, speaker recognition

1. INTRODUCTION

Speaker recognition system using the i-vectors [1] as the speaker
features and the probabilistic linear discriminant analysis (PLDA)
[2] as the scoring function has achieved state-of-the-art performance
in many tasks. PLDA is seen as a linear model which is trained
under the assumption that the same speaker shares a common low
dimensional latent variable space where i-vectors of all speakers
are represented in this space. No discriminative learning is explic-
itly performed. PLDA is estimated according to the expectation-
maximization (EM) algorithm [3] by maximizing the likelihood us-
ing a whole set of training data. Basically, such a speaker model
may be constrained due to the linearity assumption, shallow repre-
sentation, high dimensionality, non-discriminative and batch learn-
ing. This study focuses on a deep manifold neural network and deals
with these constraints. A deep latent variable model [4] based on the
variational auto-encoder [5] is incorporated to conduct the discrim-
inative manifold learning [6] and scoring. A variational manifold
PLDA (vm-PLDA) is proposed for speaker recognition.

In general, manifold learning aims to learn a low-dimensional
representation from its high-dimensional observation data, e.g. i-
vector, where the objective for neighbor embedding is optimized.
Speaker label can be introduced to enforce those observations in
low-dimensional space to be close within the same speaker and apart
across different speakers. To further strengthen the system perfor-
mance, such a supervised manifold learning can be realized as a deep
latent variable model due to twofold considerations. First, deep neu-
ral network is used to reflect the complicated characteristics within
speakers and between speakers. Secondly, a latent variable model
is considered to explore the latent structure and compensate the un-
certainty region of a deep model via a stochastic back-propagation
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algorithm from the mini-batches of speaker utterances. In this study,
we develop a deep variational manifold learning for speaker recog-
nition. The variational inference is implemented to carry out a la-
tent variable model for speaker recognition which tightly integrates
the stochastic neighbor embedding (SNE) [7, 8] for dimensionality
reduction and the PLDA scoring for speaker recognition. The vari-
ational lower bound of log likelihood, consisting of such two objec-
tives or considerations, is jointly optimized. A stochastic gradient
variational Bayesian (SGVB) [5, 9] algorithm is developed for infer-
ence of the resulting vm-PLDA. The proposed method is evaluated
by the experiments on data visualization and speaker recognition.

2. BACKGROUND SURVEY

2.1. Manifold learning

SNE was developed as a nonlinear unsupervised manifold learning
[7]. Suppose we are given a set of high-dimensional data X' =
{x1,...,xn}. SNE attempts to find the low-dimensional represen-
tations Z = {z1,...,zn} where z, € R? preserves the pairwise
similarity to x,, € R” and d < D. The joint probability py,., of two
samples x,, and x,, is expressed by a Gaussian distribution

exp (—|lxn — xm|*)
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The joint probability in low-dimensional representation ¢, can
be also modeled by a Gaussian using the pairwise similarity
Zn — Zm. In [10], a symmetric SNE was implemented by min-
imizing the Kullback-Leibler divergence Y Dki(Pn||Qn) =

>n >, Pum log (%) between two sets of probability distri-

butions P, = {pnm}ﬁ’:l and Q,, = {qnm}ﬁ:l. Neighbor em-
bedding of samples in two spaces is naturally preserved with this
nonlinear and nonparametric transformation. In [8], the ¢-distributed
SNE (¢-SNE) was proposed by adopting the joint distribution for
two low-dimensional samples z, and z,, based on a Student’s
t-distribution
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where v denotes the degree of freedom. The crowding problem
in conventional SNE [7] model can be alleviated by using ¢-SNE
where the low-dimensional representations are presented to be mu-
tually close together. As a result, the front-end processing of finding
subspace features for i-vectors using ¢-SNE can reduce the “curse of
dimensionality” for speaker recognition based on the PLDA scoring
function [6].
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Fig. 1. Graphical model for PLDA.

2.2. Probabilistic linear discriminant analysis

PLDA [2] is a generative model which characterizes both variations
from within-individuals and between-individuals via

Xij = m+ Vz; + €;; 3)

where feature vector or i-vector x;; € R of speaker i in a session j
is represented by factor analysis (FA) with a mean vector m, a factor
loading matrix V- € RP>*4 a common vector z; € R? and a resid-
ual vector €;;. FA assumes z; ~ N (0,I) and €;; ~ N (0, X) with
d % d identity covariance matrix I and D x D covariance matrix 3,
respectively [11]. Figure 1 depicts the graphical representation for
PLDA. PLDA parameters @ = {m, V, X} are estimated by max-
imizing the summation of log likelihood function over individual
i-vectors

p(xi;]0) = /N(Xij |lm + Vz;, 2)N (2|0, 1)dz; @
= N(xi/m, VV' + )

according to the EM algorithm [3]. E-step is to calculate the pos-
terior probability p(z;|X, 6°Y) due to latent vector z; by using the
training i-vectors X = {x;;} given old parameter estimate 8°. Us-
ing this posterior probability, M-step is to estimate new PLDA pa-
rameters 8™ by maximizing an auxiliary function Q(8]6°""). This
function is also viewed as the lower bound £(g, 8) of the log likeli-
hood function p(X'|@) where a variational or approximate distribu-
tion q(z;) = p(z:|X, 8°) from E-step is merged [12]. Iterative EM
steps are executed to find the converged PLDA parameters 6. In test
phase, PLDA scoring is performed for speaker verification according
to a likelihood ratio test whether a test speaker’s i-vector X and tar-
get speaker’s i-vector x; are from the same speaker or not. The joint
Gaussian distributions and individual Gaussian distributions for x
and x are calculated under null hypothesis and alternative hypothe-
sis based on PLDA, respectively. PLDA is recognized as a powerful
approach to speaker recognition with different extension [13, 14].

3. VARIATIONAL MANIFOLD PLDA

This work carries out a discriminative model which conducts the
supervised manifold learning of i-vectors for PLDA scoring under a
deep variational learning framework.

3.1. Variational manifold learning

Variational manifold learning is performed by implementing the
manifold learning in accordance with the variational auto-encoder
[5, 15] which consists of an encoder for recognition model g (z|x)
and a decoder for generative model py(x|z) as illustrated in Figure
2. Encoder is used to encode or transform an i-vector x,, into a la-
tent low-dimensional representation z,, via a variational distribution
given by a Gaussian

Zn ~ 4o (2n[%Xn) = N(2n|pt(xn), C(xn)) )

Fig. 2. Graphical model for variational manifold learning. Solid line
denotes the generative model pg (x|z) while dashed line denotes the
recognition model using variational distribution ¢, (z|x).

where the mean vector p and the diagonal covariance matrix
C = diag{a?} are calculated by a mapping function using the
deep neural network (DNN) with weight parameters W, i.e.
¢ = {p(xn), C(xn)} or equivalently ¢ = W as shown in Figure
3. By sampling the latent features z using the estimated g4 (zn|Xx ),
we can reconstruct the original i-vector X,,. The stochastic property
in latent features z are sufficiently reflected for estimating the PLDA
parameters & = {m, V, X}. Importantly, the supervised manifold
learning is introduced to learn low-dimensional variables z,, and z,,
for i-vectors x, and x,,. The objective of neighbor embedding is
optimized by using the collected class targets ¢,, and t,,. Consider-
ing the assumption of PLDA that i-vectors of the same speaker share
the same latent variable, we avoid the explicit probability model in
Eq. (1) by defining py,, = 0 and py.,, = 1 for the case t,, = t,,, and
Pnm = 0 for the case t, # t,,. These pre-assigned probabilities
P = {pnm} are seen as the desired values for latent variables z,
and z,,. Such a supervision is seen as the observed Bernoulli target
tnm 2 Pnm for supervised learning. In this study, the neighbor-
ing probability ¢, in low-dimensional space is characterized by ¢
distribution in Eq. (2). We construct a hybrid learning objective for
variational parameters ¢ and model parameters @ which fulfills the
manifold learning and PLDA scoring, respectively.

3.2. Learning objective

The learning objective in variational manifold PLDA (vm-PLDA)
is formed by log likelihood function log p(X,7") of training data
consisting of i-vectors X = {x,, } and pairwise class targets or adja-
cency matrix 7 = {tnm }. This function is expressed by integrating
out the pairwise latent variables Z = {2y, z., } as follows

log/HHp(tnmlzman)p(xn\zn)p(zn)dz

m n
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manifold learning

+Eq, [log po (xn|2n)] — Dxi (g9 (2n %) [|p(20)) |-

PLDA scoring model regularization

The variational lower bound L(¢, @) is obtained by applying
Jensen’s inequality given by the variational distribution g (2 |x» ).
This bound consists of three objectives as seen in Eq. (6). The first
term involves the manifold learning for low-dimensional features
z,, and z,, which is calculated as the expectation of log Bernoulli
distribution over Z through sampling z,, ; for z,, and z,, s for z,,

4936



PLDA scoring

[0=(m V. 5} | Eyllogp(ilza)] | [ Eygllogp(tunlzzn) |

Manifold learning

T = {tnm}

Model regularization

‘ DN (1, C)|N(0, T)) ‘ ’ Sample z,, from N (p, C) ‘

X = {x,}

Fig. 3. System flow for constructing the objectives for vm-PLDA.

via the variational distribution ¢4 (2 |x») in Eq. (5). We have

ZZZZ[ —1 g (14 |Zn — Zom,s||2/v)

B ()
+(1 - tn'm) log(l - (1 + Hzn,l - Zm,sHQ/V)iT):| .

This term is typically proportional to the KL divergence between

P = {tnm} and @ = {gnm} in high and low-dimensional spaces,

respectively. ¢-SNE is realized in the mv-PLDA. The second term

is to measure the expectation of log likelihood which is again calcu-

lated by using the samples z,,; and z,, s

— %ZZ [log 1278| 4 (x —m — Vz,, ;)"
n l

(®)
X2 (%, —m — Vzml)}

where & = {m, V, X} denotes the PLDA parameters. The third
term is a regularization term which regularizes the sampling distribu-

tion ¢4 (zn |xr) for latent variable z,, to the prior distribution p(z,)
for PLDA based on a KL divergence

Dx(N(p, C)|IN(0,1))
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d
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where the variational parameters ¢ = {p = {u; }, C = diag{o?}}
correspond to the parameters ¢ = { W } in DNN mapping functions
using input x,,. Therefore, mv-PLDA is inferred by jointly optimiz-
ing a lower bound £ (¢, 0) containing three objectives.

3.3. Implementation and comparison

Figure 3 shows the forward pass in vm-PLDA which calculates the
variational lower bound of log likelihood of the observed i-vectors
and adjacency matrix logp(X, 7). Maximizing this lower bound
turns out to carry out the t-SNE for dimensionality reduction of i-
vectors and the PLDA scoring for latent feature representation of
target speakers. At the same time, the encoder of low-dimensional
features z,, using gy (2zn|x») is regularized to meet PLDA assump-
tion. In the maximization, the gradient of these three objectives with
respect to encoder parameters ¢ = {p(xn), C(x,)} (or DNN pa-
rameters ¢ = W) and decoder parameters 8 = {m, V, X} are
calculated for supervised learning of vm-PLDA. A stochastic back

propagation algorithm is developed to learn W' or the randomness
of speaker characteristics in PLDA model. Importantly, such an in-
ference procedure is implemented through the Monte Carlo estimate
for the expectation functions in the objectives for neighbor embed-
ding and PLDA scoring. The stochastic learning using mini-batches
of i-vectors is performed in vm-PLDA while standard PLDA runs
the batch training.

In this study, we apply the re-parameterization trick to imple-
ment SGVB algorithm [5] for vm-PLDA where the sampling of
speaker features z,,; is performed by re-parameterizing z,,; ~
q¢(zZn|Xn) as z2ny = B+ o © €,,; where o = {o;} and
€n,1 ~ N(0,I). Sampling z,; is then performed through indi-
rectly sampling €,,;. The problem of high variance in sampling
process can be alleviated [5]. The samples of speaker features
{Zn,1}1-, are used to calculate the expectations in Eqs. (7)-(8). The
gradients are accordingly obtained for inference of vm-PLDA.

In general, the inference via encoder and decoder in vm-PLDA
is comparable with the E-step and M-step in PLDA, respectively.
Encoder aims to find a posterior distribution given by variational pa-
rameters ¢ while decoder reconstructs the i-vectors using model pa-
rameters 6 estimated by M-step. In addition, PLDA assumes a low-
dimensional common vector z with the prior distribution A/(0, )
but without explicitly estimating speaker factors z. The proposed
vm-PLDA is trained and regularized by fitting this assumption and
running the manifold learning for finding latent features z,, for each
i-vector x,,. This low-dimensional representation is distributed by
N (u(xr), C(xx)) with the Gaussian parameters driven by DNN
weights W and dependent on each i-vector x,.

Further, the speaker features z,, in vm-PLDA can be compared
with those features extracted by the supervised t-SNE using deep
model as proposed in [16]. Using the deep manifold (dm) [16]
combined with the cosine scoring for speaker recognition is herein
named as the dm-Cosine. Different from dm-Cosine using deter-
ministic features, the so-called vm-Cosine applies the cosine scor-
ing and conducts the variational learning to characterize stochastic
speaker features according to g4 (z|x). Also, vm-Cosine is driven
and tightly coupled with PLDA while dm-Cosine is constructed by
separating ¢-SNE and scoring function.

4. EXPERIMENTS

4.1. Experimental setup

We conducted the visualization of i-vectors and the generalization
of various PLDAs for speaker recognition where the equal error rate
(EER) (%) was examined. We followed the experimental setup for
NIST i-vector Speaker Recognition Challenge in [17]. The num-
ber of i-vectors in development set was 36,572 from 1930 males
and 3028 females. The number of target speaker models was 1,306
with totally 6,530 i-vectors. The number of test i-vectors was 9,634.
There were 12,582,004 trials which included all possible pairs in-
volving a target speaker model and a single i-vector test segment.
These trials were divided into a progress subset with 40% of the tri-
als and an evaluation subset with the remaining 60% of the trials.
The minimum decision cost function (minDCF) [17] was measured
for comparison of different methods in two subsets.

For comparison, we carried out the PLDA [2], the dm-PLDA
[16] and the proposed vm-PLDA. In dm-PLDA and vm-PLDA,
the topology D-500-500-d with two 500-neuron hidden layers was
adopted for manifold learning where D=600. The pre-training us-
ing the restricted Boltzmann machine and the Adam algorithm [18]
with a mini-batch size of 500 were applied. Using vm-PLDA, the

4937



initial learning rate was set to 0.001 for encoding parameters ¢
and 0.00005 for decoding parameters €. The normalized initial-
ization of weight parameters was performed. The i-vector length
normalization was applied.
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Fig. 4. Two-dimensional visualizations for ten speakers using PLDA
and vm-PLDA.

4.2. Experimental results

Figure 4 shows the visualization of i-vectors by using PLDA and vm-
PLDA where d = 2 was considered. The utterances from ten speak-
ers were selected and shown in different colors. In case of PLDA,
we plot the mean and 95% confidence level using the Gaussian we
estimated from the samples of the same speakers using the statistics
in E-step of final EM iteration. Larger ellipse means larger variance
which was basically caused by fewer samples. The features from
different speakers are confusing in PLDA while vm-PLDA can gen-
erate the well distributed and separated speaker features in a wider
data range. It is because that vm-PLDA conducts the distribution
learning and imposes a repulsion force in the objective for separat-
ing different speakers in manifold learning.

Figure 5 illustrates the prediction capability of using dm-Cosine
and vm-Cosine in case of d = 50. We demonstrate the EERs of
test i-vectors by using different features in reduced dimension which
are estimated in different learning epochs. It is shown that dm-
Cosine does not generalize and converge well when compared with
vm-Cosine. The features using the proposed variational manifold
learning obtains a desirable performance in stochastic learning.

Table 1 reports the EER and minDCF in progress subset and
evaluation subset by using different manifold learning methods

EER (%)

0 20 40 60 80 100 120 140 160 180
learning epoch

Fig. 5. EER (%) of test i-vectors versus training epochs using dm-
Cosine and vm-Cosine.

Method (d) EER minDCF (prog) | minDCEF (eval)
dm-Cosine (20) 6.1087 0.7151 0.6812
dm-Cosine (100) | 3.6331 0.3661 0.3176
vm-Cosine (20) 4.7831 0.5984 0.5484
vm-Cosine (100) | 3.4004 0.3406 0.2968
PLDA (20) 5.4028 0.6137 0.5862
PLDA (50) 3.4595 0.4013 0.3644
PLDA (75) 3.2878 0.3655 0.3210
PLDA (100) 3.2007 0.3591 0.3119
vm-PLDA (20) 4.5732 0.5380 0.5056
vm-PLDA (50) 3.3275 0.3962 0.3510
vm-PLDA (75) 3.1392 0.3514 0.3186
vm-PLDA (100) | 2.9395 0.3314 0.2947

Table 1. Comparison of EER (%) and minDCF in two subsets using
different methods.

(deep manifold - dm [16] and variational manifold - vm) and differ-
ent scoring functions (Cosine and PLDA) under different reduced
dimensions d. We find that PLDA scoring performs much better
than cosine scoring. The proposed variational manifold learning
outperforms the deep manifold learning in [16]. The vm-PLDA
obtains lower EER and minDCF compared with PLDA. The larger
the dimension d is selected, the better the speaker recognition is
achieved but with high computation cost.

5. CONCLUSIONS

We have presented a variational manifolding learning for i-vector
based PLDA scoring and speaker recognition. The means and vari-
ances of latent factors in this new PLDA, represented by DNN, were
trained by maximizing the lower bound of log likelihood which
guided the optimization to accomplish the ¢ distributed SNE for
subspace learning and dimensionality reduction. A shared neural
network for different speakers was established but its outputs de-
pended on the observed i-vectors. In particular, we introduced a
binary variable to indicate the class information for each pair of
i-vectors and used this latent variable to express the attraction and
the repulsion for those low-dimensional samples within the same
speaker and between two different speakers, respectively. We cor-
respondingly built a ¢-SNE approach by using a neural network as
encoder and a PLDA as decoder. A hybrid generative and discrim-
inative model was constructed for deep manifold learning. This
approach performed better than deterministic deep model for mani-
fold learning and baseline PLDA for speaker recognition.
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