
STIMULATED TRAINING FOR AUTOMATIC SPEECH RECOGNITION AND
KEYWORD SEARCH IN LIMITED RESOURCE CONDITIONS

A. Ragni, C. Wu, M. J. F. Gales, J. Vasilakes, K. M. Knill

Department of Engineering, University of Cambridge
Trumpington Street, Cambridge CB2 1PZ, UK

{ar527,cw564,mjfg,jav39,kate.knill}@eng.cam.ac.uk

ABSTRACT

Training neural network acoustic models on limited quantities of
data is a challenging task. A number of techniques have been pro-
posed to improve generalisation. This paper investigates one such
technique called stimulated training. It enables standard criteria such
as cross-entropy to enforce spatial constraints on activations origi-
nating from different units. Having different regions being active
depending on the input unit may help network to discriminate better
and as a consequence yield lower error rates. This paper investigates
stimulated training for automatic speech recognition of a number
of languages representing different families, alphabets, phone sets
and vocabulary sizes. In particular, it looks at ensembles of stimu-
lated networks to ensure that improved generalisation will withstand
system combination effects. In order to assess stimulated training
beyond 1-best transcription accuracy, this paper looks at keyword
search as a proxy for assessing quality of lattices. Experiments are
conducted on IARPA Babel program languages including the sur-
prise language of OpenKWS 2016 competition.

Index Terms— limited resources, stimulated training, joint de-
coding, keyword search

1. INTRODUCTION

There are several important issues one needs to address when train-
ing neural network acoustic models. For small sample problems that
arise in limited resource conditions generalisation may be one of
the most important issues. As the amount of data gradually de-
creases, standard procedures for building automatic speech recog-
nition (ASR) systems yield less and less accurate transcriptions [1].
Another related issue is that of a model complexity control [2] that
becomes particularly acute with these forms of models. Finally,
non-convex optimisation makes parameter initialisation important.
A lot of work has been done to address these inter-connecting is-
sues. For instance, approaches examined for network initialisation
range from using generative model pre-training [3], monophone ini-
tialisation [4] to the use of multi-language data [5]. Rather than us-
ing monophone networks for initialisation only, it is also possible to
train a network with both monophone and context-dependent output

This work was supported by the Intelligence Advanced Research
Projects Activity (IARPA) via Department of Defense U. S. Army Research
Laboratory (DoD/ARL) contract number W911NF-12-C-0012. The U. S.
Government is authorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright annotation thereon. Dis-
claimer: The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of IARPA, DoD/ARL, or the
U. S. Government.

layers [6]. A similar approach is often used to train multi-language
networks [7]. These multi-task networks are expected to yield rep-
resentations that generalise better due to the need to solve multiple
tasks simultaneously [8]. Another group of approaches attempts to
increase the amount of training data. The extra data may come from
various sources such as other languages [5], untranscribed data [9],
waveform [10] or parameter sequence [11, 12] perturbation. Finally,
the most related to this work is a group that enhances generalisation
through a modification of the standard training process. Examples
include dropout [13] and stimulated training [14, 15]. Procedurally,
the dropout consists of randomly eliminating activation function val-
ues during training. This is supposed to improve generalisation since
it encourages a network to learn robust representations. Stimulated
training [14, 15], in addition to robustness, addresses another issue
that all neural networks have in speech processing. This is a poor in-
terpretability of quantities such as network weights and activations.
By organising activations into a grid with superimposed phone tar-
gets, the stimulated training enables representations to be learnt that
yield high activations for any given phone only in the vicinity of that
phone superimposed on the grid.

The previous work with stimulated training has looked at both
interpretability [14] as well as generalisation for ASR of English
and Javanese [15]. There are a number of important questions that
remain to be answered. The nature of the phones superimposed
on the grid is fundamental to stimulated training. Are language
independent attributes, such as position in a word or syllable, as
well as language dependent attributes, such as diacritics in languages
like Pashto, of any use in producing representations that generalises
well? It would be interesting to see how well stimulated training
can handle model complexity issues such as network size. Another
question is whether gains seen from stimulated training of systems
would translate over to ensembles. Finally, in applications beyond
1-best transcription, the quality of generated lattices is of a more
paramount importance. This paper looks at keyword search as a
proxy. Experiments are conducted on 8 option period 3 languages
of the IARPA Babel program including the surprise language of the
OpenKWS 2016 competition.

The rest of the paper is organised as follows. Section 2 describes
stimulated training. Section 3 discusses the choice of units for em-
bedding into the grid. Experimental results are presented in Sec-
tion 4. Conclusions drawn from this work are given in Section 5.

2. STIMULATED TRAINING

A number of different neural networks have been examined for
acoustic modelling in speech recognition [16, 17]. Among them,
a feed-forward form is one of the simplest. This network applies
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layers of non-linear transformations to the input observation o to
yield a distribution over targets at the output

θ = σ(L)(σ(L−1)(. . .σ(1)(W(1)o+b(1))+b(L−1))+b(L)) (1)

where b(l), W(l) and σ(l) are bias, weight matrix and non-linear
transformation associated with the l-th layer, θi = P (S = i|o)
is the posterior probability of the i-th target given observation o.
Targets typically correspond to hidden Markov model (HMM) states
with probability density functions given by

p(o|s) = 1

P (s)
P (s|o)p(o) (2)

where state s prior P (s) is usually estimated from training counts
and the distribution of observations p(o) is usually set to a con-
stant. The feed-forward networks are usually trained in stages. The
first stage optimises a frame-level objective function such as cross-
entropy

L(λ) = − 1

T

T∑
t=1

log(P (st|ot)) (3)

where λ are network parameters. The second stage optimises a
sequence-level objective function such as minimum Bayes risk

L(λ) = 1

R

R∑
r=1

∑
w

P (w|O(r))`(w,w
(r)
ref) (4)

whereR is the number of sequences, wref and O are reference word
and observation sequences, ` is a loss function that may be defined
at various levels such as state and phone [18].

One standard issue with these forms of models is a poor inter-
pretability. Consider, for example, an 1024-dimensional output from
one of the non-linearities arranged in a two-dimensional 32×32 grid
in Figure 1 (a). There, bright regions, corresponding to high activa-

(a) Unstimulated Activations (b) Stimulated Activations

Fig. 1. A typical impact of stimulated training on activations

tions, are scattered all over the place as one would expect from a dis-
tributed representation. Unfortunately, this may cause issues for reg-
ularisation and speaker adaptation as it is hard to relate one weight
to another [15]. Although various approaches have been proposed
to visualise feature space transformations [19, 20], they rarely focus
on how to modify network behaviour simply by altering the space.
Stimulated training [14, 15], in contrast, attempts to encourage ac-
tivations to group in an interpretable way. Consider superimposing
a phone set on the grid, which is roughly divided in half with vow-
els clustered at the bottom and consonants at the top, as shown in
Figure 2. If activations corresponding to the vowels could have been
enhanced at the top and weakened at the bottom such an approach
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Fig. 2. Superimposed phone set

would have not only improved interpretability of the network but
also encouraged better discrimination. This is exactly what stimu-
lated training does but at even a finer phone level. Figure 1 (b) shows
activation pattern corresponding to observation of phone /ay/. As
can be seen activations are the highest in the vicinity of the phone.

Stimulated training can be implemented as a simple modification
to the standard training procedure. Consider augmenting an objec-
tive function, such as equation (3) or (4), with a regularisation term

F(λ) = L(λ) + αR(λ) (5)

where R(λ) is the average per frame Kullback-Leibler divergence
from normalised activation to a phone-specific prior given by

R(λ) = 1

T

T∑
t=1

L∑
l=1

N(l)∑
i=1

g(s
(l)
i , s

(l)
pt ) log

(
g(s

(l)
i , s

(l)
pt )

σ
(l)
i,t

)
(6)

The normalised activation is given by

σ
(l)
i,t =

σ
(l)
i,tβ

(l)
i∑N(l)

j=1 σ
(l)
j,tβ

(l)
j

(7)

where β(l)
i reflects the importance of activation σ(l)

i,t at time t to the
weights of the following layer

β
(l)
i =

√√√√N(l+1)∑
j=1

W
(l+1)2

i,j (8)

The phone-specific prior

g(s
(l)
i , s

(l)
pt ) =

exp
(
− 1

2γ2
‖s(l)i − s

(l)
pt ‖22

)
∑N(l)

j=1 exp
(
− 1

2γ2
‖s(l)j − s

(l)
pt ‖22

) (9)

is the normalised distance of the i-th activation to the target phone
at time t with γ controlling smoothness. There are few options how
activations can be arranged in a grid to map any individual activation
σ
(l)
i to its position on the two-dimensional grid s

(l)
i . However, there

is a great flexibility in arranging phones to map any individual phone
p to its position s

(l)
p on the grid. One option is to used data-driven

approaches such as t-SNE [21]. This consists of collecting phone-
specific first and second order statistics in the observation space and
then projecting it down to the two-dimensional grid space. Figure 2
shown earlier is an example of a typical projection.
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3. UNIT SELECTION

The choice of a phone set is of fundamental importance as it de-
fines the space where regularisation is performed. Standard phonetic
lexica provide many interesting choices. Consider for a example an
entry from a Cantonese dictionary

g^II aM^MF;3 f^MI EM^FF;1

Here, each character represents a syllable and maps into two
phonemes. There are two sorts of extra phone information: po-
sition and tone. The former offers information about position within
a word and syllable after a caret symbol (^). Letters I, M, F are used
to denote initial, middle and final position respectively. Hence, MI
stands for the first phone of a syllable that is located in the middle
of a word. The tones are specified using their numeric value after a
semi-colon (;). Both position and tone may have a large impact on
phonetic realisation with the latter being also linked with semantics.

For limited resource languages orthographic dictionaries are
a popular alternative as they typically do not require expert pho-
netic knowledge to make [1]. These make use of written symbols,
graphemes, to construct “pronunciation“. Typically, rules are en-
forced to handle special cases such as signs and diacritics in lan-
guages like Kazakh and Pashto. Consider an example from Kazakh
showing a phonetic and orthographic entry for English word seven

семь sAP^IIP e^MMP mAP^FFP
семь G41^IIP;D2 G10^MMP;D2 G30^MMP;D2D8

where P is a primary stress that illustrates another type of posi-
tional information. The place of phones in the orthographic entry are
taken by graphemes G1, G2, etc. In contrast to Cantonese, Kazakh
graphemes carry attributes such as script (D2 for Cyrillic) and sign.
The soft sign ь despite being marked in the orthography is treated
similar to a diacritic by altering the preceding grapheme with an at-
tribute D8. Another example is from Pashto, which illustrates the
use of attributes to communicate diacritics

G1 G10 G24 G1 G21 G14 G6

G1 G10 G24 G1 G21 G14 G6;DF

G1 G10 G24 G1 G21 G14 G6;DT

where DF stands for Farsi (letter) and DT stands for tail dia-
critic. Other attributes include non-full letters (hamza), diacritics
(madda), nunations (fathatan).

The decision tree construction may also have an impact on what
is the best unit for grid generation. In limited resource conditions
state-specific [22, 23] decision trees may be preferred over state and
grapheme specific [24] trees as they enable model synthesis for un-
seen graphemes. Although questions regarding grapheme identity
may be asked, there is no guarantee that different graphemes may
not end up in the same leaf node. This issue makes separation of
these graphemes impossible, which may also complicate stimulated
training when identical targets map to different regions on the grid.

Thus, the use of ‘pure‘ phone or grapheme sets may not be the
best choice for grid generation. Although, the state-specific decision
tree issue may not be easy to address it is possible to examine the
usefulness of extra phone/grapheme information.

4. EXPERIMENTS

Experiments in this section were conducted on 7 development lan-
guages and 1 surprise, Georgian, language of the IARPA Babel

program in the option period 3.1 Table 1 provides basic informa-
tion about each language. For all languages an automatic, unicode

Language Family System Script Graphemes
Pashto Indo-European Abjad Arabic 47

Guarani Tupian Alphabet Latin 71†

Igbo Niger-Congo Alphabet Latin 52†

Amharic Afro-Asiatic Abugida Ethiopic 247
Mongolian Mongolic Alphabet Cyrillic 66†

Javanese Austronesian Alphabet Latin 52†

Dholuo Nilo-Saharan Alphabet Latin 52†

Georgian Kartvelian Alphabet Mkhedruli 33

Table 1. Summary of languages used in this study

based, graphemic dictionary generation [1] was applied. ‘Pure‘
graphemes are appended with position information and language
dependent attributes. Scripts marked with † utilise capital letters.
Amharic graphs represent consonant-vowel sequences where vow-
els are clearly marked. Splitting each such graph into two yields 77
graphemes including singleton graphs.

A full language pack (FLP) was used for each language. This
consists of 40 hours of conversational telephone speech (CTS). An
additional 10 hours are available for development. Language mod-
els (LM) are standard n-grams and recurrent neural networks (RNN)
trained using the CUED RNN LM toolkit [25]. These were trained
on acoustic data transcripts containing about 500,000 words. Addi-
tional n-gram LMs were trained on data scraped by Columbia Uni-
versity from the internet [26]. These web LMs were then interpo-
lated with the FLP LMs by optimising weights on the development
data. Acoustic models are speaker adaptively trained Tandems and
(stacked) Hybrids which share the same set of features. Features
are a concatenation of perceptual linear prediction coefficients [27],
pitch [28], probability of voicing [28] and multi-language bottleneck
(BN) features extracted by IBM and RWTH Aachen. These were
trained on FLP data of 24 Babel languages and CTS data of 4 addi-
tional languages, English, Spanish, Arabic and Mandarin, released
by LDC. IBM features are language independent whereas RWTH
Aachen additionally fine-tuned their BN extractors to each target
language. Thus a total of 4 acoustic models were built for each lan-
guage as illustrated by Figure 3. Stacked Hybrids were trained with
and without stimulated training using monophone initialisation fol-
lowed by cross-entropy training and Minimum Phone Error training
[24]. Unless otherwise stated, the grids for stimulated training were
built using the sets of graphemes extended with position information
and attributes. The regularisation term weight α in equation (5) was
set to 0.1. In order to achieve high accuracy of transcription the final
system combined all 4 acoustic models. In order to avoid decoding
the data 4 times, a single joint decoding was used [4]. As shown in
Figure 3, joint decoding combines acoustic models at test time. The
combination is performed in the log-likelihood domain

log(p(o|s;Λ))← α1 log(p(o|s;λ1))+ . . .+αN log(p(o|s;λN ))
(10)

where α1, . . ., αN are acoustic model weights set in this work to
0.125 for Tandem and 0.5 for Hybrid. The same approach, excluding
Tandems, produced hypotheses refined with RNN LMs for speaker

1Pashto IARPA-babel104b-v0.4bY, Guarani IARPA-babel305b-v1.0a, Igbo
IARPA-babel306b-v2.0c, Amharic IARPA-babel307b-v1.0b, Mongolian IARPA-
babel401b-v2.0b, Javanese IARPA-babel402b-v1.0b, Dholuo IARPA-babel403b-v1.0b,
Georgian IARPA-babel404b-v1.0a
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Fig. 3. 4-way Joint Decoding

adaptation. Keyword search is performed using joint decoding lat-
tices pruned to yield on average 20,000 arcs

s
densities. About 2,000

keywords available for each language [29]. The performance is mea-
sured using maximum term weighted value (MTWV).

The first experiment looked at the importance of position and
attribute information for Pashto, which provides the most interesting
set of attributes. A simpler cross-entropy Hybrid trained on RWTH
Aachen BN features and FLP language model were used. The grid
size is 32 × 32 which corresponds to 1024 activation functions.
Table 2 summarises token error rate (TER) results for all possible
combinations. Stimulated training shown on lines 2-5 shows gains

Position Attribute Graphemes TER (%)
– – – 48.4
7 7 37 48.0
3 7 107 48.0
7 3 49 48.0
3 3 137 48.1

Table 2. Impact of position and attribute information on stimulating
training ASR performance in Pashto.

over standard training shown on line 1. Among different combina-
tions of word position and attribute information it seems that simpler
grapheme sets with position or attribute only or none information
show marginally better results. Such results may be explained by a
rather small size of training data which does not permit robust rep-
resentations to be derived that discriminate well.

The second experiment compared standard and stimulated train-
ing on all languages in a more challenging configuration combining
4 acoustic models and interpolated FLP and web data LMs in a single
joint decoding run. The overall MTWV results are presented along-
side in-vocabulary (IV) and out-of-vocabulary (OOV) query only re-
sults. Such a split is useful to assess whether an additional sub-word
decoding is needed to improve performance on OOV queries which
are otherwise searched in a generally less accurate phone index. The
results in Table 3 show that ASR gains are seen even after system
combination for all languages. Similarly, gains can be seen in KWS
performance for all languages which can be as small as 0.0012 for
Igbo and as large as 0.0119 for Mongolian.

Language Stimulated TER MTWV
(%) IV OOV Total

Pashto 7 44.6 0.4720 0.3986 0.4644
3 44.4 0.4752 0.4032 0.4672

Guarani 7 45.2 0.5823 0.5614 0.5800
3 44.9 0.5885 0.5712 0.5869

Igbo 7 55.3 0.4007 0.3673 0.3974
3 55.1 0.4020 0.3680 0.3986

Amharic 7 41.1 0.6500 0.5828 0.6402
3 40.8 0.6619 0.5935 0.6521

Mongolian 7 47.8 0.5382 0.4805 0.5316
3 47.6 0.5497 0.4910 0.5431

Javanese 7 50.9 0.4991 0.4448 0.4924
3 50.7 0.5024 0.4679 0.4993

Dholuo 7 38.5 0.6547 0.5551 0.6434
3 38.3 0.6563 0.5585 0.6451

Georgian 7 39.4 0.7184 0.7066 0.7179
3 38.9 0.7275 0.7197 0.7265

Table 3. Stimulated training performance on all languages

Experiments have so far examined a 32 × 32 grid. In order to
assess whether stimulated training scales with increasing the grid
size another experiment was performed on the 4 most challenging
languages. The use of a larger 45 × 45 grid in Table 4 shows ASR

Language Grid TER MTWV
(%) IV OOV Total

Pashto
32× 32 44.4 0.4752 0.4032 0.4672
45× 45 43.8 0.4828 0.4083 0.4750

Igbo
32× 32 55.1 0.4020 0.3680 0.3986
45× 45 54.7 0.4071 0.3680 0.4026
55× 55 54.6 0.4079 0.3555 0.4024

Mongolian
32× 32 47.6 0.5497 0.4910 0.5431
45× 45 46.8 0.5606 0.5171 0.5559

Javanese
32× 32 50.7 0.5024 0.4679 0.4993
45× 45 50.5 0.5043 0.4679 0.5001

Table 4. Impact of grid size on four most challenging languages.

and KWS gains for all languages. Further increase in the grid size for
the most challenging language, Igbo, shows little benefit. The results
in Tables 3 and 4 illustrate advantages of stimulated training which
results in good ASR and KWS gains across all examined languages.

5. CONCLUSIONS

Limited resource conditions cause generalisation issues for training
neural network acoustic models. It is also hard to regularise these
models as relationships between quantities such as targets and ac-
tivations are distributed and hard to interpret. One exception is a
stimulated training which enforces spatial ordering such that dif-
ferent phones cause different activations. A total of 8 limited re-
source languages have been considered confirming the benefits of
such training against strong baselines. This paper has also discussed
options for selecting the set of phones or graphemes which may be
extended with additional information such as position, tone, stress,
diacritic, etc. Finally, it confirmed that such training produces not
only better 1-best hypotheses but also lattices by showing improved
performance in keyword search tasks for all examined languages.
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