
IMPROVED�CEPSTRA�MINIMUMMEANSQUAREERROR�NOISE�REDUCTION�
ALGORITHM�FOR�ROBUST�SPEECH�RECOGNITION�

 
Jinyu Li, Yan Huang, and Yifan Gong

 
Microsoft Corporation, One Microsoft Way, Redmond, WA 98052, U.S.A. 

 
ABSTRACT�

In the era of deep learning, although beam-forming multi-channel 
signal processing is still very helpful, it was reported that single-
channel robust front-ends usually cannot benefit deep learning 
models because the layer-by-layer structure of deep learning models 
provides a feature extraction strategy that automatically derives 
powerful noise-resistant features from primitive raw data for senone 
classification. In this study, we show that the single-channel robust 
front-end is still very beneficial to deep learning modelling as long 
as it is well designed. We improve a robust front-end, cepstra 
minimum mean square error (CMMSE), by using more reliable 
voice activity detector, refined prior SNR estimation, better gain 
smoothing and two-stage processing. This new front-end, improved 
CMMSE (ICMMSE), is evaluated on the standard Aurora 2 and 
Chime 3 tasks, and a 3400 hour Microsoft Cortana digital assistant 
task using Gaussian mixture models, feed-forward deep neural 
networks, and long short-term memory recurrent neural networks, 
respectively. It is shown that ICMMSE is superior regardless of the 
underlying acoustic models and the scale of evaluation tasks, with 
25.46% relative WER reduction on Aurora 2, up to 11.98% relative 
WER reduction on Chime 3, and up to 11.01% relative WER 
reduction on Cortana digital assistant task, respectively.  
 

Index Terms cepstra minimum mean square error, noise
robustness, deep neural networks

1.�INTRODUCTION�
Environment robustness in automatic speech recognition (ASR) 
remains a difficult problem despite many years of research 
[1][2][3][4][5][6][7][8]. The deep learning based acoustic model 
technologies [9][10][11][12][13][14] bring new challenges to 
conventional noise-robustness technologies which are very well 
studied in the Gaussian mixture model (GMM) era. The robust front-
end is a necessary component to maintain the accuracy of the 
traditional GMM-based ASR recognizer in noisy environments. 
However, for the deep learning based ASR systems, although beam-
forming multi-channel signal processing is still very helpful 
[15][16][17][18], it was reported that single-channel robust front-
ends cannot benefit deep learning models [19][20] in multi-style 
training setups. With the excellent modeling power of deep neural 
networks (DNNs), the DNN-based acoustic models can easily match 
state-of-the-art performance of GMM systems without any explicit 
noise compensation. This is because its layer-by-layer structure 
provides a feature extraction strategy that automatically derives 
powerful noise-resistant features from primitive raw data for senone 
classification, resulting in good noise-invariance property  [8][21].  

In this study, we show that the single-channel robust front-end 
is still very beneficial to deep learning models as long as it is well 
designed. Particularly, we work on improving a robust front-end 
named cepstra minimum mean square error (CMMSE) [22] which 

is very effective in dealing with noise when using the GMM-based 
acoustic models. However, it was shown that there was almost no 
improvement [19] from the standard front-end on a noise-robustness 
task Aurora 4 [23]. We elaborate how the components of CMMSE 
can be modified so that this front-end method can be redesigned into 
a powerful one. The improvement includes a better voice activity 
detection component which helps noise spectrum estimation, a 
refined prior SNR estimation for converged filter-bank gain, better 
gain smoothing method and two-stage processing to further clean 
the residual noise. We call the new method as improved CMMSE 
(ICMMSE) and evaluate it on three tasks. On the standard Aurora 2 
task [24] with GMM acoustic models, ICMMSE gets 25.46% 
relative WER reduction. On the Chime 3 task  [25] with feed 
forward DNN acoustic models, ICMMSE gets up to 11.98% relative 
WER reduction. On the product-scale Microsoft Cortana digital 
assistant task with long short-term memory (LSTM) recurrent neural 
networks (RNNs) acoustic models, the improvement is up to 
11.01%. Hence, we establish that ICMMSE is superior regardless of 
the underlying models and evaluation tasks.  

 
2.�CEPSTRA�MINIMUM�MEAN�SQUARE�ERROR�

 
The cepstra minimum mean square error (CMMSE) algorithm was 
proposed by Yu et al. [22].  It distinguishes from the MMSE 
enhancement in log spectral amplitude  [26]  in that it develops a 
suppression rule that applies to the outputs of the Mel filter-banks in 
the power spectrum domain and to Mel-frequency cepstrum 
coefficients (MFCC) directly. Thus, the enhancement is directly 
targeted to the features for ASR. The solution to CMMSE for each 
element of the dimension-wise MFCC is the conditional expectation ܿ̂௫(ݐ, ݇) = ,ݐ)൛ܿ௫ܧ ݇)ห௬(ݐ)ൟ = ∑ ܽ, ൛logܧ ݉௫(ݐ, ܾ) ,ൟ(ݐ)௬|

 (1) 
where ܿ௫(ݐ, ݇) is the k-th MFCC coefficient at frame t, ܾ is the Mel 
filter-bank index, ܽ, are the discrete cosine transform coefficients, ௫(ݐ) and ௬(ݐ) are the output of the Mel filter-bank in the power-
spectrum domain for the clean and noisy speech, respectively.     

Given the additive assumption for speech and noise signal, 
together with the weak independent assumption between Mel filter-
banks, Eq. (1) can be simplified as ܿ̂௫(ݐ, ݇) ≈ ∑ ܽ, ,ݐ)൛log ݉௫ܧ ܾ)|݉௬(ݐ, ܾ)ൟ.  (2) 
Then, the problem is reduced to finding the log-MMSE estimator of 
the Mel filter-  ෝ݉௫(ݐ, ܾ) ≈ exp൫ܧ൛log ݉௫(ݐ, ܾ) |݉௬(ݐ, ܾ)ൟ൯.  (3) 

In the following, we briefly introduce the solution of CMMSE. 
Please refer [22] for details. Similar to a popular group of speech 
enhancement methods, CMMSE follows the 4-step processing: 

Voice activity detection (VAD): detects the speech probability 
at every time-frequency bin; 

4865978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



Figure�1. The flow chart of ICMMSE 
 
Noise spectrum estimation: use the estimated speech 
probability to update the estimation of noise spectrum; 
Gain estimation: use the noisy speech spectrum and the 
estimated noise spectrum to calculate the gain of every time-
frequency bin; 
Noise reduction: apply the estimated gain to the noisy speech 
spectrum to generate the clean spectrum. 
In the VAD part, CMMSE uses the method in [27] to detect the 

speech probability ݐ), ܾ) in each filter-bank bin b and time t. Then, 
the noise power spectrum ݉(ݐ, ܾ) is estimated using a minimum 
controlled recursive moving average (MCRA) noise tracker [27] as ݉(ݐ, ܾ) = ߙ ∗ ݉(ݐ − 1, ܾ) + (1.0 − (ߙ ∗ ݉௫(ݐ, ܾ) (4) 
with ߙ = ߙ + (1.0 − (ߙ ∗ ,ݐ) ܾ), (5) 
where ߙ = 0.8 in this study. 

Following a similar approach in [26], the solution to Eq. (4) is   ෝ݉௫(ݐ, ܾ) ≈ ,ݐ)ܩ ܾ)݉௬(ݐ, ܾ),  (6) 
where ݐ)ܩ, ܾ) is the gain of time filter-bank bin with ݐ)ܩ, ܾ) = క (௧,)ଵାక (௧,) exp ቄଵଶ ∫ షഓఛ ݀߬ஶ௩(௧,) ቅ .  (7) 
To calculate Eq. (7), the posterior SNR ݐ)ߛ, ܾ) is first obtained as  ݐ)ߛ, ܾ) = (௧,)(௧,)   (8) 
and the prior SNR ߦመ(ݐ, ܾ)is calculated using a decision-directed 
approach (DDA) [28]  ߦመ(ݐ, ܾ) = ߚ ∗ ݐ)ܩ − 1, ܾ) ∗ ݐ)ߛ − 1, ܾ) + (1.0 − (ߚ ∗ ,ݐ)ߦ ܾ)   (9) 
where  ݐ)ߦ, ܾ) = max (ݐ)ߛ, ܾ) − 1, 0.0) 
with ߚ = 0.9 in this study. Then we have  ݐ)ݒ, ܾ) = క (௧,)ଵାక (௧,) ,ݐ)ߛ  ܾ).  (10) 
Eq. (6) is used to estimate the cleaned power spectrum ෝ݉௫(ݐ, ܾ) of 
every time filter-bank bin. MFCCs can be obtained by plugging ෝ݉௫(ݐ, ܾ) into Eq. (2).  
  
3.�IMPROVED�CEPSTRA�MINIMUM�MEAN�SQUARE�
ERROR�
In this section, we introduce how we develop the ICMMSE by 
improving the different components of CMMSE with more 
advanced algorithms. Specifically, an improved version of MCRA 
is used to get more accurate speech probability in each time filter-
bank bin. Second, a refined prior SNR estimation benefits the gain 
estimation. Third, gain smoothing is employed to smooth the gains 
cross filter-banks. Lastly, two-stage processing is used to further  

 
 
clean the residual noise after the first stage processing. A high-level 
diagram of the ICMMSE is presented in Figure 1. We will present 
the details in the rest of this section.    

CMMSE relies on MCRA [27] for speech probability 
estimation in VAD which is then used to estimate noise spectrum 
with Eq. (4). Reliable speech probability estimation is critical to the 
estimation of noise spectrum, which affects the accuracy of the 
posterior SNR estimation in Eq. (8). In [29], an improved MCRA 
(IMCRA) algorithm is shown to outperform MCRA. Therefore, we 
use IMCRA to estimate the speech probability ݐ), ܾ) in each time 
filter-bank bin. Then, the noise power spectrum is still estimated 
with Eq. (4). The IMCRA process is much more complicated than 
MCRA. Due to limited space, we do not describe it in this paper. 
The readers can refer [29] for the detailed implementation.  

The DDA prior estimation in Eq. (9) is a weighted sum of the 
SNRs in the previous and current frames. After estimating ݐ)ܩ, ܾ) 
in Eq. (7), we propose to do further gain estimation by using ݐ)ܩ, ܾ) 
to re-estimate prior SNR so that we can get a converged gain: ݐ)̇ߦ, ܾ) = ,ݐ)ܩ ܾ) ∗ ,ݐ)ߛ ,ݐ)ݒ̇ (ܾ ܾ) = ,ݐ)̇ߦ ܾ)1 + ,ݐ)̇ߦ ܾ) ,ݐ)ߛ  ܾ) 

,ݐ)ܩ̇ ܾ) = ,ݐ)̇ߦ ܾ)1 + ,ݐ)̇ߦ ܾ) exp ቊ12 න ݁ିఛ߬ ݀߬ஶ
௩̇(௧,) ቋ 

We call this process as refined prior SNR estimation. 
Another improvement of ICMMSE is the estimation of gain ݐ)ܩ, ܾ) applied to the power spectrum of filter-bank in Eq. (6). In 

[30], an optimally-modified log-spectral amplitude (OMLSA) 
speech estimator is shown to be superior. To apply it to the time 
filter-bank bin, we modify the filter-bank gain with  ܩ(ݐ, ܾ) = ,ݐ)ܩ̇ ܾ)(௧,)ܩଵି(௧,)  (11) 
Here, ܩ is the minimum gain used to compress noise and is set as 
0.1 in this study. There are two special cases when current speech 
probability ݐ), ܾ) is 0 and 1. ܩ(ݐ, ܾ) = ,ݐ)ܩ̇ ,ݐ) ݂݅    (ܾ ܾ) = ,ݐ)ܩ 1 ܾ) = ,ݐ) ݂݅           ܩ ܾ) = 0 
This means that if we are confident with the strong speech presence, 
we can use the estimate gain to clean noise. In contrast, if we are 
confident that current spectrum is only for noise, we can heavily 
clean it. For the intermediate cases, we do both operations.  

A concern of OMLSA in Eq. (11) is that it relies on the speech 
probability which may not be accurately estimated when strong 
noise is present. Considering the fact that applying ̇ݐ)ܩ, ݈) directly 
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to the noisy Mel filter-bank power spectrum may not be optimal 
because the number of Mel filter-banks is much less than the number 
of linear frequency bins, we propose a cross filter-bank gain 
smoothing method by averaging the predicted gain in neighborhood 
filter-banks as  ܩ(ݐ, ܾ) = ,ݐ)ܩ̇) ܾ − 1) + ,ݐ)ܩ̇ ܾ) + ,ݐ)ܩ̇ ܾ + 1))/3   (12) 

Finally, the noise reduction process is not perfect due to the 
factors such as imperfect noise estimation. There is still residual 
noise in the cleaned spectrum. Inspired by the two-stage processing 
in ETSI advanced front-end [31], a second stage noise reduction can 
be used to further reduce the noise by using the cleaned speech 
spectrum in the first stage as the input to the second stage as shown 
in Figure 1. Most components in the second stage are the same as 
those in the first stage, except that gain smoothing in Eq. (12) is used 
in the first stage while we use OMLSA in Eq. (11) together with gain 
smoothing for the gain modification in the second stage because the 
residual noise has less impact to speech probability estimation after 
the first stage noise reduction. The speech probability obtained from 
the VAD module is only used for noise spectrum estimation in the 
first stage. In contrast, it is used in both the noise spectrum 
estimation and the OMLSA gain modification in the second stage. 
Note that all the processing in ICMMSE is on the power spectrum 
of time filter-bank bin which is the acoustic feature for ASR, while 
the traditional feature enhancement methods [26][27][28][29][30] 
work on the magnitude of linear frequency bin.  

�
4.�EXPERIMENTS�

The effectiveness of the proposed ICMMSE algorithm is evaluated 
with three tasks. The first is a standard digit recognition task, Aurora 
2 [24], with GMM modeling. We will show how ICMMSE can 
improve the CMMSE algorithm by breaking down the contribution 
from each ICMMSE component. The second task is the standard far-
talk Chime 3 task [25] trained with feed-forward DNNs using tens 
of hours training data. The third task is a product-scale Microsoft 
Cortana digital assistant task using a long short-term memory 
(LSTM) [32][33] recurrent neural networks (RNNs) trained with 
3400 hours of live speech data. We will show that ICMMSE is 
superior regardless of the underlying models and evaluation tasks.   
  
 4.1�Aurora�2�
The multi-style training set which consists of 8440 multi-style 
training utterances is used to train the standard  backend  
HMM model [24]. All digits are modeled with 16 states, with strict 
left-to-right structures. Each state is modeled by a GMM with 3 
Gaussians. In addition, there is silence  which consists 
of 3 states and each state is modeled by a GMM with 6 Gaussians.  
�
Table�1: WER comparison of different front-ends on Aurora2. The 
models are trained with multi-style data. 
 
� Raw� CMMSE� 1stage�

ICMMSE�
2stage�
ICMMSE��

Clean� 1.39 1.48 1.20 1.10 
20db� 2.69 2.21 1.99 1.85 
15db� 3.6 3.21 2.91 2.71 
10db� 6.04 5.65 5.30 4.97 
5db� 14.38 13.01 12.59 11.57 
0db� 43.41 38.36 34.02 32.06 
5db� 75.93 72.8 68.47 67.45 
Avg.� (020�
db)�

13.67 12.17 10.87 10.19 

The test material consists of three sets of distorted utterances. 
Set-A and set-B contain eight different types of additive noise while 
set-C contains two different types of noise and additional channel 
distortion. Each type of noise is added into a subset of clean speech 
utterances, with seven different levels of signal to noise ratios 
(SNRs). This generates seven subgroups of test sets for a specified 
noise type, with clean, 20db, 15db, 10db, 5db, 0db, and -5db SNRs.   
Following the standard evaluation of Aurora 2, we report average 
WER defined as the average of WERs of the 0-20db SNR test sets. 

 Table 1 shows the detailed results of baseline MFCC feature, 
and the MFCC features extracted with CMMSE and ICMMSE. 
CMMSE yields 10.97% relative WER reduction against the baseline 
MFCC feature.  Even with 1-stage processing, ICMMSE is better 
than CMMSE in all conditions, and the 2-stage ICMMSE can reduce 
the average WER significantly from CMMSE, with 16.27% relative 
improvement from CMMSE, or 25.46% relative WER reduction 
from the baseline raw feature.  

In Table 2, we show how CMMSE is evolved into ICMMSE 
by incrementally adding or replacing some components. The 
baseline CMMSE has 12.17% WER. After replacing the MCRA 
component with IMCRA, we get 4.19% relative WER reduction, 
showing the importance of voice active detection which affects the 
noise spectrum estimation. As mentioned in Section 3, one 
important difference between ICMMSE (or CMMSE) and the 
traditional method is that the gain is applied to the power spectrum 
in ICMMSE (or CMMSE) while the gain is applied to the magnitude 
spectrum in the traditional methods. Here, we also try to apply the 
gain to magnitude spectrum, and get 11.97% WER, about 2.66% 
relative increase from the 11.66% WER when applying the gain to 
power spectrum.  

Using OMLSA estimation further improves the WER to 
10.99% and with the refined prior we reach 10.87% WER. As 
discussed in Section 3, OMLSA may be too aggressive in the first 
stage processing. After replacing it with gain smoothing in Eq. (12), 
we obtain further accuracy improvement with 10.74% WER. 
Finally, we further clean the spectrum with the second stage 
ICMMSE processing and obtain 10.19% WER. In the following 
subsections, we will just use the 2-stage ICMMSE method as the 
default ICMMSE front-end given that we have shown that all the 
components in ICMMSE are helpful.  

 
Table� 2: Average WER (0-20db) comparison of different robust 
front-end methods, showing how CMMSE is evolved to ICMMSE 
step by step. 
Method� Avg.�WER�
CMMSE� 12.17 
+�IMCRA� 11.66 
��+OMLSA� 10.99 
������+refined�prior�SNR� 10.87 
��OMLSA����+gain�smoothing���
(1stage�ICMMSE)�

10.74 

��������������������������������+2nd�stage�processing��
(2stage�ICMMSE)�

10.19 

�
4.2�Chime�3�
The Chime 3 task is a scenario targeting the performance of ASR in 
a real-world, commercially-motivated scenario [13]. The data is 
recorded using a 6-channel microphone array mounted on a tablet.   

The training data consists of 1600 real noisy utterances and 
7138 simulated utterances. The real data is recorded in different live 
environments. The simulated data is obtained by mixing clean 
utterances into different background recordings. For both real and 
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simulated data, four environments have been selected: café (CAF), 
street junction (STR), public transport (BUS), and pedestrian area 
(PED). The development test set has 1640 real and 1640 simulated 
utterances. All utterances are selected from the WSJ0 corpus. 

We train a fully connected deep neural network (DNN) on 
single-channel noisy far-talk speech. The DNN has 7-hidden layers, 
each with 2048 hidden units. The input consists of a 2640-dim 
feature vector formed by 80-dim log Mel-filter-bank (LFB) feature 
and its accelerating feature components with a context window of 
11 frames (80*3*11=2640). The output layer has 3012 tied-triphone 
states (senones). We adopt the RBM pre-training [9] before the fine-
tuning of the full network using the cross-entropy criterion.  

The models are evaluated in single noisy channel and multi-
channel enhanced speech provided by the Chime 3 speech challenge. 
Furthermore, we evaluate the different front-ends in clean testing 
condition. All test is conducted using the real development test sets. 
The language model (LM) used for decoding is the standard trigram 
from the WSJ corpus. 

Table 3 summarizes the WER comparison of raw, CMMSE, 
and ICMMSE LFB features. In the single noisy channel or enhanced 
testing conditions, CMMSE and ICMMSE yield 8.60% and 11.72% 
or 7.42% and 11.98% WER reductions against the baseline raw 
LFB. Both CMMSE and ICMMSE outperform the raw LFB features 
in both far-field testing conditions. ICMMSE consistently yields 
additional accuracy gain against CMMSE. We further compare the 
performance on the clean testing condition. CMMSE has slight 
accuracy degradation against the raw LFB, nevertheless ICMMSE 
wins over CMMSE with small gain.  
  
Table� 3: WER comparison of raw, CMMSE, and ICMMSE on 
Chime3 task. The back-end is DNN trained from single noisy far-
talk channel data. The models are evaluated on clean, noisy, and 
enhanced far-talk speech using real dev test sets. The results in the 
brackets are relative WER reductions from the raw feature. 

�� Raw� CMMSE� ICMMSE�

� WER WER 
Relative
Improve. WER 

Relative
Improve. 

Clean� 7.56 7.64        (-1.06) 7.41           (1.98) 
Noisy� 18.95 17.32      (8.60) 16.73       (11.72) 
Enhanced� 23.71 21.95      (7.42) 20.87       (11.98) 

 
It is to be noted that we also experimented on the different 

front-ends using LSTM-RNN acoustic model with almost identical 
accuracy comparison results. Further experiments on maximum 
mutual information (MMI) sequence training result in similar 
performance comparison across different front-ends. The enhanced 
testing provided by the Chime3 challenge (MVDR based 
beamforming) is known to generate worse accuracy performance on 
the real test [13], as can be seen in the table above. Nevertheless, 
this does not affect our conclusion on the front-end comparison. 
�
4.3�Cortana�Task�
We further evaluate the front-ends with a product scale Microsoft 
Cortana digital assistant task, trained with 3400hr live US English 
data. A trigram LM is used for decoding with around 8M ngrams. 
The test sets are from the same Microsoft Cortana task with three 
SNR conditions: 20db above, 10-20db, and 0-10db. The test sets in 
all conditions contain around 167k words, which guarantees the 
statistical significance of reported improvement. 

The acoustic feature is the 80-dimensional static LFB. The 
baseline LFB features are extracted from the standard LFB 

generation without any robust front-end (i.e., raw LFB), and from 
CMMSE and ICMMSE robust front-ends. The training and testing 
use consistent features.  

All acoustic models are 4-layer LSTM-RNNs with 5980 
senones, and were trained to minimize the frame-level cross-entropy 
criterion. LSTM-RNNs have been shown to be superior than the 
feed-forward DNNs [33], which we previously verified with our 
Cortana task [34]. The LSTM-RNNs are modeled after the one 
described in [33] with the frame skipping strategy to reduce the 
runtime cost [34]. Each LSTM layer has 1024 hidden units and the 
output size of each LSTM layer is reduced to 512 using a linear 
projection layer. There is no frame stacking, and the output HMM 
state label is delayed by 5 frames as in [33]. When training LSTM, 
the backpropagation through time (BPTT) [35]  step is 20.  

Table 4 compares the WER of different front-ends in 20db 
above, 10-20db, and 0-10db testing conditions. It is interesting to 
see that in the 20db above condition, both ICMMSE and CMMSE 
outperform raw feature, with more than 3% relative WER reduction. 
The power of robust front-end is clear in the noisy conditions. 
CMMSE gets 4.66% and 3.81% relative WER reduction from the 
raw feature in the 10-20db and 0-10db conditions respectively, 
while ICMMSE gets 11.01% and 8.58% relative WER reduction.  

It is interesting to see that compared to the case of using GMM 

the deep learning acoustic models. This indicates that the powerful 
layer-by-layer structure in deep learning models really make it very 
challenging for robust front-end to maintain improvement.  

 
Table� 4: WER comparison of different front-ends on Microsoft 
Cortana digital assistant task. The results in the brackets are relative 
WER reductions from the raw feature. 

� Raw CMMSE� ICMMSE�

� WER WER 
Relative
Improve. WER 

Relative
Improve.

20db�above� 13.17 12.64         (4.02) 12.71       (3.49) 
1020db� 20.8 19.83        (4.66) 18.51      (11.01) 
010db� 27.03 26.00        (3.81) 24.71      (8.58) 
�

5.�CONCLUSIONS�
In this paper, we proposed a new robust front-end called ICMMSE 
which improves the previous CMMSE front-end with several 
advanced components. The IMCRA algorithm helps to generate 
more accurate speech probability in each time filter-bank bin so that 
more reliable noise spectrum estimation can be obtained. The 
refined prior SNR estimation helps to get a converged gain. Either 
cross filter-bank gain smoothing or OMLSA is helpful to further 
modify the gain function. Finally, the two-stage processing helps to 
reduce the residual noise after the first-stage processing. It is shown 
in the experiment section that all these new components help to 
improve the ASR accuracy from the CMMSE front-end.  

We compared different front-ends on the standard Aurora 2 
task using Gaussian mixture models, the standard Chime 3 task 
using feed-forward DNNs, and a 3400 hour Microsoft Cortana 
digital assistant task using LSTM-RNNs, respectively. It is shown 
that ICMMSE is superior regardless of the underlying acoustic 
models and the scale of evaluation tasks, with 25.46% relative WER 
reduction on Aurora 2, up to 11.98% relative WER reduction on 
Chime 3, and up to 11.01% relative WER reduction on Cortana 
digital assistant task, respectively. This demonstrated that, while 
DNN models are more robust to noise, a well-designed robust front-
end is still very helpful to deep learning acoustic models. 
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