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ABSTRACT

Neural-network-based generative models, such as mixture density
networks, are potential solutions for speech synthesis. In this paper
we follow this path and propose a recurrent mixture density network
that incorporates a trainable autoregressive model. An advantage of
incorporating an autoregressive model is that the time dependency
within acoustic feature trajectories can be modeled without using
the conventional dynamic features. More interestingly, experiments
show that this autoregressive model learns to be a filter that
emphasizes the high frequency components of the target acoustic
feature trajectories in the training stage. In the synthesis stage,
it boosts the low frequency components of the generated feature
trajectories and hence increases their global variance. Experimental
results show that the proposed model achieved higher likelihood on
the training data and generated speech with better quality than other
models when dynamic features were not utilized in any model.

Index Terms— Speech synthesis, Autoregressive model,
Mixture density network, Recurrent neural network

1. INTRODUCTION

Parametric speech synthesis aims at generating speech based on
textual information. It uses an acoustic model, such as a hidden
Markov model (HMM), to generate the acoustic features from
textual information and then a vocoder to convert the generated
features into the speech waveform [1]. Recently, various neural-
networks-based models have been proposed to better map the textual
features into acoustic ones [2, 3]. There are also neural networks that
directly model spectral features to avoid artifacts in vocoding [4, 5].

This paper proposes a recurrent mixture density network
that incorporates an autoregressive model. This proposed model
first uses a recurrent neural network (RNN) to extract a hidden
representation from the input linguistic features. Then, it transforms
the output of the RNN as the model parameter of a mixture density
network (MDN) that depicts the distribution of the target acoustic
features [6]. This RNN-based MDN is called the recurrent mixture
density network (RMDN) in this paper. Based on the RMDN,
the proposed model further assumes that the mean of the target
feature distribution is dependent on the observed features of previous
steps, and this cross-time dependency can be modelled using an
autoregressive (AR) model [7]. The entire model, including the
AR model and RMDN, can be trained using the back-propagation
algorithm with the maximum likelihood criterion.

By modeling the cross-time dependency using an AR model,
the proposed model does not require the conventional dynamic

features nor the classical speech parameter generation method [1].
Therefore, it is similar to the Autoregressive HMM for speech
synthesis [8, 9]. However, experiments on the proposed model
show more interesting results. Specifically, the AR model in the
training stage learns to be a filter that emphasizes high frequency
components of the training feature trajectories while it attenuates
their low frequency components, thus, increasing the entire model’s
likelihood on the training data. In the synthesis stage, the trained AR
model compensates the low frequency components of the generated
trajectories and increases their global variance (GV) [10]. Subjective
evaluation shows that the proposed model is better than the RNN and
plain RMDN when dynamic features are not used in any model.

In Section 2, we introduce the RNN and MDN. In Section 3,
we present the proposed model. Then, we show the experiments in
Section 4, and discuss the future work and draw the conclusion in
Section 5 and Section 6, respectively.

2. NEURAL NETWORKS FOR SPEECH SYNTHESIS

2.1. Recurrent Neural Network

The basic task of a hidden layer in an RNN is to transform the input
xt and previously extracted hidden state ht−1 into a new vector ht:

ht = F(W iixt +W hiht−1 + bi). (1)
Here, F is a non-linear function; W ∗ is the transformation matrix
and b is the bias. A vanilla RNN based on this operation is difficult to
train because of the gradient vanishing and exploding problem. As a
solution, the long short term memory (LSTM) unit, where trainable
gates control the input, output and the state of the memory cell [11],
has been proposed to replace the simple F(.).

An RNN network with LSTM units and deep bi-directional
time dependency (DBLSTM-RNN) has been reported for speech
synthesis [3]. This RNN derives ht based on xt that encodes the
textual information. Then, it transforms ht into the acoustic feature
vector ot, based on which speech can be constructed.

2.2. Mixture Density Network

Different from neural networks that only give a point estimation for
the target data, an MDN predicts the value of a parameter set based
on which probability density function (PDF) of the target variable
can be specified [6]. An MDN may use the Gaussian mixture model
(GMM) as the PDF of the acoustic feature vector ot

p(ot;Mt) =

M∑
m=1

ωmt N (ot;µ
m
t ,Σ

m
t ). (2)
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In Equation 2, M is the number of mixture components andMt =
{ω1

t , · · · , ωMt , µ1
t , · · · ,µMt , Σ1

t , · · · ,ΣM
t } is the parameter set

whose value is predicted using the neural network that takes xt as
input. For simplicity, the dependency ofMt on xt is omitted in this
paper. Also note that Σm

t is usually assumed to be diagonal [6].
As a generative model, an MDN can be trained using the back-

propagation algorithm under the maximum likelihood criterion.
An MDN based on a feedforward neural network architecture has
been proposed [12] for speech synthesis. An MDN can also be
constructed based on an RNN, which results in an RMDN [13].

3. AUTOREGRESSIVE RECURRENT MIXTURE DENSITY
NETWORK

3.1. Definition

Our proposed model is based on the RMDN, yet it is assumed that
the observations ot−K:t−1 = [o>t−K , · · · ,o>t−1]

> in the past K
time steps affect the mean value of the GMM at the current time t.
Accordingly, it defines the PDF of the target feature as

p(ot|ot−K:t−1;Mt) =

M∑
m=1

ωmt N (ot;µ
m
t + f(ot−K:t−1),Σ

m
t ).

(3)
Given ot ∈ RD , the function f(ot−K:t−1) : RD → RD
summarizes the past observation and changes the mean of each
mixture. Among various parametric forms of f(ot−K:t−1), the
proposed model sets

f(ot−K:t−1) =

K∑
k=1

ak � ot−k + b, (4)

where b ∈ RD is the bias and ak ∈ RD is a vector that scales ot−k
by element-wise production �. Note that ot = 0,∀t ∈ (−∞, 0].

As the proposed model defines a PDF similar to that of the
Autoregressive HMM [8], we refer to it as Autoregressive RMDN
(AR-RMDN). An AR-RMDN with K=2 is plotted in Figure 1.
The context-dependent Mt in the AR-RMDN is predicted by the
RNN that takes linguistic feature vectors as input. Although ak
and b can also be context-dependent, our experiments suggest that a
better approach is to set ak and b as context-independent (or time-
invariant). In the training stage, the weights of RNN and {ak, b} can
be trained using the back-propagation algorithm under the maximum
likelihood criterion.

3.2. Interpretation

As the AR-RMDN uses the AR model to depict the cross-time
dependency of the target feature, it is similar to the Autoregressive
HMM [8]. Compared with the HMM-based or neural-network-based
models using dynamic features or trajectory models [14, 15], the AR
model assumes the distribution of the current time step is affected
only by the past observations, which makes the model both efficient
in computation and consistent in the statistical sense [8].

Instead of only explaining the AR-RMDN as a probabilistic
model [16], we interpret it further based on the signal and filter
theory. Given training data o1:T = [o>1 , · · · ,o>T ]>, where ot ∈
RD, ∀t ∈ [1, T ], the model’s likelihood can be calculated as

p(o1:T ;M1:T ) =

T∏
t=1

p(ot|ot−K:t−1;Mt) =

T∏
t=1

p(ct;Mt),

(5)
where
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Fig. 1: Autoregressive recurrent mixture density network (K = 2).

p(ct;Mt) =

M∑
m=1

wmt

D∏
d=1

1√
2πσm2

t,d

exp(−
ct,d − µmt,d − bd

2σmt,d
2 ),

(6)and
ct,d = ot,d −

K∑
k=1

ak,dot−k,d. (7)

Here, ot,d, µmt,d, ak,d, and bd represent the d-th order element of
od,µ

m
t , ak, and b, respectively, and σmt,d is the d-th element of the

diagonal Σm
t . The equations show that the model’s likelihood can be

calculated over a bundle of signals c1:T,d = [c1,d, · · · , cT,d]>, d ∈
[1, D] and each individual signal c1:T,d is the output of a filter that
takes o1:T,d = [o1,d, · · · , oT,d]> as input. The filter for the d-th
signal can be written in the z-domain as

Ad(z) = 1−
K∑
k=1

ak,dz
−k. (8)

In the synthesis stage, acoustic features are generated as ô1:T=
argmaxo1:T p(o1:T ;M1:T ). If only the mixture m∗t with the
largest weight is used for generation at time t, it can be shown that
ô1:T,d = [ô1,d, · · · , ôT,d]> is equivalent to the output of an AR
model Hd(z) = 1

Ad(z)
whose input ĉ1:T,d = [µ

m∗1
1,d , · · · , µ

m∗T
T,d ]

> is
predicted by the RMDN part of the AR-RMDN.

An RNN with a recurrent output layer [17] is equivalent to an
RMDN with M = 1, Σ = diag(1, · · · , 1), and µt = ht +
Wµt−1 + b, where ht is given by the hidden layer of the RNN.
Although µt is affected by µt−1, this particular RNN still factorizes
p(o1:T ;M1:T ) =

∏T
t=1 p(ot;Mt), which is different from the

AR-RMDN’s conditional PDF in Equation 5.

3.3. Implementation

The implementation of the AR-RMDN should ensure that all the
learned filters Hd(z), d ∈ [1, D] are stable. A method to ensure
the stability of Autoregressive HMM is reported in [9]. Another
simple strategy, used for the AR-RMDN, is to rewrite the Hd(z) as
a cascade form

Hd(z) =
1

1−
∑K
k=1 ak,dz

−k
=

K∏
k=1

1

1− tanh(αdk)z
−1
, (9)

where the tanh function ensures that the poles of Hd(Z) are
located within [-1,1] on the real axis. These poles can be converted
into adk easily, e.g., a1 = tanh(α1) + tanh(α2) and a2 =
− tanh(α1) tanh(α2) when K = 2. In the training stage, each
αdk can be learned based on the chain rule ∂LM

∂αk
=

∑K
l=1

∂LM
∂al

∂al
∂αk

,
where LM = − log p(o1:T ;M1:T ).
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Fig. 2: Negative log likelihood of RMDN and AR-RMDN.

Table 1: Experimental systems. The recurrent layers in all systems
are bi-directional and use LSTM units (DBLSTM-RNN layers).

Notations Type of neural network Dynamic feature
RNN RNN w/o

RNN+MLPG RNN with
RMDN RMDN w/o

AR-RMDN AR-RMDN w/o

4. EXPERIMENTS AND RESULTS

4.1. Corpus and Systems

Experiments used the Blizzard Challenge 2011 Nancy corpus that
has 12072 English utterances [18]. Both the test and validation
set contained 500 randomly selected utterances. Mel-generalized
cepstral coefficients (MGCs) of order 60, continuous F0 trajectory,
voiced/unvoiced (V/U) condition, and band aperiodicity (BAP)
of order 25 were extracted for each speech frame by using the
STRAIGHT vocoder [19]. The Flite toolkit [20] conducted the text-
analysis for the entire corpus. The output of Flite were converted
into a vector of order 382 as the input xt to the neural network.

Experimental systems are listed in Table 1. Similar to the
configuration in [3], RNN and RNN+MLPG included 2 feedforward
layers with 512 nodes, 2 DBLSTM layers with 256 nodes, and a
linear output layer. RMDN and AR-RMDN contained the same hidden
RNN part. For RMDN and AR-RMDN, the MDN layer included a
binomial distribution for the V/U condition, three GMMs for the
MGC, F0, and BAP with the number of mixture components as
2, 2, 1, respectively. Using two mixture components instead of a
single one for MGC and F0 makes the model less affected by the
outliers. AR-RMDN set the autoregressive parameter K = 1 for
MGC, K = 2 for F0 and K = 0 for BAP. By then, we only
implemented the model with K = {1, 2} and found that either
choice achieved a similar performance for MGC and F0. Additional
test showed that it was unnecessary to use AR model for BAP.

The RNN and RNN+MLPG systems were trained first. Then,
the weights of RNN, except the output layer, were used to initialize
RMDN. Finally, the weights of AR-RMDN were initialized using
RMDN, and {ak, b} was initialized as zero. In the generation stage,
RNN+MLPG used the maximum likelihood parameter generation
(MLPG) method [1] while RNN directly output the trajectories.
RMDN and AR-RMDN used the mean of the most probable mixture
component as the output of each frame. 1

4.2. Analysis of Trained Model

As Figure 2 shows, the likelihood of AR-RMDN is higher than
RMDN. From the perspective of model assumption, AR-RMDN is
expected to be better as it takes the cross-time dependency into

1The toolkit modified based on CURRENNT [21], implementation details
of AR-RMDN and speech samples can be found at http://tonywangx.github.io
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consideration. From the perspective of the signal and filter,
AR-RMDN’s performance may be due to the filtering conducted by
A(z). For the spectral part, the trajectory of the d-th order MGC,
where d ∈ [1, 60], is processed by Ad(z) = 1 − adz

−1. As
Figure 3 shows, ad ∈ (0, 1) for d ∈ [1, 60], and Ad(z) emphasizes
the high-frequency components of the natural feature trajectory
while attenuating the low-frequency components. Particularly, ad
is closer to 1.0 when d is closer to 60, which means the filter for
the higher order MGC trajectory emphasizes the high frequency part
more severely. As the natural MGC trajectory has higher energy
in the low-frequency part than in the high-frequency part, what
Ad(z) performs on this trajectory is similar to the whitening process
conducted by a so-called inverse filter on the speech waveform [22].
However, the output of Ad(z) is not the white noise but a feature
trajectory that can be generated by the neural network given input
textual features. Similar results can be observed in F0 modeling.

4.3. Analysis of Generated Feature Trajectories

In the synthesis stage, H(z) = 1
A(z)

in AR-RMDN compensates
the low-frequency components of the feature trajectories generated
by the RMDN part and de-emphasizes their high-frequency
components. The generated MGC trajectories of one sample
utterance (BC2011 nancy APDC2-166-00) are shown in Figure 5.
Interestingly, while all systems failed to generate the high frequency
change in the trajectory of the 30th-order MGC, AR-RMDN
generated a trajectory that had a similar dynamic range as the natural
one. On the F0, AR-RMDN generated a more dynamic trajectory and
a more accurate high pitch accent near the 120th frame.

For further analysis, GV is used to measure the dynamic range
of generated feature trajectories. The results are shown in Figure
6. For low order MGCs, all systems generated trajectories with
a similar GV to the natural data. However, for the high order
MGCs, only AR-RMDN maintained the GV level of the generated
trajectories. Similarly, AR-RMDN generated the F0 with larger GV
than the other systems. Because the local maximum and minimum
of the F0 trajectory is crucial in realization of the pitch accent
[23], the over-smoothed F0 trajectory may fail to convey the pitch
accent specified by the input of the neural network. The interesting
point is that, instead of explicitly incorporating the GV criterion in
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the synthesis stage, AR-RMDN increased the GV of the generated
trajectories using a filter 1

A(z)
trained from the data.

A subjective evaluation based on MUSHRA method [24] with
10 paid native English listeners was conducted at the University of
Edinburgh. The results are shown in Figure 4. Although statistically
insignificant, AR-RMDN achieved a higher score than RNN+MLPG
(p = 0.35 in t-test) even though AR-RMDN didn’t use dynamic
features or MLPG for trajectory generation. What’s more, while the
difference between RNN+MLPG and RMDN is not significant (p =
0.135), AR-RMDN is significantly better than RMDN (p = 0.02) and
RNN (p = 0.00). Although AR-RMDN alleviates the over-smoothing
problem, it cannot be significantly better than RNN+MLPG because
the generated feature trajectories, particularly the F0, may not be
smooth enough since the AR model only models the cross-time
dependency locally. The discontinuity of the generated F0 by
AR-RMDN can be observed near the 80th frame in Figure 5. At last,
RMDN’s better performance than RNN is related to the use of two
mixture components for MGC and F0 since two mixture components
may be robust to the outliers in the data [25, 26].

5. DISCUSSION

As the proposed model increased the GV of the generated feature
trajectories, we also compared it with another RMDN system with
a postfilter on the modulation spectrum (MS) [27]. The results
showed that both methods increased the GV and generated synthetic
speech better than the plain RMDN. The difference is that the
MS postfilter manipulates the feature trajectory in the modulation
spectrum domain while the proposed model works in ‘time’ domain.

Although the AR-RMDN achieved high likelihood, random
samples from the AR-RMDN were less natural than generating the
mean trajectory. One reason may be that the AR model is still weak
in modeling the time dependency of the feature trajectory.

6. CONCLUSION

We introduced the autoregressive model into the recurrent mixture
density network for speech synthesis. Experimental results showed
that the trainable autoregressive model amplifies the high-frequency
components and attenuates the low-frequency part of the target
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Fig. 6: Global variance of generated MGC and F0

acoustic feature trajectories in the training stage. In the synthesis
stage, it compensates the low-frequency components and de-
emphasizes the high-frequency components of raw trajectories
generated by the neural network. Further analysis has shown that,
even through the explicit global variance criterion is not used,
the proposed model increases the level of the global variance of
the generated feature trajectories because of the AR model in the
synthesis stage. Our proposed model has achieved higher likelihood
on the training and validation data, and better quality of synthetic
speech.
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