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ABSTRACT

We propose a new concept for adapting CNN-based acoustic mod-

els using spatial diffuseness features as auxiliary information about

the acoustic environment: the spatial diffuseness features are simul-

taneously employed as acoustic-model input features and to esti-

mate environmental cues for context adaptation, where one convo-

lutional layer is factorized into several sub-layers to represent dif-

ferent acoustic conditions. This context-adaptive CNN-based acous-

tic model facilitates an online environmental adaptation and is ex-

perimentally verified for the real-world recordings provided by the

CHiME-3 task. The best performing setup reduces the average word

error rate scores achieved by the baseline system (without using spa-

tial diffuseness features) from 19.4% to 15.9% and 12.2% to 10.7%

considering two experimental setups with and without front-end sig-

nal enhancement, respectively.

Index Terms— Context adaptation, spatial diffuseness features,

CNN-based acoustic model, environmental robustness

1. INTRODUCTION

Since deep learning has become an essential part of designing mod-

ern speech recognition systems [1], the mismatch between training

and test conditions (e.g., produced by environmental distortions)

motivated various concepts for robust automatic speech recogni-

tion (ASR). For instance, front-end processing techniques reduce

the environmental variability of the recorded signal [2] and can be

combined with uncertainty decoding to account for missing infor-

mation by modeling acoustic features as random variables [3–5].

Furthermore, back-end techniques increase the robustness of ASR

systems by adapting all or a subset of acoustic-model parameters.

This has been realized without [6–11] or with exploiting auxiliary

information [12–18], where the latter has been shown to be espe-

cially appealing, as it facilitates an unsupervised adaptation on a

small amount of speech data. Following this strategy, auxiliary fea-

tures have been used as additional input features [12–14], to estimate

acoustic-model parameters [15, 16], and to adjust the output of the

acoustic model [17, 18].

In this work, we exploit spatial diffuseness features [14] for

adapting a convolutional neural network (CNN)-based acoustic

model. The spatial diffuseness features have been investigated for

deep neural network (DNN)-based ASR systems in [14] and can

be extracted online from multi-channel speech recordings: we es-

timate the diffuseness from the recorded microphone signals in the

short-time Fourier transform (STFT) domain and perform a Mel
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weighting similar to the filterbank feature extraction. This facilitates

an online acoustic-model adaptation, which is not possible using

auxiliary features like i-vectors [12, 15, 19] or per-utterance noise

estimates [13, 17]. Furthermore, the spatial diffuseness features

exhibit a similar time-frequency structure as the filterbank features.

This is especially appealing for CNN-based acoustic models with

filterbank features as inputs, which have been shown to be powerful

tools for noise-robust ASR tasks by extracting local information

from time-frequency patterns [20, 21].

The diffuseness is a characteristic of the sound field, which can

be extracted by assuming background noise and late reverberation

to be modeled by a diffuse (spherically isotropic) noise field. Ac-

cordingly, spatial diffuseness features provide information about the

acoustic environment which is exploited in this paper to combine two

concepts for acoustic-model adaptation. First, the spatial diffuseness

features are appended to the filterbank features at the input of the

acoustic model. This is motivated by the behavior of the human audi-

tory system to exploit environmental information as an indicator for

the energy of the desired speech [22]. Second, we extract environ-

mental cues from the spatial diffuseness features to adapt more com-

plex feature representations in upper layers of a CNN-based acoustic

model: following the concept of context adaptation [23], one convo-

lutional layer is factorized into several sub-layers representing differ-

ent acoustic conditions. Each sub-layer is associated with an acous-

tic context class posterior probability estimated by transforming spa-

tial diffuseness features through a small neural network [23].

The proposed context-adaptive CNN-based acoustic model is

experimentally verified using real recordings provided by the 3rd

CHiME speech separation and recognition challenge (CHiME-3).

In more details, we compare the recognition accuracy achieved with

and without incorporating acoustic front-end signal enhancement.

The experimental results highlight that, employing spatial diffuse-

ness features as additional input features and at the same time for

context adaptation, consistently improves the recognition accuracy

of the baseline CNN-based ASR system.

In the remainder of this paper, we propose the context-adaptive

CNN-based acoustic model in Section 2, illustrate relations to prior

work in Section 3 and show experimental results for the CHiME-3

task in Section 4. An outlook to future work in Section 5 is followed

by concluding remarks in Section 6.

2. CONTEXT-ADAPTIVE CNN-BASED

ACOUSTIC MODEL

In this section, we provide details about the proposed context-

adaptive CNN-based acoustic model in Fig. 1 including feature

extraction (Section 2.1), acoustic-model topology (Section 2.2) and

the concept of context adaptation (Section 2.3).
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2.1. Acoustic features

We exploit filterbank and spatial diffuseness features illustrated for

one speech recording in Fig. 2. As first part of both feature ex-

tractions, the microphone signals are transformed into the complex-

valued STFT domain using a Hamming window of length 25 ms and

a frame shift of 10 ms (DFT length 512).

Filterbank features: The magnitude of a single-channel STFT-

domain signal X(t, f) at time t and frequency f is weighted by a

Mel filterbank (using 80 Mel bands) and a logarithmic function. This

is realized for a reference microphone or the output of an acoustic

front-end signal enhancement scheme in Section 4.

Diffuseness features [24]: Two STFT-domain microphone sig-

nals X1(t, f) and X2(t, f) are modeled to be produced by a super-

position of plane waves emitted by the desired speaker and (spher-

ically isotropic) diffuse noise capturing background noise and late

reverberation. Based on this signal model, the spatial coherence

function of the diffuse noise is given as

Γn(f) =
sin(2πf d

c
)

2πf d

c

, (1)

where d is the microphone distance and c is the speed of sound. To

extract spatial diffuseness features, we estimate the auto- and cross-

power spectra of the microphone signals

Φ̂xpxq
(t, f) = λΦ̂xpxq

(t, f) + (1− λ)Xp(t, f)X
∗

q (t, f), (2)

where q = 1, 2, p = 1, 2 and λ = 0.68 [24]. This is followed by

calculating the spatial coherence

Γ̂x(t, f) =
Φ̂x1x2

(t, f)
√

Φ̂x1x1
(t, f)Φ̂x2x2

(t, f)
, (3)

which is used to estimate the coherent-to-diffuse power ratio (CDR)

CDR(t, f) = g
(

Γn(f), Γ̂x(t, f)
)

. (4)

Various CDR estimators g(·) have been proposed in the literature

(see overview article [24]), where we choose (25) in [24] as it has

been shown to be unbiased and not requiring direction of arrival

(DOA) information. As the CDR is equivalent to a signal-to-noise

ratio for a spatial signal model, we reduce the dynamic range by per-

forming a mapping between 0 and 1. This leads to the diffuseness

DIFF(t, f) = (1 + CDR(t, f))−1,

which is weighted by a Mel filterbank (80 Mel bands) to determine

the spatial diffuseness features. Note that this 2-channel feature ex-

traction is adapted to a 6-channel scenario in Section 4 by selecting a

reference microphone and averaging the time-frequency dependent

diffuseness (2.1) estimated for 5 different microphone pairs.

It should be highlighted that filterbank and spatial diffuseness

features are extracted online using the same Mel weighting and that

each spatial diffuseness feature thus provides additional environ-

mental information to a corresponding filterbank feature [24].

2.2. CNN-based acoustic model

As inputs of the CNN-based acoustic model in Fig. 1, we create fea-

ture maps of size 19× 80 by appending the 80 filterbank and spatial

diffuseness features of the current time frame with the respective

features from 9 previous and successive time frames.

In the following, we provide details about the CNN-based acous-

tic model in Fig. 1. Note that the topology and parameters of this

acoustic model have been optimized for the CHiME-3 task using

filterbank features at the input. By doing so, we provide a strong

baseline ASR system for the experimental evaluation in Section 4.

A convolutional layer transforms N input feature maps to M output

feature maps using N · M matrices Wn,m of size P × Q and M

bias values bm, where m = 1, ...,M and n = 1, ..., N . As a conse-

quence of this, each convolutional layer is characterized by the set

of parameters {N,M,P,Q} and denoted as

Conv(N,M,P ×Q).

Fig. 1: Overview of the CNN-based neural network with context

adaptation in the fifth convolutional layer.
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Fig. 2: Acoustic features for one speech utterance recorded with a

2-channel microphone array in a noisy and reverberant environment

(Filterbank features in (a) extracted from one microphone signal).
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As illustrated for the special case of Conv(2, 2, 2× 5) in Fig. 3, one

element ym of the mth output feature map is calculated as follows:

ym = σ(zm), zm =
N
∑

n=1

〈Wn,m,Xn〉F + bm, (5)

where Xn is a local input patch of size P ×Q and σ(·) denotes the

sigmoid function. Furthermore, the Frobenius inner product 〈·, ·〉F
in (5) sums up the element-wise product of two equally-sized matri-

ces and thus realizes one instant of the two-dimensional convolution

operator for the current input patch Xn (shifted during convolution).

As illustrated in Fig. 1, the CNN-based acoustic model additionally

contains pooling layers

Pooling(P ×Q)

to extract the maximum value of local input patches of size P ×Q.

Furthermore, fully-connected layers

Full(L,R)

include an affine transformation and L hidden nodes with sigmoid

(R = 0) or softmax (R = 1) nonlinearities. As outputs of the CNN-

based acoustic model in Fig. 1, we estimate the posterior likelihoods

of 5976 context-dependent HMM states.

2.3. Context-adaptive convolutional layer

The fundamental idea of context adaptation is to factorize one or

several layers of the acoustic model into K sub-layers representing

different speaker or environmental characteristics. In more details,

the context-adaptive convolutional layer consists of K sets of weight

matrices and bias terms {Wn,m,k, bm,k}, where k = 1, ..., K , to

calculate the input of the sigmoid function in (5) following

zm =
K
∑

k=1

αk

(

N
∑

n=1

〈Wn,m,k,Xn〉F + bm,k

)

. (6)

Note that this can be rewritten into (5) by exploiting the linearity of

the operators in (6) and the substitution

Wn,m =
K
∑

k=1

αkWn,m,k , bm =

K−1
∑

k=0

αkbm,k. (7)

As a consequence, the factorization leads to one convolutional layer

depending on the factor class posterior probabilities αk . To estimate

the weights αk, we transform the spatial diffuseness features of the

current context window (±9 time frames) through a neural network

with 3 fully-connected layers of 20 nodes (this topology has been

optimized for the CHiME-3 task). The resulting context-adaptive

CNN-based acoustic model is shown in Fig. 1.

Fig. 3: Convolutional layer Conv. (2, 2, 2× 5).

3. RELATION TO PRIOR WORK

The spatial diffuseness features have been investigated for DNN-

based acoustic models in [14] and can be extracted online from

multi-channel speech recordings (see Section 2): the diffuseness

is estimated in the STFT domain and weighted by the same Mel

filterbank used for the filterbank feature extraction. This leads to

a similar time-frequency structure of filterbank and spatial diffuse-

ness features (compare Figs. 2a) and 2b)), which is well-suited for

CNN-based acoustic models extracting local information from time-

frequency patterns [20, 21]. The properties of the spatial diffuseness

features are different compared to previously-used auxiliary features

like i-vectors [12,15,19], speaker codes [25,26], per-utterance noise

estimates [13, 17] or bottleneck features [18, 27]. To the best of our

knowledge, spatial diffuseness features have not been exploited for

CNN-based acoustic models so far.

The concept of context-adaptation for CNN-based acoustic models

has been proposed and compared to different factorization tech-

niques in [23]. In contrast to this previous work, we focus on

environmental robustness instead of speaker adaptation. Further-

more, using auxiliary features at the acoustic-model input and at

the same time for context-adaptation has not been considered so far

and thus represents a new concept for adapting CNN-based acoustic

models.

4. EXPERIMENTS

4.1. Experimental setup

The experimental results are produced using a trigram language

model and the CHiME-3 corpus consisting of simulated data and

real recorded speech of different speakers talking to a tablet device

in four different environments: “BUS” (bus), “CAF” (cafeteria),

“PED” (pedestrian) and “STR” (street). The multi-condition training

set consists of 1600 real and 7138 simulated utterances (∼ 18 hours

of speech). We perform the parameter optimization on the devel-

opment set (3280 utterances) and realize the final scoring using the

evaluation test set (2640 utterances).

Acoustic-model training: The first layer of the auxiliary network

is initialized to perform an arithmetic averaging over 4 neighboring

elements in each 80-dimensional feature vector and the context win-

dow of 19 frames. This initialization has shown to be beneficial for

mapping the 19×80 diffuseness feature map to a very small number

of 20 hidden nodes in the first layer of the auxiliary network. Be-

sides this, the context-adaptive acoustic model in Fig. 1 is randomly

initialized and directly fine-tuned (cross-entropy criterion) without

pretraining. For this, we used a batch size of 128, a momentum

of 0.9 and an initial learning rate of 0.08 which was gradually de-

creased in the 25 training epochs when the frame accuracy did not

improve for the cross-validation set. Furthermore, dropout regular-

ization was used for the fully connected layers at the output of the

acoustic model in Fig. 1.

Front-end enhancement: We evaluate the recognition accuracy

achieved by the proposed context-adaptive CNN-based acoustic

model using filterbank features extracted from (a) a reference micro-

phone signal or (b) the output of the acoustic front-end in [2], where

the latter includes weighted prediction error (WPE)-based derever-

beration and minimum variance distortionless response (MVDR)

beamforming1. It should be mentioned that the results here are not

directly comparable with our system submitted to the CHiME-3

1Note that the speech enhancement front-end we use in this paper is not
using online processing.
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Table 1: WER scores (in %) for the real recordings of the CHiME-3 development and evaluation test set obtained with the CNN-based

acoustic model in Fig. 1. We compare the recognition accuracy achieved by exploiting spatial diffuseness features in addition to the filterbank

features as acoustic-model inputs and at the same time as auxiliary information for context adaptation.

Input features Context adaptation Front-end
Dev set Eval set

Avg. Avg. BUS CAF PED STR

Filterbank features - - 11.5 19.4 26.8 20.7 16.1 14.2

Filterbank + Spatial diffuseness features - - 9.9 16.6 22.9 15.3 14.7 13.5

Filterbank + Spatial diffuseness features X - 9.7 15.9 22.0 14.6 14.0 13.2

Filterbank features - X 7.3 12.2 17.6 11.1 10.2 9.9

Filterbank + Spatial diffuseness features - X 7.3 11.4 14.9 10.0 10.6 10.3

Filterbank + Spatial diffuseness features X X 7.1 10.7 14.3 9.5 9.6 9.3

challenge [2] because we use a simpler system that, e.g., does not

use recurrent neural network (RNN)-based language-model rescor-

ing or two-pass unsupervised acoustic-model adaptation.

For both baseline systems (with and without front-end speech en-

hancement), the diffuseness features are estimated online from the

recorded microphone signals (see Section 2.1) and applied for per-

forming the acoustic-model adaptation illustrated in Fig. 1. Note that

we employ the same feature extraction (and thus acoustic front-end

signal enhancement) during training and testing.

4.2. Experimental results

Besides the topology of the auxiliary network in Fig. 1, we optimized

the parameters for the factorization, where the best performance was

achieved using the uppermost convolutional layer for context adap-

tation (as shown in Fig. 1). Furthermore, we noticed that the recogni-

tion accuracy slightly improves when using K = 3 instead of K = 2
classes in (6).

Results without acoustic front-end: The word error rate (WER)

scores achieved without front-end speech enhancement are shown

in the upper part of Table 1. It is obvious that appending spatial

diffuseness features to the filterbank features consistently improves

the recognition accuracy of the CNN-based ASR system. Moreover,

simultaneously performing context adaptation leads to further reduc-

tions of the WER scores. Note that incorporating spatial diffuseness

features is especially effective in the closed environments of cafete-

ria and bus.

Results with acoustic front-end: The recognition accuracy

achieved using front-end signal enhancement for extracting fil-

terbank features is illustrated in the lower part of Table 1. We notice

that exploiting spatial diffuseness features as additional input fea-

tures leads to a reduction of the WER scores in the cafeteria and

bus environment. Interestingly, the slightly decreased recognition

accuracy for the pedestrian and street environment is compensated

by simultaneously exploiting spatial diffuseness features for context

adaptation. This confirms the proposed concept for adapting CNN-

based acoustic models by exploiting spatial diffuseness features as

acoustic-model inputs and at the same time for context adaptation.

Finally, it should be emphasized that the spatial diffuseness is

a characteristic of the sound field [14]. As a consequence, the pro-

posed context-adaptive CNN-based acoustic model in Fig. 1 can be

applied for different microphone array geometries [28] and arrays

consisting of directional microphones [29], as long as (at least) one

additional microphone is placed in an appropriate distance to the ref-

erence microphone [24].

5. FUTURE WORK

The proposed context-adaptive CNN-based acoustic model has been

experimentally verified using matched conditions between training

and testing. It is of great interest to exploit spatial diffuseness fea-

tures for ASR systems using training on unprocessed speech and

front-end signal enhancement during decoding [2]. For this purpose,

the impact of the acoustic front-end on the diffuse noise field has to

be taken into account [30].

In this paper, we exploit the same context window of spa-

tial diffuseness features as acoustic-model inputs and for context-

adaptation. It appears to be promising for future work to exploit a

larger temporal window for context adaptation, e.g., by including a

recurrent layer into the auxiliary network of Fig. 1.

In our previous work on coherence-based spectral enhance-

ment [31], we experienced that exploiting DOA-dependent instead

of DOA-independent CDR estimation in (4) leads to an improved

recognition accuracy of a DNN-based ASR system. It seems in-

tuitive that combining the advantage of different CDR estimators

further increases the effectiveness of spatial diffuseness features in

improving the performance of CNN-based ASR systems.

Finally, it is of interest to incorporate a neutral cluster [32] into

the factorization in (6) to further increase the robustness to unseen

acoustic conditions.

6. CONCLUSIONS

This paper presents a new concept for the online environmen-

tal adaptation of CNN-based acoustic models: spatial diffuseness

features are extracted online from the recorded microphone sig-

nals and simultaneously exploited as acoustic-model inputs and to

perform context adaptation. Following the latter strategy, one con-

volutional layer is factorized into several sub-layers to represent

different acoustic conditions. Each sub-layer is associated with a

factor class posterior probability estimated by transforming spatial

diffuseness feature through a small neural network. The proposed

context-adaptive CNN-based acoustic model is experimentally ver-

ified using the real recordings of the CHiME-3 corpus. It is shown

that exploiting spatial diffuseness features as auxiliary information

at the acoustic-model input and for context adaptation consistently

improves the recognition accuracy of a baseline ASR system with

and without front-end signal enhancement.
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