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ABSTRACT

A multi-stream framework with deep neural network (DNN) classi-
fiers is applied to improve automatic speech recognition (ASR) in
environments with different reverberation characteristics. We pro-
pose a room parameter estimation model to establish a reliable com-
bination strategy which performs on either DNN posterior probabil-
ities or word lattices. The model is implemented by training a multi-
layer perceptron incorporating auditory-inspired features in order
to distinguish between and generalize to various reverberant con-
ditions, and the model output is shown to be highly correlated to
ASR performances between multiple streams, i.e., relative perfor-
mance monitoring, in contrast to conventional mean temporal dis-
tance based performance monitoring for a single stream. Compared
to traditional multi-condition training, average relative word error
rate improvements of 7.7% and 9.4% have been achieved by the pro-
posed combination strategies performing on posteriors and lattices,
respectively, when the multi-stream ASR is tested in known and un-
known simulated reverberant environments as well as realistically
recorded conditions taken from REVERB Challenge evaluation set.

Index Terms— Reverberant speech recognition, multi-stream,
posteriors, performance monitoring, weighted system combination

1. INTRODUCTION

Current automatic speech recognition (ASR) systems provide good
performance in many scenarios, especially for matched training and
test conditions. On the other hand, performance often severely de-
grades when additive noise or reverberation result in mismatched
data, which remains to be a challenging topic for the speech commu-
nity [1, 2]. As one approach to this challenge, multi-stream frame-
works have been proposed [3, 4], which usually involve independent
classifiers trained on different data representations (e.g., multi-band
frequency processing, data from different recording environments or
with different feature extraction schemes) with a subsequent combi-
nation of potentially complementary decisions to achieve an optimal
result. One crucial issue in multi-stream frameworks is the combina-
tion strategy, which consists ofwhat to combine, for instance on the
basis of feature recombination [5], hidden Markov model (HMM)
state levels [3], neural network posterior probabilities [6], or (lattice
or word) hypothesis level [7, 8], andhow to combine, e.g. frame-
wise average of all streams [4, 9] or applying stream-specific weights
determined by performance monitoring [10, 11]. In this paper we
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focus on combination strategies operating on the deep neural net-
work (DNN) posterior probabilities as well as on word lattices from
multiple streams. Specifically, state-of-the-art DNN-based ASR [12]
is used to create our multi-stream framework; a combination can
be performed either on the DNN posteriors or on the individual de-
coded/transcribed result represented as lattice. In general, recogni-
tion performance can be increased by assigning higher weights to
more reliable streams [13, 14], and therefore it is highly valuable to
be able to monitor the classifier performance on unknown test data
in order to determine such combination weights.

There are several ways for performance monitoring of ASR
systems so that stream-specific weights can be derived. Based on
the observation that high noise levels often increase the entropy of
DNN posterior distributions, inverse entropy has been introduced as
a means of performance monitoring, in which streams with lower
entropy are assigned higher weights [6]. A statistical analysis of
phoneme posteriors between training and test data has been con-
ducted in [15], where large divergence between these two statistics
indicate possible degradation of the classifier performance. A mean
temporal distance (MTD) measure of phoneme posteriors was pro-
posed in [11], which is based on the intuition that distantclean
posterior vectors will be rather different (since they are likely to
belong to different phoneme classes), while the difference should
be smaller for noisy vectors. This has later been applied for stream
selection in multi-stream ASR [16, 17]. Alternatively, autoencoders
have been employed in [18] to learn characteristics of the training
data, and the reconstruction error obtained with test data was used
to monitor the performance of the corresponding classifier.

The previously mentioned research is focusing onabsolute
performance monitoring of one specific stream classifier, and the
relative comparisons between streams are implicit. Consequently,
additional rules are required to determine the combination weights
for a multi-stream ASR framework. In order to provide anexplicit
weighting knowledge dedicated for the combination strategy in a
multi-stream system, in this study we propose a relative perfor-
mance monitoring which considers all streams at once. Instead of
exploring noise robustness, we investigate the applicability of multi-
ple streams in different reverberant situations with minor stationary
additive background noise. This was motivated by our previous
research in which room characteristics were reliably estimated
via a discriminative multi-layer perceptron (MLP) incorporating
auditory-inspired spectro-temporal features to predict room parame-
ters (such as reverberation timeT60) [19], for which the MLP output
was found to be correlated to ASR performance [20]. We refer to
this approach as ROom Parameter Estimator (ROPE) model and
test its applicability in DNN stream weighting to obtain robustness
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against reverberation. The ROPE algorithm was shown to accurately
classify different reverberation effects and to generalize to unseen
data [21]. Hence, we assume that the posteriors of the ROPE model
output correlate with the relative performances between all DNN
streams given test data, which can be utilized straightforwardly
for combination weights in a multi-stream DNN/HMM framework
trained on several specific reverberation conditions.

The remainder of this paper is organized as follows: Section 2
introduces the proposed multi-stream ASR system that employs the
ROPE algorithm for relative performance monitoring of all streams.
The combination strategies on DNN posterior probabilities and word
lattices are briefly described in Section 3. The experimental pro-
cedure is outlined in Section 4 and the results with discussion are
presented in Section 5 before Section 6 concludes the paper.

2. MULTI-STREAM ASR FRAMEWORK

As depicted in Fig. 1, each DNN classifier produces one stream,
which is trained on a specific reverberant condition represented by
convolving with a specific room impulse response (RIR) as well as
adding the stationary background noises. Traditional mel-filterbank
(FBANK) features are fed to DNNs and the posterior probabilities
are computed from each DNN stream by forward-passing a test ut-
terance that are usually subject to the common performance moni-
toring approaches e.g. MTD method [11]. In sequence, the lattices
are generated based on the posteriors during the HMM decoder [22]
and the final recognized transcription will be used for evaluation.
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Fig. 1. System structure of the multi-stream ASR framework with
M expert DNNs, each trained on a specific reverberant condition.

Assuming that DNNs share the same decision tree for the
context-dependent tied states during training, the posterior prob-
abilities given a test data can be combined [4] in order to obtain
better acoustic log-likelihoods before decoding. Besides this, it is
also typical to perform combination on hypothesis level to obtain
complementary knowledge from each stream. Here we investigate
the lattice combination using MBR decoding [7] which was shown
to improve over the traditional system combination methods such as
ROVER [8] or CNC [23]. Lattice combination allows combination
of systems with different decision trees but at the cost of multi-
ple decoding operations compared to posterior combination which
needs only one decoding operation.

Rather than assigning equal combination weights to all streams
which might yield mediocre results, we propose the ROPE model
to determine the combination weights that are correlated with the

stream performances. An overview of the ROPE processing scheme
is depicted in the upper panel of Fig. 1. Diagonal 2D Gabor fea-
tures [19] are extracted from the reverberant signals and an MLP is
trained to map these auditory-inspired inputs to differentM classes,
where each class represents one ofM specific reverberant condi-
tions. With this procedure, the MLP output probabilities of each test
item can be interpreted as a measure of similarity of the acoustic test
condition and the reverberated room conditions covered by theM
expert DNNs. We test if the classification output is a good predictor
for room-dependent stream selection by using the classification re-
sult directly as stream weights. The MLP generates one estimate per
time step, i.e., a frame-based estimate is obtained. The utterance-
based estimate is derived from this by simple temporal averaging of
the MLP output posterior probabilities.

3. COMBINATION STRATEGY

Since DNN posteriors are in the frame domain, both frame-based
and utterance-based mode can be applied for posterior combination.
LetPm(s, t) denote themth DNN posterior matrixPm at the HMM
states and time framet, andwm(t) be the corresponding combina-
tion weight. The combined posteriorsP can be represented as the
sum over allM weighted posteriors,

P (s, t) =
M∑

m=1

wm(t)Pm(s, t) . (1)

Regarding the weight vectorw(t) = [w1(t), . . . , wM (t)], two dif-
ferent approaches for selection can be tested: (a) a weighting of all
streams, where

∑
M

m=1
wm(t) = 1, and (b) a winner-takes-all strat-

egy, i.e.,wm(t) = 1 if m = argmaxwm(t), ∀m, elsewm(t) = 0,
which is effectively a stream-selection scheme (as applied in [17]).

Similarly, the combined latticeL for utterance-based processing
can be written as

L =
M∑

m=1

wm Lm , (2)

wherewm denotes the utterance-based weight of themth stream.
Note that the total cost of all paths in the individual latticeLm will
be removed before the union, and a sequent MBR decoding [7] is
applied to achieve the weighted system combination.

4. EXPERIMENTAL SETUP

4.1. Speech Data

We use the WSJCAM0 British English corpus [24] as database of
clean (anechoic) speech, which contains 7861 utterances for train-
ing and another 363 for test at a sampling rate of 16 kHz. In order
to create the expert DNN streams which represent various reverber-
ant conditions, 6 realistic recorded RIRs were chosen to generate
the training sets (convolved with clean speech), which cover typical
room sizes (small, medium and large) and speaker-to-microphone
distances (near and far) inspired by the REVERB challenge set-
tings [1]. The clean condition training (cln) is generated by using
the clean speech, and the multi-condition training (mc) involves all
6 RIRs convolved with the same amount of clean speech data for
fair comparison. In addition, an extended multi-condition training
set (mc-ext) is generated by including all speech data from 6 expert
training sets, which can be considered as an extreme baseline pre-
sumably since an extension of training data could further improves
DNN classification scores [25]. In order to test the applicability of
the proposed multi-stream system to various reverberant conditions,
we use 4 test sets: Set A contains 6 types of test conditions, from the
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chosen 6 specific RIRs used for stream training to evaluate matched
training-test conditions. Set B includes 6 additional reverberant con-
ditions, with the respective RIRs recorded in the same room as used
for training/Set A but at different positions, which can be consid-
ered as mild mismatched training-test conditions. Set C includes
further 6 reverberant conditions with the respective RIRs recorded
in different rooms from Set A or B, in order to evaluate completely
mismatched conditions. Real recordings from the REVERB chal-
lenge evaluation set (Set Real) are also adopted to demonstrate the
effectiveness of the proposed system as well as the generalization of
the proposed relative performance monitoring. Note that the corre-
sponding background noises are added with a signal-to-noise-ratio
of approx. 20 dB. Fig. 2 displays the acoustic parameters and labels
of the RIRs employed by all test conditions in the form categorized
by reverberation timeT60 and direct-to-reverberant ratioDRR.
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4.2. ASR and Performance Monitoring

Following the ASR training procedure in our previous study [25], we
used FBANK features (40 dimension) with a context window length
of 11 frames as DNN input and an auxiliary GMM/HMM system
was trained using MFCC features on clean condition data, result-
ing in 2090 dimensional context-dependent triphone states as DNN
output. The text prompts of the utterances are based on WSJ 5K
corpus [26], from which a trigram language model was generated.

Auditory-inspired diagonal 2D Gabor features (600 dimension)
are used as MLP input in the ROPE algorithm. The optimal number
of hidden units was estimated based on the amount of training data
and set to 8192 units, and the number of output neurons corresponds
to the number of room parameter classes (and consequently DNN
streams, i.e.M = 6). For comparison, we employed the MTD
method [11] for performance monitoring which evaluates the mean
cumulative divergence between posterior probabilitiesPm(s, t).
However, it is only applied to a single stream and the combination
weights for all streams are required to be further determined. As
suggested in [11, 16], we used

wm =
1/Dm∑

M

m=1
1/Dm

(3)

as the combination weights whereDm denotes the absolute differ-
ence between the MTD of all training data of themth stream and
the MTD of the given test utterance. The cumulative range is cho-
sen from 200 ms to 800 ms in steps of 50 ms, with all frames of
one utterance being used as each center frame [11, 16, 17], i.e.,wm

is the utterance-based weight for Eq. (1)-(2). Further, we also ex-
plored the frame-based MTD here by applying a window of 800 ms
to the posteriors, so that the temporal context to computeDm(t) for
frame-based weightswm(t) is limited to [t− 800ms, t], instead of
the whole utterance. As a result, 800 ms delay will be introduced in
frame-based mode, which is comparable to the temporal Gabor filter
length of 790 ms (also refer to [19, 21]) used in ROPE.

5. RESULTS

5.1. Performance Monitoring

Fig. 3 (a) shows the absolute Pearson’s correlation coefficients be-
tween the word error rates (WERs) of each test set from 6 expert
streams and the relative performance monitoring represented by
the utterance-based combination weightswm derived by MTD and
ROPE. For Sets A, B, and C, ROPE leads to much higher correlation
coefficients than MTD, while both methods provide similarly high
coefficients (above 0.8) for Set Real. This is also reflected by the
three examples shown in Fig. 3 (b), where for a matched test set
such as ’r1n’, ROPE is capable of selecting the best stream with
a very high probability, but on the other hand, might decrease the
correlation since other probabilities (which are close to zero) may be
not proportional to WERs of the corresponding streams. Meanwhile,
MTD tends to yield nearly uniform distributed stream weights with
similar Dm in Eq. (3), resulting in rather low correlation to WERs
(which should result in less reliable performance monitoring). It
seems that the MTD-based correlation increases with the increasing
reverberation in the test conditions, e.g. from ’r1n’ to ’u3n’ to ’far’,
which is outperformed by ROPE.
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Fig. 3. (a) Absolute Pearson’s correlation coefficients between
WERs of multiple streams and the utterance-based stream weights
wm derived by MTD and ROPE; (b) three correlation examples with
’r1n, u3n, far’; (c) MTD basedabsolute performance monitoring for
each of all 6 expert streams with correlation values in parentheses.

When considering absolute performance monitoring in a sin-
gle stream, MTD produces high correlations with WERs (as ex-
pected [11]) as shown Fig. 3 (c). LowerDm in the MTD method
means closer performance to the best result in its specific stream,
however, it does not always guarantee better performance if com-
pared to other streams for relative performance monitoring. For
instance, stream ’r3f’ always yields lowerDm, i.e. higherwm in
Eq. (3), which is specially preferable to test conditions with simi-
larly high reverberation such as Set Real, but it is not a good option
for other conditions with low reverberation in Set A, B, C. This ex-
plains the high correlations for Set Real and lower correlations for
Set A, B, C in Fig. 3 (a).

5.2. ASR Performance

The single-stream ASR systems perform the best between 6 expert
streams when test and training data are matched, as listed for Set A
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Table 1. ASR WERs on different training and test reverberation conditions for single- and multi-stream systems that take into account 6
single streams and employ different combination strategies including a DNNposterior probability combination and MBR lattice combination.
The WER of the clean test signal with clean condition training model is 4.40%.

Training\ Test
Set A Set B Set C Set Real

r1n r1f r2n r2f r3n r3f avg. s1n s1f s2n s2f s3n s3f avg. u1n u1f u2n u2f u3n u3f avg. near far avg.

S
in

gl
e-

st
re

am

cln 6.73 15.35 20.09 59.11 32.42 78.89 35.43 7.86 11.43 26.26 57.46 50.87 78.91 38.79 7.27 15.30 17.61 60.43 26.29 75.74 33.69 73.01 74.88 73.94
mc 5.47 6.27 6.51 9.33 7.66 12.26 7.91 5.61 6.27 6.71 9.72 8.91 14.38 8.60 5.54 6.83 8.39 16.77 8.86 21.21 11.26 31.04 32.38 31.71
mc-ext 4.76 5.20 5.69 7.76 6.27 9.88 6.59 4.81 5.59 5.91 8.11 7.25 11.06 7.12 4.88 6.12 7.06 14.65 8.10 18.70 9.91 31.81 30.01 30.91
r1n 4.73 8.55 13.96 54.23 25.44 76.22 30.52 5.08 7.13 17.47 53.74 42.01 76.74 33.69 4.93 9.00 11.05 50.33 14.84 67.68 26.30 63.78 66.17 64.97
r1f 5.74 5.44 11.37 32.90 19.33 60.97 22.62 5.84 5.81 14.11 31.44 31.42 63.68 25.38 5.62 6.96 11.18 38.83 12.82 56.68 22.01 56.50 58.51 57.50
r2n 5.56 7.56 5.86 19.77 7.69 38.91 14.22 7.32 5.79 7.23 18.11 11.30 39.37 14.85 5.66 7.28 8.50 26.16 10.28 38.49 16.06 44.36 43.96 44.16
r2f 10.81 8.96 9.11 9.15 10.16 15.87 10.67 10.66 8.47 8.84 9.99 11.05 17.74 11.12 10.27 10.08 11.76 16.60 12.25 20.97 13.65 29.80 30.49 30.14
r3n 5.83 7.69 6.25 15.96 7.15 27.31 11.69 6.03 7.17 6.83 14.67 8.79 28.93 12.07 6.18 7.79 8.27 22.06 9.16 30.10 13.92 40.02 38.96 39.49
r3f 12.35 11.23 10.81 9.86 11.47 11.05 11.12 12.69 10.67 10.37 10.08 11.64 12.35 11.30 12.10 11.89 12.54 14.65 12.84 18.24 13.71 28.68 29.00 28.84

P
os

te
rio

r
C

om
bi

na
tio

n Sum 5.76 6.62 7.15 13.13 8.72 21.19 10.42 6.03 6.66 8.13 13.45 11.99 23.99 11.70 5.62 7.47 8.66 19.23 9.71 26.17 12.81 33.98 33.46 33.72
Product 5.71 6.34 6.71 14.94 8.89 27.95 11.75 5.71 6.44 7.98 14.96 11.76 31.04 12.98 5.61 6.84 8.61 21.51 9.50 30.61 13.78 38.29 39.33 38.81
MTD Fr All 5.88 6.86 6.83 12.33 8.35 16.81 9.51 5.93 6.64 8.03 12.18 10.69 18.58 10.34 6.06 7.45 8.96 18.92 9.67 23.04 12.35 32.55 32.04 32.29
MTD Fr Max 7.49 7.47 8.17 13.16 10.25 15.96 10.41 7.00 7.03 8.83 13.03 12.35 17.33 10.92 7.44 8.05 9.98 19.13 11.71 23.46 13.29 32.67 31.97 32.32
MTD Utt All 6.30 6.76 7.25 10.94 8.45 15.81 9.25 6.15 6.89 8.00 11.62 10.59 17.23 10.08 5.95 7.45 8.98 16.96 9.71 22.07 11.85 30.73 30.22 30.47
MTD Utt Max 9.13 8.54 8.78 10.64 10.18 11.76 9.83 9.44 8.22 9.20 10.50 11.28 12.93 10.26 9.25 9.64 10.76 14.87 12.35 17.92 12.46 28.68 29.10 28.89
ROPE Fr All 4.51 5.44 5.83 9.22 7.06 11.11 7.19 4.95 6.15 7.06 10.52 9.42 13.59 8.61 5.20 6.91 8.45 16.33 9.42 19.31 10.93 29.35 29.41 29.38
ROPE Fr Max 4.61 5.39 5.91 9.03 7.10 11.13 7.19 4.98 6.13 7.06 10.57 9.35 13.77 8.64 5.17 6.84 8.79 17.01 9.66 19.58 11.17 29.51 30.35 29.93
ROPE Utt All 4.71 5.35 5.76 9.37 6.95 11.18 7.22 5.00 6.17 7.05 10.50 9.05 13.70 8.57 5.03 6.83 8.74 16.81 9.33 20.18 11.15 27.12 28.53 27.82
ROPE Utt Max 4.71 5.39 5.88 9.13 7.10 10.99 7.20 5.01 5.81 7.17 10.06 8.79 12.35 8.19 4.88 7.18 10.59 16.38 11.11 19.36 11.58 28.90 29.17 29.03

M
B

R

Equal weights 5.29 6.05 6.23 11.71 7.81 18.50 9.26 5.42 6.22 7.10 11.60 9.79 20.67 10.13 5.30 6.45 8.42 18.13 9.10 23.85 11.87 33.44 33.29 33.36
MTD Utt All 6.27 6.54 6.71 9.71 7.64 12.43 8.21 6.27 6.45 7.22 10.10 9.50 13.74 8.88 6.08 7.15 8.59 14.77 9.55 18.92 10.84 28.04 29.41 28.72
MTD Utt Max 9.01 8.05 8.71 10.32 9.81 11.60 9.58 9.10 8.00 9.20 10.25 10.89 12.57 10.00 9.16 9.55 10.33 14.70 12.04 17.75 12.25 27.85 29.03 28.44
ROPE Utt All 4.52 5.35 5.81 8.79 7.08 10.84 7.06 4.84 5.76 6.69 9.71 8.91 12.26 8.02 4.68 6.61 8.66 15.08 9.03 18.89 10.49 27.08 28.49 27.78
ROPE Utt Max 4.59 5.34 5.88 8.81 7.12 10.86 7.10 4.90 5.79 7.10 9.83 8.78 11.88 8.04 4.78 7.13 10.74 16.20 11.10 19.19 11.52 28.11 29.03 28.57

in Table 1. In general, scenarios never seen during training can still
benefit from expert streams covering similar reverberant conditions,
e.g. the WERs from diagonal positions of Set B and C are smaller
than the performance of the multi-condition system (mc). The ex-
tended multi-condition system (mc-ext) provides even lower WERs
of approx. 1.5% on average, since it generalizes better to unseen data
than ’mc’. However, the improvement for Set Real is rather small,
indicating that the effectiveness might be limited by solely extending
training data size for improving the ASR robustness against specific
reverberant situations, particularly for severely mismatched cases.

For the posterior combination strategy in multi-stream systems,
sum and product rules with equal weights [4] provide mediocre re-
sults compared to the individual stream performance, and in general,
the sum rule performs better than the product rule (which can be con-
sidered as sum rule in the logarithm domain), particularly in high
reverberant conditions such as ’s3f, u3f’ and Set Real. When the
combination weights derived from relative performance monitoring
are available with two modes (utterance-based ’Utt’ and frame-based
’Fr’) and two selection rules (all-stream-combine ’All’ and winner-
takes-all ’Max’), a posterior combination becomes more effective
and absolute average WERs are reduced by 1.3% and 3.2% when
applying MTD and ROPE, respectively. For the MTD method, ’Utt’
generally surpasses ’Fr’ due to the insufficient temporal context for
’Fr’ (800 ms vs. whole utterance) to accurately calculateDm for
each frame. ’Max’ usually leads to better performance for high re-
verberant test sets while ’All’ tends to achieve similar results as sum
rule for other low reverberant conditions due to nearly uniform dis-
tributed weights as exemplified in Fig. 3 (b).

In contrast, ROPE based combination weights are capable of im-
proving the ASR performance in all four modes, and performances
of almost all the test conditions are close or even superior to the
corresponding best result from single streams. Specifically, ’Fr’ per-
forms similarly as ’Utt’, indicating that the proposed ROPE method
is applicable in real-time multi-stream ASR. ’Max’ seems to give
slightly better results than ’All’ when matched or mildly mismatched
stream exists such as for Sets A and B. In other words, combinations
with potentially detrimental streams might even degrade the final
performance. On the other hand, if completely unseen scenarios are
tested, ’All’ generally surpasses ’Max’ since high weights will be
assigned to the reliable streams (with complementary knowledge)
due to the generalization of ROPE. Their combination would yield
a result close to the best one from single streams (e.g. ’u1f, u2f’) or

even better, e.g., Set Real with absolute WER reduction of 1% on
average with ’Utt All’, indicating the potential of posterior combi-
nation being capable of extracting complementary knowledge from
different streams. Meanwhile, ’Max’ might increase the risk of se-
lecting a similar stream which however does not produce the lowest
error, particularly in utterance-based processing, e.g. in ’u2n, u3n’.

The same trend can be observed for MBR lattice combination, in
which mediocre results are obtained when equal weights are applied.
Also, weighted combination is effective to improve the multi-stream
performance, where in general, ’All’ behaves better than ’Max’ and
ROPE outperforms MTD by absolute 1-2% on average. It is also
interesting to observe that lattice combination performs only slightly
better than posterior combination strategy, indicating that it might
be more preferable to explore combination strategies on DNN pos-
teriors due to its low complexity with only one decoding operation
while multiple decoding operations are required to perform lattice
combination. Furthermore, the multi-stream system with ’Utt All’
incorporating ROPE achieves an absolute WER reduction of 1.05%
and 0.15% on average compared to ’mc’ and theoracle best single
stream, respectively. Particularly for Set Real, the proposed sys-
tem even outperforms ’mc-ext’ by absolute 3.13%, albeit WERs are
0.65% higher on average for simulated test Set A, B, C.

6. CONCLUSIONS

In this paper we investigated the effectiveness of a multi-stream
DNN/HMM framework for ASR systems in various reverberant en-
vironments. In order to determine reliable weights for combination
based on either DNN posteriors or word lattices, a dedicated relative
performance monitoring was proposed based on a room parame-
ter estimator (ROPE), which exhibits higher correlations of WERs
for multiple streams than the conventional mean temporal distance
based performance monitoring with an additional rule for weight
determination. This resulted in consistent improvements in known
and unknown reverberant scenarios, outperforming the baseline sys-
tems with equal weights and the mean temporal distance method for
stream weighting or selection. We also showed that the proposed
system provided better performance than a multi-condition baseline
and a very competitive extended multi-condition baseline particu-
larly for realistic evaluation data from REVERB Challenge. Further,
although lattice combination generally performed slightly better,
posterior combination showed its potential for real-time applications
(frame-wise) while providing a low complexity during decoding.
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