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ABSTRACT

Albeit recent progress in speaker verification generates pow-
erful models, malicious attacks in the form of spoofed
speech, are generally not coped with. Recent results in
ASVSpoof2015 and BTAS2016 challenges indicate that
spoof-aware features are a possible solution to this prob-
lem. Most successful methods in both challenges focus on
spoof-aware features, rather than focusing on a powerful clas-
sifier. In this paper we present a novel raw waveform based
deep model for spoofing detection, which jointly acts as a
feature extractor and classifier, thus allowing it to directly
classify speech signals. This approach can be considered
as an end-to-end classifier, which removes the need for any
pre- or post-processing on the data, making training and
evaluation a streamlined process, consuming less time than
other neural-network based approaches. The experiments
on the BTAS2016 dataset show that the system performance
is significantly improved by the proposed raw waveform
convolutional long short term neural network (CLDNN),
from the previous best published 1.26% half total error rate
(HTER) to the current 0.82% HTER. Moreover it shows that
the proposed system also performs well under the unknown
(RE-PH2-PH3,RE-LPPH2-PH3) conditions.

Index Terms— CLDNN, End-to-End, BTAS2016, Spoof-
ing detection

1. INTRODUCTION

Biometric recognition is a broad field which has developed
from the classic fingerprint over to face recognition and nowa-
days speech can be used to naturally to restrict access to a
certain medium. The research field which focuses on protect-
ing the integrity of this speech based process is called speaker
verification (SV). The main purpose of speaker verification
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is to detect whether the (real) speaker, who registered him-
self with the system, produces an utterance to grant access
to the system or if that utterance was produced by an impos-
tor. Malignant spoofing attacks mimic real speakers charac-
teristics, thus an unprepared system’s performance degrades
heavily, when exposed to spoofing attacks [1, 2]. Traditional
SV systems are not aware of possible spoofing attacks, which
can be threatened by direct attacks (also called spoofing at-
tacks). These attacks either artificially or naturally produce
a spoofed utterance and try to gain access to a system. This
work focuses only on the prevention of direct attacks. Overall
there are currently four known direct attacks (Impersonation,
Replay, Synthesis, Voice conversion).

Building an appropriate feature representation and design-
ing a suitable classifier for each of the attack types are seen
as separate problems, with different approaches for a suitable
solution. One of the general disadvantages is that these fea-
tures might not be optimal for the classification succeeding
the classification task. Our motivation stems from recent ad-
vances in anti-spoofing research, which shows that an appro-
priate feature - independent of the classifier - contributes to
prevent spoof attempts of a speaker verification system. In
this context, deep neural networks can be seen as a joint clas-
sification and feature extraction framework, that aim to gen-
erate a feature representation which incorporates all relevant
direct attack types.

The remainder of this paper is organized as follows. At
first Section 2 reviews previous work in the context of spoof-
ing detection. Continuing with Section 3, which describes
the CLDNN architecture with raw wave input. Section 4
describes our experimental setup, model parameters, used
datasets and demonstrates the results while comparing the
CLDNN approach with other neural network anti-spoof tech-
niques. A conclusion is given in Section 5.

2. PREVIOUS WORK

2.1. Model

Previous models include the ever so popular i-vector [3, 4, 5],
which when used as a standalone model does not perform
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well. Another popular approach is to use the traditional GMM
model. In this approach two different GMMs are trained rep-
resenting the genuine (Mg) and spoof (Ms) labels respec-
tively. Each GMM only uses the respective training data. Af-
ter training, the score for a given evaluation utterance x can
be calculated as follows:

score(x) = logP (x|Mg)− logP (x|Ms) (1)

Here P (x) is assumed to be Gaussian distributed. Successful
attempts can be seen in [6, 7]. Deep features were also em-
ployed and achieved remarkable results. Chen et al. [8, 9],
fed PLP features into a neural network and obtained a high-
dimensional representation vector. This vector is then used as
basis for future classification. In recent work [10], sequence
models such as recurrent neural networks - long short term
memory (RNN-LSTM) were incorporated to extract features.

2.2. Features

As previous works indicate, feature extraction is crucial in or-
der to detect possibly malicious system accesses. Research
towards detecting synthesized spoofing attempts shows that
this type of speech generally generates artifacts that can be de-
tected by features that use phase spectrum information. It was
seen that phase spectrum based features (e.g. MGDF) [11]
seem to discriminate better than common magnitude ones.
Moreover, the recently published constant Q cepstral coef-
ficient (CQCC) feature can be seen as the current state-of-
the-art, being capable to detect synthesis based attacks [6].
Furthermore, deep feature approaches apply neural networks
for feature extraction [12]. Deep feature frameworks use neu-
ral networks to achieve a high abstract representation of input
frames [8], in order to extract features from one of its hidden
layers, which are then scored by using an independent classi-
fier (e.g. GMM, SVM, LDA).

3. RAW WAVEFORM CLDNN ARCHITECTURE

The CLDNN architecture ( Convolutional LSTM Deep Neu-
ral Network ) combines three different types of neural net-
works into a single model. This model obtains an input in
form of a sequence of frames and outputs a likelihood for
the whole sequence. The CLDNN performs time-frequency
convolution to reduce spectral variance, long-term temporal
modeling by using a LSTM, and classification using a DNN.

CLDNN was already successfully employed in automatic
speech recognition tasks (ASR) [13]. In contrast to the more
common approach to use log mel features, this approach uses
raw waveforms as input. We argue that it might be more ben-
eficial for the network to directly learn the time-frequency
transformation process on top of being able to retain all in-
formation present within the time-domain, instead of having
an already preprocessed, abstract, log-mel spectrum domain
as input. Thus the network can learn dependencies between

adjacent frames in the time domain and it’s corresponding fre-
quency domain transformation. In this work, a raw waveform
based CLDNN is proposed for the spoofing detection, and
the model architecture is specified as Figure 1. In this model
the convolution is applied over a sequence of input features
[x1, . . . , xt, . . . , xS ]. The convolutional layers are adjusted to
share their parameters over the whole sequence with length
S.

The first layer in this architecture is a time-convolutional
layer over the raw time-domain waveform which can be
thought of as a finite impulse-response filter bank followed by
a non-linearity ( Rectified Linear Unit ) [14]. After time con-
volution, non overlapping max pooling is applied to remove
any time variance, thus collapsing all of the input samples
(N ) into a single value. Having collapsed the time-impulse
to a smaller representation vector, frequency convolution
follows the time convolution to reduce the phase variations
within the time-filtered signal. After frequency convolution,
the output for each time-step t is then fed into a two layer
LSTM, which outputs a sequence of fixed sized vector repre-
sentations. In this paper, the last time-step of the sequence is
picked to obtain a single vector representation, which then is
fed into the neural network classifier, as shown in Figure 1.
DNN, CNN and the LSTM are jointly trained within the net-
work. The last layer of the DNN utilizes softmax activation
that normalizes the outputs to sum to one. During training
a sequence of samples of length S is taken from each utter-
ance and fed it into the network. Evaluation is performed by
inputting a whole utterance at a time into the network which
produces likelihood scores at the output layer for each class.
In this task, four output neurons (each for one attack type (SS,
VC, RE) plus the genuine speakers) are used. Thus, the final
score is obtained by taking the log-likelihood values which
correspond to the genuine class as scores. Thus larger scores
correspond to genuine speakers, lower scores correspond to
spoofed speech.

3.1. Normalization

The input of the network is directly taken from the raw wave-
form of a given audio utterance. One utterance with L sam-
ples will be cut into same sized pieces of length N . Pieces
with length < N will be removed. It is important to note that
no voice activity detection is utilized, because artificially cre-
ated speech sometimes has unusually long silenced segments,
which when removed, can degrade the model’s performance.
In this work, mean and standard deviation normalization are
applied onto the extracted raw waves, resulting in unit mean
and zero variance within the input data.

3.2. Model specification

The front-end of our framework is comprised of two con-
volutional layers that aim to invariantly transform the signal
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in the time and frequency domain [15]. After each convo-
lution batch normalization is used and followed by a non-
overlapping maxpooling. Throughout the network, rectified
linear unit (ReLU) is used as activation function. The model
is further extended by dropout [16] a probability of 50%, be-
tween each linear layer in the classifier, as well as after each
LSTM layer. The number of time-kernel convolution filters is
set as 39 ( comparable to MFCC/PLP ), the sequence length S
describes the number of following frames which are fed into
the CLDNN.

Fig. 1: The architecture of the CLDNN with raw waveform

As optimization method it was decided to use an adaptive
learning algorithm, adadelta [17]. As described in [18], using
a larger frame size N = 560 while keeping the kernel width
at 400 is beneficial for the final performance. Moreover we
use a stride of 160 (10 ms) as step for the time-convolution
filter.

4. EXPERIMENTS

4.1. Dataset

In this paper, the focus lies on the BTAS2016 dataset [19],
having overall 43,553 utterances of training, 43,575 utter-
ances of development and 50,496 utterances of evaluation
data. The emphasis of this dataset lies on replay attacks,
which include low and high quality laptop as well as phone
recordings. Unknown replay attacks were also recorded on
laptop and phone devices, but differ from these used in the
training set.

4.2. Evaluation Protocol

First, a model is trained on the provided training data. Af-
ter training, the development utterances are inserted into the

system and scores for each utterance are obtained, which are
consequently used to compute the FAR and FRR. The false
acceptance rate (FAR) and the false rejection rate (FRR) are
both metrics, which depend on a certain threshold θ:

FAR(θ) =
|scoreattack ≥ θ|
|scoreattack|

,FRR(θ) =
|scorereal < θ|
|scorereal|

(2)

As evaluation metric, the half total error rate (HTER)
[20] is used. The threshold of the development data θdev is
utilized, in order to calculate the FRR and FAR of the evalua-
tion data:

θdev = argminθ

(
FARdev(θ) + FRRdev(θ)

2

)
(3)

HTEReval =
FAReval(θdev) + FRReval(θdev)

2
(4)

4.3. Baseline

The baseline uses a standard GMM approach, which is trained
using the procedure defined in Section 2.1. In traditional SV
tasks, feature extraction is assisted by voice activity detec-
tion (VAD). In light of spoofing detection, VAD is not ap-
plied, since SS and VC methods tend to create unnaturally
long silent segments. Thus, silence is a key factor in determi-
nating artificially created speech (SS,VC categories).

Parameter Value

Windowsize 25 ms
Windowshift 10 ms

Static dimension 13 (12 ceps + power)
Normalization Cepstral mean + var

Dynamic dimension static + ∆ + ∆∆ = 39

Table 1: PLP parameters

The GMM baseline uses 512 Gaussian components. The
training procedure is the same as described in Section 2.1 and
uses the features Table 1. The baseline GMM and the formal
published BTAS2016 challenge results are shown in Table 2.

Placing Model Feature HTER

Baseline GMM PLP-39 2.96
3rd BLSTM-DNN PLP-39 2.20
2nd LDA Spectral-M-V 2.04
1st GMM MFCC+i-MFCC 1.26

Table 2: Previous results for BTAS2016 [19]

4.4. CLDNN - Setup

In our experiments we see that the features extracted from
the front-end CNN are generally rich enough in information
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content. We adapt the same architecture as seen in [18], but do
tune our model to fit the dataset better. Two different setups
are presented in Table 3, a large CLDNN-1 model, which acts
as the basemodel and a smaller CLDNN-2.

Setup CNN-Maps LSTM DNN

CLDNN-1 39 (time) + 256(frequency) 256 512
CLDNN-2 39 (time) + 128(frequency) 128 256

Table 3: CLDNN Setup. All of the models use a two convolutional
layers (time + frequency), two layers of LSTM and a single layer of
DNN.

4.5. Sequence length influence

The sequence length plays a crucial role in training RNN-
based systems, thus the question arises if the CLDNN perfor-
mance increase commensurates with a larger sequence length,
as it is the case for standard LSTM. It is investigated which
sequence length is most likely to be optimal for this task.

Sequence length FAR FRR HTER

25 2.98 0.14 1.56
50 2.62 0.79 1.7
70 3.56 0.8 2.18

Table 4: Sequence length influence, note that FAR and FFR are
taken from HTER Error. CLDNN-1 is used as model.

The results using multiple sequence lengths show an un-
characteristic behavior for RNN’s. We assume that either the
CNN front-end contribution to the final performance is more
significant than the LSTM or that by increasing the sequence-
length inadvertently decreases the number of samples avail-
able in the dataset, which leads to a possible underfit of the
data.

4.6. Neural network comparison

For a better comparison to other neural network based
methods, a two (LSTM), a two layer bidirectional LSTM
(BLSTM) and an improved DNN-BLSTM fusion model,
similar to that in [19] were also trained. LSTM and BLSTM
models contain in each layer 512 neurons. The DNN-BLSTM
model uses the concatenated output vectors of a 7 layer DNN
(from the 3rd hidden layer) in addition to the output of three
different BLSTM models. The BLSTM output vectors have
a size of 512 each, while the DNN uses 1024 dimensional
vector representations. Thus, a 1024 + (512 × 3) = 2560
dimensional vector representation is obtained. Compared to
the proposed end-to-end model, these models make use of a
backend LDA classifier, which creates a single score for each
vector representation. LSTM, BLSTM and BLSTM-DNN
models all use a sequence length of 50.The LSTM, BLSTM

Attack LS
TM

BL
STM

BL
STM
DNN

CLD
NN-
1

CLD
NN-
2

Best-
BTAS

Classifier LDA LDA LDA Soft
max

Soft
max

GMM

All 2.99 2.43 1.21 1.56 0.82 1.26

SS-LP-LP 1.51 1.79 0.5 1.14 0.38 0.68
SS-LP-HQ-LP 1.42 1.61 0.95 1.05 0.64 0.68

VC-LP-LP 2.64 1.89 0.59 0.97 0.49 0.68
VC-LP-HQ-LP 1.64 1.9 0.57 0.55 0.33 0.81

RE-LP-LP 4.1 2.85 1.06 0.63 0.52 0.87
RE-LP-HQ-LP 11.54 8.54 6.69 2.88 0.96 1.81
RE-PH1-LP 5.73 2.04 0.69 0.57 0.52 0.68
RE-PH2-LP 3.29 1.54 0.5 0.57 1.08 0.68

RE-PH2-PH3 9.48 4.29 3.06 6.63 1.33 6.49
RE-LPPH2-PH3 27.35 22.1 26.44 38.07 21.14 23.06

Table 5: Comparison between other NN-approaches and the cur-
rently best result. Note that ”RE-LP-LP”,”VC-LP-LP” and ”SS-LP-
LP” do not incorporate the HQ categories (in contrast to the original
paper).

and DNN-BLSTM models uniformly use PLP-39 features,
similar to these in Table 1 as their input. The results of this
paper are compared with other neural networks attempts for
antispoof (Table 5). Note that in the competitions paper the
categories ”LP-LP” were used as a superset of ”LP-HQ-LP”,
thus being non independent, where in this work we assume
each category is independent from each other.

As it can be seen in Table 5, the BLSTM-DNN fusion
model does outperform the baseline shown in Section 4.3, as
well as other neural network based approaches. Additionally,
it sets the mark of creating the currently best result on this
corpus. Furthermore, the CLDNN-2 model performs well on
unknown attacks (11.64% compared to 14.78%).

5. CONCLUSION

This paper successfully introduces an end-to-end framework
using a raw waveform based CLDNN model for spoofing de-
tection. Compared to the previous deep feature based meth-
ods, which builds the front-end and back-end separately, the
new end-to-end raw waveform CLDNN makes the whole de-
tection process more flexible, while at the same time being
able to use the rich speech information from raw waveform
by simultaneously optimizing feature extraction and classifi-
cation accuracy. Surprisingly, performance increases by using
these unprocessed raw waveform, indicating that raw signal
might be a valid start point for this task, and the joint opti-
mization on both front-end and back-end also makes this new
architecture advanced.

In future research, we would like to focus on more com-
plex front-end feature extraction using more suitable time and
frequency filtering networks.
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