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ABSTRACT
This paper proposes a novel training algorithm for high-quality Deep
Neural Network (DNN)-based speech synthesis. The parameters of
synthetic speech tend to be over-smoothed, and this causes signif-
icant quality degradation in synthetic speech. The proposed algo-
rithm takes into account an Anti-Spoofing Verification (ASV) as an
additional constraint in the acoustic model training. The ASV is
a discriminator trained to distinguish natural and synthetic speech.
Since acoustic models for speech synthesis are trained so that the
ASV recognizes the synthetic speech parameters as natural speech,
the synthetic speech parameters are distributed in the same manner
as natural speech parameters. Additionally, we find that the algo-
rithm compensates not only the parameter distributions, but also the
global variance and the correlations of synthetic speech parameters.
The experimental results demonstrate that 1) the algorithm outper-
forms the conventional training algorithm in terms of speech quality,
and 2) it is robust against the hyper-parameter settings.

Index Terms— DNN-based speech synthesis, anti-spoofing ver-
ification, training algorithm, generative adversarial training, multi-
task learning

1. INTRODUCTION

Statistical parametric speech synthesis [1] is a technique that aims to
generate natural-sounding synthetic speech. Hidden Markov Mod-
els (HMMs) [2] and Deep Neural Networks (DNNs) [3] are used as
the acoustic models for speech synthesis, and these acoustic mod-
els are trained with several training algorithms such as the maxi-
mum likelihood criterion [2] and Minimum Generation Error (MGE)
criterion [4, 5]. Acoustic modeling techniques for generating high-
quality speech are widely studied since they can be used for text-to-
speech, voice conversion, and multimodal speech synthesis. How-
ever, the speech parameters generated from these models tend to be
over-smoothed, and the quality of their speech is still low compared
with that of natural speech [1, 6].

One promising way to improve speech quality is to compensate
for the divergence between the natural and generated speech param-
eters. The parameter distributions of natural and synthetic speech
are significantly different [7], but quality improvements can be had
by transforming the synthetic speech parameters so that their distri-
bution is close to that of natural speech parameters. This can be
done by, for example, modeling the probability distributions in a
parametric [8] or non-parametric [9] way in the training stage, and
then, generating or transforming the synthetic speech parameters by
using the distributions. The more effective approach is to use ana-
lytically derived features correlated to the quality degradation of the
synthetic speech. Global Variance (GV) [8] and Modulation Spec-
trum (MS) [10] are well-known examples. They work as an addi-

tional term in the training/synthesis stage [11, 12]. Nose and Ito [13]
and Takamichi et al. [11] proposed methods that reduce the differ-
ence between Gaussian distributions of natural and generated GV
and MS. However, quality degradation is still a critical problem.

In order to address this quality problem, this paper proposes
a novel training algorithm that uses an Anti-Spoofing Verification
(ASV) for statistical parametric speech synthesis. The ASV is a dis-
criminator trained to distinguish natural and synthetic speech. Since
the acoustic models for speech synthesis are trained to deceive the
ASV, the parameter distribution of the synthetic speech is close to
that of natural speech. The training criterion is the weighted sum of
the conventional training criterion and the spoofing rate for the ASV,
and the training is simply done using a backpropagation algorithm by
using DNNs for speech synthesis and ASV. Furthermore, the training
algorithm can be regarded as a generalization of the conventional ap-
proaches; i.e., 1) we use not only analytically derived features (e.g.,
GV and MS), but also automatically derived (DNN-derived) features
as the compensated features, and 2) we model a probability distribu-
tion that is more complicated than the conventional Gaussian distri-
bution. We conducted an experimental evaluation to demonstrate the
effectiveness of our algorithm. The experimental results demonstrate
that 1) the algorithm outperforms the conventional MGE training in
terms of speech quality and 2) it works comparably robustly against
the hyper-parameter settings.

2. CONVENTIONAL TRAINING ALGORITHM

2.1. DNNs as acoustic models
In DNN-based speech synthesis [14], acoustic models that rep-
resent a relationship between linguistic features and speech pa-
rameters consist of layered hierarchical networks. To construct
the models, we minimize a loss function calculated using natu-
ral and synthetic speech parameters. Let c be a natural speech
parameter sequence

[
c⊤1 , · · · , c⊤t , · · · , c⊤T

]⊤
, and ĉ be a syn-

thetic speech parameter sequence
[
ĉ⊤1 , · · · , ĉ⊤t , · · · , ĉ⊤T

]⊤
, where

t and T denote the frame index and total frame length, respec-
tively. ct = [ct (1) , · · · , ct (D)]⊤ is a D-dimensional speech
parameter vector at frame t. As in [14], the acoustic models de-
scribed here predict static and dynamic speech feature vectors,
ôt =

[
ĉ⊤t ,∆ĉ⊤t ,∆∆ĉ⊤t

]⊤
, at frame t.

2.2. Minimum Generation Error (MGE) training [5]

The acoustic models are trained using the Minimum Generation Er-
ror (MGE) training algorithm [5]. The loss function LG (c, ĉ) is de-
fined as the mean squared error between natural and synthetic speech
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Fig. 1. Calculation of loss function in proposed algorithm.

parameters as follows:

LG (c, ĉ) =
1

T
(ĉ− c)⊤ (ĉ− c)

=
1

T
(Rô− c)⊤ (Rô− c) , (1)

where ô = [ô⊤
1 , · · · , ô⊤

t , · · · , ô⊤
T ]

⊤ is the static and dynamic
speech feature sequence predicted by the acoustic models. R is a
DT -by-3DT matrix given as

R =
(
W⊤Σ−1W

)−1

W⊤Σ−1, (2)

where W is a 3DT -by-DT matrix for calculating dynamic fea-
tures [2] and Σ = diag [Σ1, · · · ,Σt, · · · ,ΣT ] is a 3DT -by-3DT
covariance matrix, where Σt is a 3D-by-3D covariance matrix at
frame t. Σ is separately estimated using training data.

The model parameters (e.g., weight or bias of DNNs) are esti-
mated using the backpropagation algorithm using the gradients of
L (c, ĉ) by o.

3. PROPOSED TRAINING ALGORITHM

3.1. Anti-Spoofing Verification (ASV) [15]

In order to distinguish natural speech and synthetic speech, an ASV
discriminator is trained using the speech parameters (or speech
waveforms). In DNN-based ASV (e.g., [16]), after applying the fea-
ture function ϕ (·) to the input speech parameters, the DNN outputs
the posterior probability D (ϕ (·)) that the input is natural speech.
Features that distinguish natural and synthetic speech parameters are
often calculated at this point. Here, frame-wise speech parameters
are directly used for the ASV, i.e., ϕ (ct) = ct. The loss function
for the ASV is defined as the cross-entropy function:

LD (c, ĉ) = LD,1 (c) + LD,0 (ĉ) , (3)

LD,1 (c) = − 1

T

T∑
t=1

logD (ct) , (4)

LD,0 (ĉ) = − 1

T

T∑
t=1

log (1−D (ĉt)) . (5)

where LD,1 (c) and LD,0 (ĉ) are the loss functions for natural and
synthetic speech parameters, respectively. The backpropagation al-
gorithm is used to train the DNN to output 1 for natural speech and
0 for synthetic speech.

3.2. Training algorithm to deceive ASV

Here, we describe a novel training algorithm to deceive the ASV.
Fig. 1 illustrates the computation procedure of the loss function.

The loss function for speech synthesis is

L (c, ĉ) = LG (c, ĉ) + ωD
ELG

ELD

LD,1 (ĉ) , (6)

where ELG and ELD denote the expectation values of LG (c, ĉ)
and LD,1 (ĉ), respectively. Their ratio, ELG/ELD is the scale nor-
malization term between LG (c, ĉ) and LD,1 (ĉ), and the hyper-
parameter ωD controls the weight of the second term. When ωD =
0, the loss function is equivalent to the conventional MGE train-
ing, and when ωD = 1, LG (c, ĉ) and LD,1 (ĉ) have equal weights.
LD,1 (ĉ) lets the synthetic speech parameters be recognized as natu-
ral speech in the ASV step, and it minimizes the Jensen-Shannon
divergence between the distributions of the natural and synthetic
speech parameters [17]. Therefore, this loss function not only min-
imizes the generation error but also makes the distribution of the
synthetic speech parameters close to that of natural speech parame-
ters.

After training the acoustic models to deceive the ASV, the ASV
is retrained to distinguish natural and synthetic speech. The final
acoustic models are estimated by iterating these algorithms.

3.3. Relation to other methods and behavior analysis

We can choose not only analytically derived features, e.g., GV and
MS, but also automatically derived features (e.g., [18]) for the ASV
in our training algorithm. When an analytically derived feature is
used, it must be differentiable by the input speech parameters for the
backpropagation algorithm to work. Also, since only the backpropa-
gation algorithm is used for training, a variety of DNN architectures
(e.g., Long Short-Term Memory (LSTM) [19]) can be used as acous-
tic models and the ASV.

The proposed loss function (Eq. (6)) is a combination of a multi-
task learning algorithm using discriminators [20] and a generative
adversarial training [17]. In defining L (c, ĉ) = LD,1 (ĉ), the loss
function is equivalent to that for generative adversarial training [17].
In other words, our algorithm can be regarded as generative adver-
sarial training with referred input and output parameters [21].

As described above, our algorithm makes the distribution of the
synthetic speech parameters close to that of natural speech parame-
ters. Since we perform generative adversarial training with DNNs,
our algorithm comes to have a more complicated probability distri-
bution than the conventional Gaussian distribution. Fig. 2 plots nat-
ural and synthetic speech parameters with several mel-cepstral coef-
ficient pairs. Whereas the parameters of the conventional algorithm
are narrowly distributed, those of the proposed algorithm are widely
distributed, the same as the natural speech parameters. Moreover,
we can see that the proposed algorithm more affects the distribution
of the higher order of the mel-cepstral coefficients.

Here, one can explore what components (e.g., analytically de-
rived features and intuitive reasons [22]) the algorithm changes.
Fig. 3 plots the averaged GVs of natural and synthetic speech pa-
rameters. We can see that the GV created by the proposed algorithm
is closer to the natural GV than is the one produced by the con-
ventional algorithm. Then, we calculated a Maximal Information
Coefficient (MIC) [23] to quantify a correlation between each di-
mension of the mel-cepstral coefficients. Fig. 4 shows the results.
As reported in [7], we can see that there are weak correlations be-
tween dimensions of the natural speech parameters, whereas strong
correlations are observed between those of generated speech param-
eters of the MGE training. Meanwhile, the generated mel-cepstral
coefficients of our algorithm have weak correlations than those of
the MGE training. These results suggest that the proposed algorithm
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Fig. 2. Scatter plots of mel-cepstral coefficients with several pairs
of dimensions. From the left, the figures correspond to natural
speech, the conventional MGE algorithm, and the proposed algo-
rithm (ωD = 1.0), respectively. These mel-cepstral coefficients
were extracted from one utterance of the evaluation data.

compensates not only the GV of the synthetic speech parameter, but
also the correlation between each dimension of the parameters.

4. EXPERIMENTAL EVALUATION

4.1. Experimental conditions

We used speech data of a male speaker taken from the ATR Japanese
speech database [24]. The speaker uttered 503 phonetically balanced
sentences. We used 450 sentences (subsets A to I) for the training
and 53 sentences (subset J) for the evaluation. Speech signals were
sampled at a rate of 16 kHz, and the shift length was set to 5 ms. The
0th-through-24th mel-cepstral coefficients were used as a spectral
parameter and F0 and 5 band-aperiodicity [25, 26] were used as ex-
citation parameters. The STRAIGHT analysis-synthesis system [27]
was used for the parameter extraction and the waveform synthesis.
To improve training accuracy, speech parameter trajectory smooth-
ing [28] with a 50 Hz cutoff modulation frequency was applied to the
spectral parameters in the training data. Linguistic features of con-
texts consisted of 274-dimensional vector including phonemes, mora
position, accent type, frame position in a phoneme, and so on. We
only used some of the prosody-related features because we predicted
only the spectral parameters in this experiment. In the training phase,
spectral features were normalized to have zero-mean unit-variance,
and 80% of the silence frames were removed from the training data
in order to reduce the computational cost.

The DNN architectures for acoustic models and ASV were
Feed-Forward networks. The architecture for the acoustic models
included 3 × 400-unit Rectified Linear Unit (ReLU) [29] hidden
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Fig. 3. Averaged GVs of synthetic mel-cepstral coefficients.

0 6 12 18 24

24

18

12

6

0

Natural

0 6 12 18 24

MGE

0 6 12 18 24

Proposed
(ωD=1.0)

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 4. MICs of natural and synthetic mel-cepstral coefficients. The
MIC ranges from 0.0 to 1.0, and the two valuables with a strong
correlation have a value closer to 1.0. From the left, the figures cor-
respond to natural speech, the conventional MGE algorithm, and the
proposed algorithm (ωD = 1.0), respectively. These MICs were
calculated from one utterance of the evaluation data.

layers and a 75-unit linear output layer. The architecture for the
ASV included 2 × 200-unit ReLU hidden layers and a one-unit sig-
moid output layer. The acoustic models output static and dynamic
mel-cepstral coefficients (75-dim.) frame by frame. The ASV input
static mel-cepstral coefficients (25-dim.) frame by frame. We used
AdaGrad [30] as the optimization algorithm, setting the learning rate
to 0.01. F0, band-aperiodicity, and duration of natural speech were
used for the speech waveform synthesis.

In the training phase, we performed the training algorithm [14]
frame-by-frame for the initialization of acoustic models; then we
performed the conventional MGE training [5] with 25 iterations.
Here, “iteration” means using all the training data (450 utterances)
once for training.

The ASV was initialized using natural speech and synthetic
speech after the MGE training. The number of iterations for the
ASV initialization was 5. The proposed training and ASV re-training
were performed with 25 iterations. At each iteration step, the pro-
posed training algorithm updated the acoustic model parameters by
using all the training data. The ASV re-training was performed us-
ing speech parameters generated with the updated acoustic models.
Expectation values ELG and ELD were estimated at each iteration
step.

In order to evaluate our algorithm, we calculated the parame-
ter generation loss defined in Eq. (1) and spoofing rate of the syn-
thetic speech. The spoofing rate is the number of spoofing synthetic
speech parameters divided by the total number of synthetic speech
parameters in the evaluation data. Here, “spoofing synthetic speech
parameter” indicates a parameter for which the ASV recognized the
synthetic speech as natural speech. The ASV for calculating the
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Fig. 5. Parameter generation loss (above) and spoofing rate (below)
for various ωD.

spoofing rates was constructed using natural speech parameters and
synthetic speech parameters of the conventional MGE training. The
generation loss and spoofing rates were first calculated with various
hyper-parameter ωD settings. Then, we conducted a subjective eval-
uation of the quality of the synthetic speech.

4.2. Objective evaluation

Fig. 5 shows the results for the generation loss and spoofing rate. As
ωD increases from 0.0, the generation loss monotonically increases,
but from 0.4, we cannot see any tendency. On the other hand, the
spoofing rate significantly increases as ωD increases from 0.0 to 0.2;
from 0.2, the value does not so vary. These results demonstrate that
the proposed training algorithm makes the generation loss worse but
can train the acoustic models to deceive the ASV.

4.3. Subjective evaluation

A preference test (AB test) was conducted to evaluate the quality of
speech produced by the algorithm. We generated speech samples
with three methods:

MGE: conventional MGE (= proposed (ωD = 0.0))

Proposed (ωD = 0.3): spoofing rate > 0.99

Proposed (ωD = 1.0): standard setting of ωD

We presented every pair of synthetic speech of the three sets in
random order and forced listeners to select the speech sample that
sounded better in quality. Eight listeners participated in the assess-
ment.

Fig. 6 shows the results. The resulting scores of “Proposed”
were much higher than those of “MGE.” Thus, our algorithm yielded
a remarkable improvement in terms of speech quality. Moreover,
we can see from the results that there is no significant difference

0.0 0.2 0.4 0.6 0.8 1.0

MGE 

Proposed 
(ωD=0.3) 

Proposed 
(ωD=1.0) 

Preference score

Fig. 6. Preference scores of speech quality with 95% confidence
intervals.

between “Proposed (ωD = 0.3)” and “Proposed (ωD = 1.0).”
Since the objective results shown in Fig. 5 do not vary much when
ωD is between 0.3 and 1.0, it is expected that the speech quality
will be almost the same between 0.3 and 1.0. Therefore, this result
suggests that our algorithm works comparably robustly against the
hyper-parameter setting.

5. CONCLUSION

This paper proposed a novel training algorithm for high-quality Deep
Neural Network (DNN)-based speech synthesis. An Anti-Spoofing
Verification (ASV), which distinguishes natural speech and synthetic
speech, is used to train the acoustic models of speech synthesis. The
acoustic models are trained to not only minimize the generation loss
but also make the parameter distribution of the synthetic speech pa-
rameters close to that of natural speech parameters. We found that
our algorithm compensated not only global variance but also cor-
relation of synthetic speech parameters. The experimental results
showed significant improvements in terms of speech quality. More-
over, it was demonstrated that the algorithm works comparably ro-
bustly against the hyper-parameter settings. In the future, we will
use the features that are effective for the ASV, further investigate the
behavior in relation to the hyper-parameter settings, and devise ASV
models with temporal [31] and linguistic [21] dependencies.
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