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ABSTRACT

This paper presents a method to extract structural spectral
features from spectral envelopes using what-where auto-
encoders (WWAE) for statistical parametric speech synthesis
(SPSS). A WWAE is constructed by concatenating a convo-
lutional net for input encoding and a deconvolutional net for
reconstruction. The output values of the max-pooling layer in
the encoder and the positions of the max-pooling switches are
utilized as the what and where features respectively. Consid-
ering the intrinsic formant structures in the spectral envelopes
of voiced speech frames, the WWAE model is adopted in
this paper to detect, locate, and reconstruct the formants and
other local structures in spectral envelopes. Here, the what
and where features describe the prominences and positions of
specific local spectral structures within a pooling frequency
window. Then, the extracted what and where features are
modeled as separate streams under the hidden Markov model
(HMM)-based SPSS framework. Experimental results show
that the speech synthesis system built using our proposed
spectral features can produce synthetic speech with sharper
formant structures and better naturalness than the systems us-
ing mel-cepstra and conventional auto-encoder-based spectral
features.

Index Terms— speech synthesis, convolution neural net-
work, what-where auto-encoder, spectral envelope, hidden
Markov model

1. INTRODUCTION

Hidden Markov model (HMM) based statistical parametric
speech synthesis (SPSS) [1] is one of the most popular meth-
ods for speech synthesis nowadays. This method is able to
synthesize highly intelligible and smooth speech, and has var-
ious advantages such as compact footprint and the flexibility
to control the characteristics of synthetic speech. However,
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this method has a tendency to over-smooth the spectral en-
velopes of synthetic speech. In recent years, neural network
based methods have emerged as another promising way for
SPSS. The methods of applying deep learning techniques to
improve the acoustic models and describing the relationship
between input texts and the corresponding acoustic features
have been well investigated in the past few years [2, 3, 4, 5].
However, the over-smoothing problem has not been fully ad-
dressed due to the statistical averaging nature of SPSS.

On the other hand, the performance of solving a machine
learning task also strongly relies on the strategy of data rep-
resentation it adopts [6]. Neural-network-based spectral fea-
ture representations have been studied for speech synthesis.
Their idea was to adopt the hidden representations in an auto-
encoder (AE) [7] or a deep belief network (DBN) [8] as spec-
tral features for acoustic modeling, which showed better per-
formance than conventional spectral features, such as mel-
cepstra and line spectral pairs (LSPs). However, none of these
features paid specific attention to the local spectral structures,
e.g., formants, of voiced speech frames, which are considered
to be essential for speech perception. The synthesized for-
mant structures are usually over-smoothed, which is one of
the main reasons causing the quality degradation of synthetic
speech.

Convolution neural network (CNN) is one of the most
popular models for image-related classification tasks [9] be-
cause of its strong ability to detect local structural features[10].
Zhao, et al. [11] proposed a novel CNN architecture called
what-where auto-encoder (WWAE), which uses the output
values (i.e., what features) and switch positions (i.e., where
features) of max-pooling operation to encode input. This
paper proposes to adopt this WWAE architecture as a spectral
feature representation model, which is able to detect, locate
and reconstruct the formants and other local structures in
the spectral envelopes of voiced speech segments. Single
dimensional convolution along the frequency axis is adopted
in the WWAE. Here, the extracted what and where features
represent the prominences and positions of local structures
in the spectral envelopes and are used as the spectral fea-
tures for acoustic modeling under HMM framework. The
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what features are modeled by Gaussian distributions, and the
where features are modeled as independent z-class random
variables, where z is the pooling size. Maximum output prob-
ability criterion is adopted at synthesis time to predict these
features for spectral envelope reconstruction.

2. METHODS

2.1. What-where auto-encoder (WWAE)

A one-layer WWAE [11] consists of a convolution operation
and a pooling operation during encoding as shown in the left
of Fig 1. For a WWAE with N hidden feature maps, the N
filters compose the weight matrix of the WWAE. One-layer
WWAEs can be stacked up to form a deep architecture.

In the encoding phase, the hidden feature maps are cal-
culated as the output of the convolution between the input
feature vector and the corresponding filters after a nonlinear
activation function, written as

qi = g(o ∗ wi), (1)

where o denotes the input feature vector, qi represents the i-
th hidden feature map, wi represents the filter for calculating
the i-th hidden feature map, ∗ is the convolution operation,
and g(x) is the activation function. In the pooling layer, a
max-pooling operation with pooling size z is conducted for
each hidden feature map as shown in the right of Fig. 1. In
this operation, the max value in a pooling window is retained,
which is called what, and the position of its corresponding
switch is stored, which is called where. The what and where
features are calculated as

pi,m = max
n∈[0,z−1]

qi,(m−1)∗z+n, (2)

si,m = argmax
n∈[0,z−1]

qi,(m−1)∗z+n, (3)

where pi,m and si,m represent the what and where features of
the m-th pooling window in the i-th hidden feature map, and
qi,j is the j-th element of qi.

In the decoding phase, unpooling is conducted using the
what and where features extracted above. As shown in the
right of Fig. 1, in an unpooling operation, a z-dimension
vector is generated for each pooling window where the what
value is filled into the where position in this vector and the
other elements of this vecotr are set to be 0. Given the un-
pooling output q′i, the input is reconstructed by the convolu-
tion between the hidden feature maps and the filters, written
as

o′ = g′(
∑
i

q′i ∗ wi), (4)

where o′ is the reconstructed input feature vector and g′(x) is
the activation function for reconstruction.

The WWAE model parameters can be estimated by gradi-
ent descent method under a criterion of minimizing the square
errors of reconstructing input features and hidden states [11].

Fig. 1. Left: The structure of a one-layer WWAE. Right: An
example of max-pooling and unpooling operations with pool-
ing size z = 4.

2.2. WWAE-based spectral representation for SPSS

In this paper, we propose to adopt the what and where fea-
tures derived from spectral envelopes using a WWAE as the
spectral representations for SPSS. Here, the WWAE is set to
be one layer and the convolution is only conducted along the
frequency axis. As described in Section 2.1, what features
pi = {pi,m}m are the output values of the max-pooling op-
eration and where features si = {si,m}m are the positions
of the corresponding max-pooling switches. Suppose the di-
mensionality of the input spectral envelope is Di, the filter
length is Df , and the pooling size is z. Then, the dimension-
ality of pi and si is M = b(Di −Df + 1)/zc for each of the
N feature maps. pi are real-valued and si contain integers be-
tween 0 and z− 1. Given a training set for SPSS, the spectral
envelopes extracted by STRAIGHT vocoder [12] at voiced
frames are used to estimated the parameters of the WWAE.
The training algorithm in [11] is followed where only the re-
construction error of input features is considered in the cri-
terion. Then, pi and si features of each voiced frame can be
calculated using the trained WWAE model.

We expect that the extracted pi and si can represent the
prominences and positions of local spectral structures within
a pooling frequency window. Therefore, averaging pi can be
considered as calculating the average prominence of the lo-
cal spectral structures in a pooling window, while predicting
si is to find the most popular positions of the local spectral
structures within a pooling window. We expect to reduce the
over-smoothing effect on the formants and other local spec-
tral structures of synthetic speech by decomposing spectral
envelopes into what and where representations and modeling
them respectively.

The HMM-based SPSS framework is followed in this
paper to build a speech synthesis system using the what
and where features extracted above. First, a conventional
HMM-based SPSS system, i.e., the baseline system, is con-
structed using mel-cepstra derived from STRAIGHT spectral
envelopes as spectral features. Then, the what and where
features extracted by WWAE are used to replace mel-cepstra
to describe the spectral characteristics at each voiced context-
dependent HMM state. Here, voiced context-dependent states
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mean the clustered states describing voiced phonemes ac-
cording to the built decision trees. After training context-
dependent HMMs using mel-cepstra, a state alignment to
the acoustic features is performed. For each voiced context-
dependent state, the what and where features of all voiced
frames belonging to this state can be determined according to
the state alignment results. These two features are modeled
in two streams separately. At each HMM state, the what fea-
tures are modeled by a Gaussian distribution with diagonal
covariance matrix and each dimension in the where features
is modeled as a z-class discrete random variables.

At synthesis time, an HMM state sequence is first deter-
mined using the text analysis and duration prediction results.
For each frame in the voiced states, the what and where fea-
tures are predicted under maximum output probability cri-
terion, i.e., the what features are generated as the Gaussian
mean vector of current state and the where features are pre-
dicted to be the positions with maximum probabilities in the
z-class discrete distributions. The generated what and where
features of voiced frames are further converted into spectral
envelopes using the decoding part of the WWAE. For each
frame in the unvoiced states, the static mel-cepstra is also pre-
dicted under maximum output probability criterion, which is
the static part of the Gaussian mean vector of current state.
Then, spectral envelopes are recovered from the predicted
mel-cepstra for unvoiced frames. Since non dynamic fea-
tures are utilized, the predicted spectral envelopes are con-
stant within each HMM state and are discontinuous at state
boundaries. In our implementation, they are smoothed before
being sent into the synthesizer using the algorithm of param-
eter generation with the constraints of dynamic features[8],
in which the mean vectors for dynamic features and the di-
agonal covariance matrices are calculated from the spectral
envelopes assigned to each HMM state in the training set.

3. EXPERIMENTS

3.1. Experimental conditions

The data of the female US English speaker SLT in the
CMU ARCTIC database (http://festvox.org/cmu_
arctic/) was used in our experiments. The waveforms
were recorded in 16kHz/16bit format. One thousand utter-
ances in the database were used for system training and the
remaining 132 sentences were used as a test set.

In the HMM-based baseline system, 41-order mel-cepstra
(including the 0-th order for frame power) and F0 along with
their dynamic components were used as acoustic features.
The spectrum part was modeled by a Gaussian distribution
with diagonal covariance matrix, and the F0 part was mod-
eled by a multi-space probability distribution (MSD)[13].

The dimension of the spectral envelopes used in our ex-
periments was Di = 513 due to the FFT length of 1024 dur-
ing STRAIGHT analysis. The logarithmic spectral envelopes

Table 1. Log spectral distortions of analysis-by-synthesis us-
ing WWAEs with different numbers of feature maps (N ).

N 5 10 20 30 40 50
LSD (dB) 1.93 1.68 1.68 1.69 1.73 1.74

of all voiced frames in the training set were used as input to
train a WWAE model. Sigmoid activation function was used
in (1) and linear activation function was used in (4) in this
model. In a WWAE model, filter length Df represents the
width of the local structures that we want to detect. In this
paper, the filters are expected to detect the formant-like struc-
tures and some other local spectral structures contained in the
spectral envelopes of voiced speech. Here, the filter length
was heuristically set to be Df = 34 in our implementation,
which covered about 530 Hz. On the other hand, the pool-
ing size determines the downsampling rate of the convolution
output and how many spectral details can be preserved after
reconstruction. In our experiments, the pooling size was set
as z = 20, corresponding to about 300 Hz. Therefore, the
dimension of the extracted what and where features was 24
for each feature map according to the introduction in Section
2.2. The number of feature maps represents how many local
structures we want to detect, which was investigated in our
experiments.

3.2. Analysis-by-synthesis experiments

The WWAE models with different numbers of feature maps
were trained and then compared in an analysis-by-synthesis
experiment. In this experiment, the spectral envelopes of
the voiced frames in the test set were transformed into what
and where features and then converted back into spectral en-
velopes using the estimated WWAE models. The log spectral
distortion between the original and reconstructed spectral
envelopes in the test set were calculated and are shown in
Table. 1. From this table, we can see that the LSD was large
when there were not enough feature maps, e.g., N = 5. On
the other hand, increasing the number of feature maps too
much cannot improve the performance of modeling spectral
envelopes. This implies that the number of local structures
appearing in the spectral envelopes should be limited.

To better understand what have been learnt during the
WWAE training, we plot the estimated filter weights of
WWAEs with 10 feature maps and 50 feature maps in Fig.
2 and Fig. 3 respectively. The width of each subfigure, i.e.,
the filter length, was 34 as introduced above. We can see that
most of the filters in Fig. 2 have formant-like or anti-formant-
like shapes. While, the filters in Fig. 3 have smaller absolute
values and more fluctuations. Most of them are noise-like
and have no clear formant or anti-formant patterns. Consider-
ing its best performance in Table 1 and the explainable filter
shapes, the WWAE model with 10 feature maps was adopted
in our following experiments.
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Fig. 2. Estimated filter weights with 10 feature maps.

Fig. 3. Estimated filter weights with 50 feature maps.

3.3. Speech synthesis experiments

In the speech synthesis experiments, three systems using dif-
ferent spectral features were constructed and compared.

• Baseline: the baseline HMM-based system using mel-
cepstra as spectral feature.

• AE: this system utilized hidden representations of an
auto-encoder (AE) as spectral features. There were two
hidden layers and 1024 units in each layer in the AE. A
Gaussian distribution with diagonal covariance matrix
was adopted to model the AE-based spectral features at
each HMM state.

• WWAE: this system utilized the what and where fea-
tures extracted by the WWAE model with 10 feature
maps as spectral features. The system construction fol-
lowed the method introduced in Section 2.2.

These three systems shared the same decision trees, F0 mod-
els, and duration models which was estimated by the Baseline
system.

A MUSHRA (MUltiple Stimuli with Hidden Reference
and Anchor) test [14] was conducted to compare the nat-
uralness of these three systems with natural recordings as
references.1 Twenty sentences synthesized by the three
systems were evaluated by 30 English native listeners on
the crowdsourcing platform of Amazon Mechanical Turk
(http://www.mturk.com) with anti-cheating consider-
ations [15]. The average naturalness scores of these three

1Demos of synthetic speech can be found at http://home.ustc.
edu.cn/˜hyj15475/ICASSP2017_WWAE/demo.html.

Table 2. MUSHRA evaluation results of the constructed sys-
tems using different spectral features. The differences be-
tween Baseline and WWAE, and between AE and WWAE are
significant (p < 0.01 in paired t-test).

System Baseline AE WWAE
Naturalness score 39.7 40.6 44.3

Fig. 4. The spectral envelopes generated by different systems
for a voiced HMM state and a natural sample.

systems are shown in Table. 2. Our proposed method outper-
formed AE and Baseline on naturalness score.

Fig. 4 shows the spectral envelopes generated by different
systems for a voiced HMM state with a natural sample as a
reference. We can see that the spectral envelope predicted by
WWAE retains the local formant and anti-formant structures
better than the other two systems.

4. CONCLUSIONS

We have proposed to adopt a what-where auto-encoder
(WWAE) as a spectral feature extractor for SPSS. The
WWAE is able to detect, locate and reconstruct local struc-
tures in spectral envelopes. Experimental results show that
modeling and predicting the what and where features sepa-
rately can relieve the averaging effect on generated spectral
envelopes.

Further investigation is still necessary based on current
results. First, the architecture of WWAE could be improved,
e.g., using a deeper WWAE architecture and two dimen-
sional convolution along time and frequency axes. Second,
the representation of where features could be improved to
make it easier for acoustic modeling. Third, better acous-
tic models could be applied, such as deep neural networks
(DNNs), recurrent neural networks (RNNs). Fourth, our pro-
posed method should be evaluated when integrating other
spectral enhancement methods such as parameter generation
considering global variance (GV)[16].
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