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ABSTRACT

When using connectionist temporal classification (CTC) based
acoustic models (AMs) for large vocabulary continuous speech
recognition (LVCSR), most previous studies have used a naive in-
terpolation of the CTC-AM score and an additional language model
score, although there is no theoretical justification for such an ap-
proach. On the other hand, we recently proposed a theoretically
more sound decoding framework for CTC-AM called maximum a
posteriori (MAP)-based decoding. Although the superiority of the
MAP-based decoding framework with CTC-AM has been demon-
strated, the effect of additional minimum Bayes risk (MBR) training
in the MAP-based decoding framework has not been investigated. In
this paper, we report the results of various experiments that examine
the effect of MBR training on CTC-AM by comparing two decoding
frameworks. Our experiments with English and Japanese LVCSR
tasks reveal that the MAP-based decoding framework is superior to
the interpolation-based framework, even after the MBR training. In
addition, by using about 600 h of training data, we show that the size
of the training dataset is a critical factor in achieving good results
under CTC-AM.

Index Terms— Connectionist temporal classification, deep neu-
ral network, acoustic model

1. INTRODUCTION

Acoustic models (AMs) that use connectionist temporal classifica-
tion (CTC) [1, 2] have recently been proposed as an alternative to
those based on hidden Markov models (HMMs) [3-5]. CTC aims to
learn a mapping from an observation sequence X to a target symbol
sequence s directly. CTC was initially proposed for phoneme recog-
nition [1, 2] and recently successfully applied to large vocabulary
continuous speech recognition (LVCSR) tasks [6-14].

Because the original training criterion of CTC-AM is based on
maximizing the log posterior logP(s|X) of the target symbol se-
quence s, it does not necessarily maximize the final recognition ac-
curacy when decoding with an additional language model (LM).
Thus, it would be better to use a training criterion that directly opti-
mizes the decoding accuracy, as in the case of the sequence discrim-
inative training of deep neural network (DNN)-HMM hybrids such
as maximum mutual information (MMI) and state-level minimum
Bayes risk (sMBR) training [15, 16].

One important point to note in defining such kind of training cri-
terion of CTC is that there are two different decoding frameworks
for CTC-AM: (i) interpolation-based decoding [6] and (ii) maxi-
mum a posteriori (MAP)-based decoding [17]. The interpolation
based decoding framework is very simple — just use an interpolation
score of CTC score P(s|X) and LM score P(W) when searching
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for the best hypothesis. Although there is no theoretical justifica-

tion for such an approach, this framework is widely used because of

its simplicity [6—14]. The minimum Bayes risk (MBR) training of

CTC-AM has already been investigated based on this interpolation-

based framework, and showed large improvements in recognition

accuracy [9, 10, 14].

On the other hand, we recently proposed a theoretically more
sound decoding framework called MAP-based decoding [17].
The MAP-based decoding aims to maximize the word posterior
P(W|X), as in the decoding framework for HMM-based AMs.
In various LVCSR experiments, MAP-based decoding achieved
consistent improvements over the conventional interpolation-based
decoding [17]. However, previous investigations of MAP-based
decoding were all based on normally trained (i.e., not MBR trained)
CTC-AM. The effect of MBR training on CTC-AM in the MAP-
based decoding framework has not been investigated.

In this paper, we investigate the MBR training of CTC-AM,
comparing the interpolation-based and MAP-based decoding frame-
works. The contributions of this paper are summarized as follows:

e We formulate the MBR training of CTC in the MAP-based decod-
ing framework. It is important to note that previous investigations
on the MBR training of CTC-AM [9, 10, 14] were all based on the
interpolation-based framework.

e We present various experimental results for the MBR-trained
CTC-AM on English and Japanese LVCSR tasks. Our experiments
reveal that the MAP-based decoding framework is still better than
the interpolation-based framework, even after MBR training. In ad-
dition, by using about 600 h of training data, we show that the size
of the training dataset is a critical factor in achieving good results
under CTC-AM, as is consistent with the prior reports [7, 13].

In the next section, we introduce CTC and its original training
method. Then, we explain the interpolation-based and MAP-based
decoding frameworks in Section 3. The MBR training of CTC (for
both decoding frameworks) is formulated in Section 4. Finally, in
Section 5, we present various experimental results from English and
Japanese LVCSR tasks.

2. CTC-AM

2.1. Model structure

Given a frame-wise feature sequence X and a target subword se-
quence s (e.g., characters, phonemes), the goal of CTC-AM is
to train a neural network that represents the posterior probability
P(s|X). Toward this goal, an additional blank label ¢ is first in-
troduced into the set of subword units (CTC-label) to compensate
for the difference in length between s and X. Then, the posterior
probability of the CTC-label sequence ¢ = {ci, ..., cr} for a given
observation X is modeled by the frame-wise product of the neural
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network’s output as follows.

P(cX) =[] (). (1

Here, y+(ct) is the output score of the neural network for CTC-label
c; at time frame ¢, where the output layer consists of the softmax
activation function.

Next, a collapsing function ®() is introduced to map the frame-
wise CTC-label sequence c into the target subword sequence s. This
function converts the repetition of the CTC-label into one symbol,
removing the blank label ¢. For example, the CTC-label sequences
“AApBoCC¢” and “0 As BBpCg” are both mapped to the subword
sequence “ABC” by applying ®. Based on the collapsing function,
the posterior probability of the subword sequence s given the obser-
vation X is finally modeled as

P(s|X)= > P(e|X). 2

ce@‘l(s)

2.2. Maximum log-probability-based training of CTC

The conventional training criterion for CTC is defined as the log-
probability over the entire set of training samples as follows:

FOTC = "log P(sulXu), 3)

where u is an index of the training samples. The parameters are esti-
mated so as to maximize F¢7 (or minimize —F°7, also known
as the CTC-loss).

The error signal w.r.t. the activation of the final softmax layer is
calculated as follows:

eCTC(c t) = oFcre _ oFcre 311?(0/)

day(e) 2= ayy(e) day (o)

Dcca1(s,) e cP(CXu)
= e ) —ue) @

P(su|Xu)
where a} (c) is the activation of the final softmax layer for CTC-label
c at time frame ¢. The function d., . is Kronecker’s delta, which
takes a value of one if the CTC-label at time frame ¢ (= c¢¢) is ¢
and zero otherwise. Equation (4) can be efficiently calculated us-
ing the forward-backward algorithm [1], and is used for the error
backpropagation-based training of neural network parameters.

3. DECODING FRAMEWORK FOR CTC-AM

3.1. Interpolation-based decoding framework for CTC

Most previous studies have used a naive logarithmic interpolation of
an LM score and a CTC-AM score [6—14]. In this type of framework,
the word sequence W for a given observation X is estimated as

W = P(W)P(s|X)* 5
argvglaX{ser{lp%V) (W)P(s|X)"}, ®)

where ¥() is a function that converts word sequence W into a set of
possible subword sequences s, P(W) is a word-level LM (WLM)
probability, and « is a scaling factor for the CTC AM. Practically,
a word insertion penalty (denoted by |W/| in [6]) is often used in
combination with Eq. (5).

Importantly, there is no theoretical justification for such an in-
terpolation, but this method is widely used because of its simplicity.

3.2. MAP-based decoding framework for CTC

We have recently proposed a more sound decoding framework for
CTC-AM called MAP-based decoding [17]. In this framework,
the speech recognition problem is defined as the problem of find-
ing the word sequence W' that maximizes the posterior probability
P(W|X) for a given observation X, and transformed as follows:

W = arg max P(W|X) (6)
w
= arg max Z P(W|s)P(s|X)~ )
seV (W)
= argvglax{s QJ?@)P(W\S)P(SIX) h ®)
where P(W|s) is calculated as
_ PslW)P(W)
P(W|s) = Pls)? . &)

Here, P(s) is a subword LM (SLM) probability and § is its scal-
ing factor. The SLM probability P(s) can be estimated from the
training label for CTC-AM using conventional language modeling
techniques such as the N-gram model. The term P(s|W) is a word—
subword conversion probability, which can be modeled by a conven-
tional word pronunciation dictionary.

Note that the final formula (Eq. (8)) is tailored for CTC-AM,
whereas the starting point of the formula (Eq. (6)) is the same as the
HMM-based decoding framework. We have shown that the MAP-
based decoding framework can achieve consistently and substan-
tially better results than the interpolation-based framework when de-
coding with normally trained CTC-AM [17].

4. MBR TRAINING OF CTC-AM

Maximizing the conventional CTC-training criterion F¢TC does
not necessarily maximize the word recognition accuracy when
decoding with LM. Thus, it would be better to use a criterion that di-
rectly optimizes the decoding accuracy. Using the analogy of sMBR
training for DNN-HMM [15], the parameters in CTC-AM can be
trained to maximize the expected recognition accuracy F™BR,
which is defined as

FMBR _ Z Z P.(W|X,)AW,W,). (10)
u W

Here, P.(W|X,) is a posterior probability estimated by current
models (defined later). The term A(W, W) is the accuracy of the
hypothesis W compared with the reference label W ,. In this paper,
we count the frame-wise coincidence of the CTC-label between the
hypothesis and reference as follows:

AW, W) =" e, cx, (11)
t

where ¢}’ indicates the CTC-label in the reference alignment at time
frame ¢.

The calculation of posterior probability P.(W|X,) in Eq (10)
must be strictly matched with the decoding framework that CTC-
AM is used in. In the case of the conventional interpolation-based
decoding framework, P.(W|X,,) should be calculated as

Pit(W[X,) = —[ max P(W)P(s]X.)*],  (12)

Zl, sEU(W)

where Z{,,; = > w maxscww) P(W)P(s|X,)" is a normaliza-
tion term to ensure )y, Pint(W|X,) = 1. On the other hand, in

4856



the case of the MAP-based decoding framework, P.(W|X,,) should
be calculated as

Prnop(WIX,) = 5[ max P(WIs)P(s/X..)"),
map S

13)

where Z3,,, = > w Maxscw(w) P(W]s)P(s|X,)® is a normal-
ization term to ensure Y v Prap(W|Xy) = 1.

By differentiating 7 2% with respect to y*(c), we obtain

OFMPR nf(e) ¢ o0

— = — Au(c) — Au}, (14)
o~ (o O A
where
¥ (€) =D Bere P(WXy), (15)
W
P GecPAWIXL) AW, W)

Au(c) = ’ , (16)

(c) > w e, e P (WX0,)
%))

Ay =) P.(W[X,) AW, W,).
AY%

Then, the error signal w.r.t. the activation ay (c) of the final softmax
layer is calculated as

E) MBR
PR t) = 5

OFMPR ayp(c)
dap() 2 (@) dai(o)

= o' (e){Au(c) — Au} (18)

Note that Eqs. (14)—(18) are applicable for both P;,+(W|X,) and
Prap(W|X,). Equation (18) can be efficiently calculated by the
forward-backward algorithm over the generated lattices, similar to
the sMBR training of DNN-HMM [15]. The only differences from
the SMBR training for DNN-HMM are (1) the use of P;,+(W|X4,)
or Prap(W|X,) instead of a DNN-HMM based posterior proba-
bility, and (2) the use of the CTC-label-based lattices instead of the
hidden-state-based lattices for the error calculation.

5. EXPERIMENTS

5.1. WSJ experiment
5.1.1. Experimental settings

The first experiment was conducted on the Wall Street Journal (WSJ)
corpus, known as LDC93S6B and LDC94S13B. We followed the ex-
perimental settings in [12] by using the EESEN software' developed
by the authors of that paper.

The training data were prepared according to the recipe in
EESEN, which gave us 77.5 h of training data with 3.8 h of cross-
validation data. A phoneme-based bidirectional long-short-term
memory (BLSTM) with four hidden layers, each comprising 320
nodes, was trained on the 120-dimensional filter-bank features (40
filter-bank features+A + AA) with mean and variance normaliza-
tion (MVN). First, the BLSTM was trained from scratch based on
FCTC The initial learning rate and momentum parameter were set
to 0.00004 and 0.95, respectively. After training the CTC-BLSTM
AM, lattices were generated based on the AM using a 1-gram WLM
trained from transcriptions in the training data with a scaling fac-
tor of « = 1.0. In addition, when generating the lattices for the
MAP-based framework, a bigram SLM that had been trained using
the phoneme-converted transcription of the training data for AMs
was used with 8 = 0.5. Finally, five epochs of MBR training were

Uhttps://github.com/srvk/eesen
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Fig. 1. Effect of MBR training for WSJ test set.
Table 1. WER of various networks for WSJ eval92.

AM LM Framework | WER (%)
phone-CTC 3-gram Interpolation 8.5
MAP 7.5
phone-MBR-CTC 3-gram Interpolation 7.4
MAP 7.0
Miao et al. [12]
CE-DNN-HMM  3-gram - 7.1
phn-CTC Dictionary  Interpolation (*) 26.9
phn-CTC 3-gram Interpolation(*) 7.9
char-CTC 3-gram Interpolation< *) 9.1
Bahdanau et al. 18]
char-Enc-Dec 3-gram Interpolation 10.8

(*) A frame-wise prior was applied on the CTC score.

conducted with a fixed learning rate of 0.000001 and a momentum
parameter of 0.9.

For the evaluation, the WSJ standard pruned trigram LM (20K
vocabularies) was used for WLM. In addition, a bigram SLM was
used for the MAP-based decoding in accordance with our previous
investigation [17]. When decoding, the parameters (scaling factors
a, B and word insertion penalty) were tuned by “dev93” and the best
parameters were used to decode “eval92”.

5.1.2. Results

The effects of MBR training with “dev93” and “eval92” are shown
in Fig. 1. In this figure, the O-iteration of MBR-training denotes the
normal CTC-AM trained based on 7, When decoding with the
normal CTC-AM, the MAP-based decoding framework achieved a
much better word error rate (WER) (7.5%) than the interpolation-
based decoding (8.5%). By applying the MBR training, the WERs
were further improved in both conditions, and the MAP-based de-
coding still achieved a better WER, even after the MBR training. In
this dataset, simply applying MAP-based decoding on normal CTC-
AM achieved almost the same effect as the (more complicated) MBR
training for interpolation-based decoding.

Compared with the interpolation-based decoding framework,
the improvement offered by MBR training in the MAP-based de-
coding framework was smaller. This was within our expectation.
Our interpretation is as follows — In the interpolation-based decod-
ing framework, there was a huge mismatch between what CTC-AM
calculated and how the hypothesis score was calculated. Applying
MBR-training in the interpolation-based framework resolves this
mismatch to some extent, as reflected in the large improvement
in WERs. On the contrary, because MAP-based decoding already
uses the CTC-AM score in a sound way, and because the training
criterion F¢T is already a “sequence discriminative” criterion,
there is less room for improvement than in the interpolation-based
framework.
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Fig. 2. Effect of MBR training for CSJ test set (avg.).

Table 2. WER of CSJ (avg.) with various N-gram order of WLM in
lattice generation for the MBR training.

Framework no-MBR  l-gram  2-gram  3-gram
Interpolation 11.08 10.18 9.77 9.83
MAP 10.26 10.02 9.63 9.66

In Table 1, we have listed the results for “eval92” against those
of representative previous methods using end-to-end AMs [12, 18].
To the best of our knowledge, our WSJ result is the best among the
literatures using end-to-end type AMs. Although the WER in the ta-
ble is not competitive with state-of-the-art results using DNN-HMM,
the next section shows that a large training data is essential to achieve
good results with CTC-AM.

5.2. CSJ experiment
5.2.1. Experimental settings

We also conducted an evaluation using the “Corpus of Spontaneous
Japanese” (CSJ) [19], which consists of over 600 h of lecture record-
ings. The corpus contains three official evaluation sets (E1, E2, and
E3), each comprising 10 lecture recordings. We selected 10 lecture
recordings as the development set to tune the system parameters, and
used the rest of the data in CSJ (591 h of lecture recordings) for the
training process.

As the baseline model, we trained a DNN-HMM with five hid-
den layers, each comprising 2,048 nodes. The output layer had 8,407
nodes, corresponding to the clustered context-dependent phoneme
HMM states. As acoustic features, we used 72-dimensional filter-
bank features (24 filter-bank features+A + AA) with MVN applied
to each speaker. The features of both the previous and subsequent
seven frames were concatenated when input to the DNNs. The DNN
was initialized using discriminative pre-training [20] and was fine-
tuned using stochastic gradient descent based on the cross-entropy
(CE) loss criterion. After training the CE-DNN, we additionally con-
ducted five epochs of sMBR training [15].

The CTC-BLSTM was then trained based on the same 72-
dimensional filter-bank features with no splicing. In this experiment,
we used 263 Japanese syllables (or “kana”) for the recognition unit.
A BLSTM with five hidden layers, each comprising 320 nodes,
was used. The BLSTM was first trained from scratch based on
FCTC  The initial learning rate and momentum parameter were set
to 0.00004 and 0.9, respectively. After training the CTC-BLSTM
AM, we conducted MBR training starting from the AM. A similar
recipe as for the WSJ experiment was used for MBR training, but
with a 2-gram WLM used for lattice generation. The effect of the
order of the WLM in lattice generation will be discussed later.

For the evaluation, we trained a 4-gram WLM from the tran-
scription of the training data with Kneser—Ney smoothing [21]. The
WLM had a vocabulary size of 98K words. We also trained a 2-gram
SLM for the MAP-based decoding from the syllable-level transcrip-
tion of the training data. When decoding, we tuned the scaling fac-

Table 3. WERs for the CSJ test sets.

AM Decoding WER (%)
Framework El E2 E3 E (avg.)
CE-DNN-HMM - 12.19  9.80 11.01 11.00
sMBR-DNN-HMM - 11.17  9.05 9.92 10.05
CTC Interpolation  12.81  9.75 10.67 11.08
MAP 11.88 9.23 9.67 10.26
MBR-CTC Interpolation  11.38  8.85 9.09 9.77
MAP 11.07 8.79 9.04 9.63
16 5, --#=- CE-DNN-HMM
15 > —>—sMBR-DNN-HMM
" -<--CTC (MAP)
— 14 .. |—e—MBR-CTC (MAP)
X 2
13 S
o
w 12
11
10
9

40 80 160 320 640

Training Data (hour)
Fig. 3. Relation between WER and training data size in CSJ (avg.).

tors av, 3, and the word insertion penalty using the development set.
The best parameters were then used to decode the evaluation sets.

5.2.2. Results

The effect of the MBR training is shown in Fig. 2. Asin the WSJ ex-
periment, MBR training substantially improved the WER, and MAP-
based decoding achieved better results than the interpolation-based
decoding framework. Table 2 demonstrates the effect of the N-
gram order of the WLM when generating the lattices for the MBR-
training. In this dataset, 2-gram or 3-gram WLMs achieved slightly
better results than the 1-gram model. A similar phenomenon was re-
ported for the sequence discriminative training of DNN-HMM [22].
Note that the 2-gram WLM was also used for the SMBR training of
DNN-HMM in our experiments.

Table 3 lists the detailed results for various AMs and decoding
frameworks. Although the differences between the two decoding
frameworks became small after the MBR training, MAP-based de-
coding consistently achieved better results for all evaluation sets. In
addition, the MBR-CTC AM with the MAP-based decoding frame-
work outperformed the SMBR-DNN-HMM.

Finally, to evaluate the effect of training data size, we conducted
the same experiment with 67-h and 240-h subsets of the training
data. The results are plotted in Fig. 3. Although CTC-AM was
much worse than DNN-HMM when the data size was small, CTC-
AM showed large reduction of WERs according to the increase of
data, finally producing better results with 591 h of training data. This
strongly suggests that CTC-AM will achieve much better results than
DNN-HMM when more training data are added.

6. CONCLUSION

In this paper, we investigated the MBR-training of CTC-AM based
on the MAP-based decoding framework. In our experiments, the
MAP based decoding framework consistently achieved better results
than the conventional interpolation-based framework, even after the
MBR training. We also showed that the size of the training data is a
critical factor in achieving good results under CTC-AM.
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