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ABSTRACT

This paper investigates the effectiveness of knowledge distillation in
the context of multilingual models. We show that with knowledge
distillation, Long Short-Term Memory(LSTM) models can be used
to train standard feed-forward Deep Neural Network (DNN) models
for a variety of low-resource languages. We then examine how the
agreement between the teacher’s best labels and the original labels
affects the student model’s performance. Next, we show that knowl-
edge distillation can be easily applied to semi-supervised learning
to improve model performance. We also propose a promising data
selection method to filter un-transcribed data. Then we focus on
knowledge transfer among DNN models with multilingual features
derived from CNN+DNN, LSTM, VGG, CTC and attention models.
We show that a student model equipped with better input features
not only learns better from the teacher’s labels, but also outperforms
the teacher. Further experiments suggest that by learning from each
other, the original ensemble of various models is able to evolve into
a new ensemble with even better combined performance.

Index Terms— Multilingual, Keyword search, Low-resource
language, LSTM, VGG, CTC, Attention Models

1. INTRODUCTION

The concept of teacher-student for neural network was proposed in
[1] to help investigate why deep neural networks performed better
than shallow neural networks. It was derived from the model com-
pression proposed in [2]: training one model (student) to mimic an-
other model or an ensemble of models (teacher). The methodology
was modified and applied in [3] to compress a large deep neural net-
work (DNN) into a smaller one so that the latter can be fit into hand-
held devices without much loss in performance. Hinton et al. [4]
called this kind of methodology as distilling knowledge. Knowledge
distillation is an active area of research [5, 6, 7, 8, 9, 10]. Some re-
search has focused on whether one type of complex neural network
is necessary or can be replaced by simpler networks [5, 6, 7], while
other research [11] investigates whether a complex model could ben-
efit from a simple one given limited training resources.

Our research on knowledge distillation can be largely divided
into two parts. The first part investigates knowledge transfer from
long short-term memory (LSTM) models [12, 13] to deep neural net-
work (DNN) [14] models. We take the same strategy as described in
[6], where the top soft labels from LSTM are used to train a DNN by
minimizing the cross-entropy of frame based labels. We evaluate the
models for both recognition and keyword search performance. In or-
der to better understand which kind of training data yields the most
benefit from the teacher’s labels, we divide the training data into two

categories. We show that most of the gains from teacher models are
actually from the difficult frames where the teacher disagrees with
the original labels. Moreover, we find that it is important to balance
the easy and difficult data in each mini batch during DNN training to
avoid significant performance loss. We show how this observation
can be used to improve semi-supervised learning of acoustic models.

The second part of our research focuses on knowledge transfer
between models of the same structure yet different input features.
We use five different multilingual (ML) features, either extracted
from different multilingual models directly or derived through differ-
ent monolingual models trained from the same multilingual features.
We show that a student with better ML features is able to outperform
the teacher model just by learning from the teacher’s soft labels. We
will also show that this learning leads to better performance than fea-
ture fusion and sometimes model combination. Moreover, the com-
bination of student model with the teacher model is even better than
that of baseline model and teacher model. That is surprising given
that the models in the new ensemble are more similar to each other
than the original ensemble. It is in a way similar to the observation
in [7]: if each model in the ensemble tries to mimic the average of
the ensemble, each of them can match the ensemble performance.
Our experiments go a step further, showing that the new ensemble
might be able to evolve by encouraging models to learn from each
other.

The rest of the paper is organized as follows. In Section 2, we
explain our implementation of knowledge distillation in detail and
make comparisons to related work. Section 2, gives a background
of multilingual training and the Babel project. In Section 3, experi-
ments on DNN models which learn from LSTM models on various
data sets are be reported in terms of recognition and keyword search
performance. Further analysis on data selection and semi-supervised
learning are also discussed. In Section 4, we turn our attention to
knowledge transfer between models of same structure but different
input features, comparing results with different model combination
methods and investigating possible self-improvement of an ensem-
ble of models.

2. BACKGROUND AND RELATED WORK

Various algorithms have been proposed for transferring knowledge
from teacher models to student models. In [1], a student shallow net
is trained to mimic teacher models by minimizing the L2 loss of log-
its (input of the softmax layer). Li et al. [3] proposes to minimize
the Kullback-Leibler (KL) divergence between the output distribu-
tions of the small-size DNN and a large-size DNN by utilizing large
amounts of un-transcribed data. [5, 6] follows the KL-divergence
criterion but used only a small portion (about 1%) of the top labels
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which cover a large( about 98%) probability mass from the teacher
model as targets. [6] investigated the number of labels and the inter-
polation weight of teacher’s labels with original labels. In this paper,
we took a strategy similar to [6] and use posteriors of top 50 most
likely labels for each prediction of the teacher. We do not interpolate
the teacher’s label with the original labels. The KL-divergence crite-
rion used for training the student model is equivalent to minimizing
the cross entropy of the soft target labels [5].

The work reported in this paper is focused on the IARPA Babel
OP3 evaluation. The system performance is evaluated by term-
weighted value (TWV): a measure that summarizes system per-
formance for a specific assignment of costs to misses and false
alarms [15, 16]. We report results in term of both word error rate
(WER) and the maximum term-weighted value (MTWV) which is
the TWV achieved at the optimal setting of the decision threshold.

The focus of this paper is on improving the performance of mul-
tilingual models. Multilingual models are trained using Multilin-
gual (ML) features and have been the key for achieving good perfor-
mance in ASR and keyword search (KWS) tasks in the Babel pro-
gram [17, 18, 19, 20, 21, 22]. In this work, we use three types of
ML models. The baseline is a two-stage model, using convolutional
neural network (CNN) [23] and DNN components. The bottleneck
(BN) layer of the second DNN is extracted as the ML feature directly
or being used as the input for monolingual CTC [24] and Attention
models [25]. The encoder activations of those models are then ex-
tracted for our experiments. The other two ML models are one-stage
models: very deep convolutional neural network (VGG) [26] and
long short-term memory (LSTM) RNN network.

3. KNOWLEDGE TRANSFER FROM LSTM TO DNN

3.1. Experimental Setup

All experiments were conducted on Babel OP3 languages: the devel-
opment data includes 305 Guarani, 307 Amharic, 403 Dholuo, 104
Pashto, 306 Igbo, 401 Mongolian and 402 Javanese and the surprise
language 404 Georgian. The development languages are included in
multilingual modeling but for the surprise language we only do fine-
tuning of the network. The baseline multilingual (ML) features are
extracted using a BUT-style [27, 17, 28] stacked CNN+DNN struc-
ture. The first-level CNN takes an 11-frame context window con-
taining 40-dimensional log-Mel static+∆ + ∆2 features. The CNN
has two convolutional layers plus 7 fully connected sigmoid layers.
The DNN has 6 sigmoid layers with a [400, 1024, 1024, 80, 1024,
3000, 3000] architecture.

The input of the second stage DNN is the BN layer from CNN
with expanded context. The BN layer extracted from the second
DNN is used as baseline ML features without fine tuning. The ML
model is trained with 24 Babel full language packs and the additional
four LDC languages (English, Spanish, Mandarin, and Arabic). This
feature (called ML28) will be used to train all models in this section.

We build two types of monolingual models with the ML input
features. One of them is a regular DNN model. It has a structure
[80,1024,1024,1024,1024,256,3000], three ReLU layers followed
by one sigmoid and one linear layer. The baseline DNN is tuned
with different learning rates and the best one selected. The student
DNN has the same structure except with 2048 nodes in each hidden
layer instead of 1024.

The teacher model we use is a LSTM with 4 bi-directional lay-
ers and a projection layer of size 256 at the end. Each layer has
1024 hidden units. The LSTM is trained only with cross-entropy
criterion and implemented with Theano. All DNN models on tar-

get languages are speaker independent models. They are trained
with The IBM Attila Speech Recognition Toolkit [29] in the follow-
ing three steps [30, 31, 32, 33]: (1) layer-wise discriminative pre-
training using stochastic gradient and cross-entropy loss, (2) train-
ing using stochastic gradient and cross-entropy (XENT) loss, and (3)
training using distributed Hessian-free (HF) optimization and state-
level minimum Bayes risk (sMBR) loss. Teacher-student learning in
this paper only happens at the pre-training and XENT training step.
All sMBR training uses the original labels. We settled on using the
top 50 labels empirically from experiments on Pashto where the true
label was in the 50-best 97% of the time.

3.2. Student Models Evaluated by WER and MTWV

We begin with Pashto experiments. Both teacher and student models
take ML28 as input features. Table 1 shows the performance of base-
line and student models without sMBR training. The LSTM gives
WER better than baseline model (53.7% vs. 54.9%). The student
model improves on both XENT and Phone error rate (PER), as well
as the WER ( -0.9%). In order to check if the gain comes from the
larger model size, we also tried different model sizes (1K or 2K hid-
den units) for baseline and students (reported in the last two rows in
Table 1). We find that increasing parameters doesn’t affect baseline
model but improves student model significantly, which is consistent
with the observation from [1].

Data XENT PER WER
Baseline 2.23 50.1 54.9
Teacher - - 53.7
Student 2.20 49.3 54.0
Baseline w/ 2K 2.27 50 54.7
Student w/ 1K 2.23 49.8 54.7

Table 1. Comparing DNN baseline and student models learned from
LSTM on Pashto

After sequence training, the student Pashto model is still 0.6%
better than the baseline model, and the MTWV also improves 0.5%.
Figure 1 shows the improvement of all student models on Babel OP3
development languages in terms of WER in blue (the lower the bet-
ter) and MTWV in yellow (the higher the better). The gains are not
even over all languages. For Javanese, the WER drops 1.1% and
MTWV increases 1%, while for Igbo, student model is almost the
same as the baseline. It might make sense given that the teacher
LSTM model itself doesn’t improve over the baseline XENT model
for that language while all other teacher models are better than the
baseline XENT models. Igbo also has the highest WER(about 58
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Fig. 1. Improvement from student models in terms of WER and
MTWV
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3.3. Training Data Analysis

In this set of experiments, we divide all Pashto training data into
two categories: an easy one where original labels are consistent with
the teacher’s best choices (Data-easy) and a difficult one where they
differ (Data-diff). About 60% of the training data frames are easy
with ∼40% difficult as showed in Figure 2. We build baseline and
student models respectively on different categories of data. We find
that the student model improves more on Data-diff partition. If we
continue training with all of the data and teacher labels, the model
that started with Data-easy soft labeled data yields the same results
as the original student model, while the one started with Data-diff
and original labels ends up 2% absolute worse in WER. We may
need larger models to learn well from the difficult data.

Easy Difficult

52
53
54
55
56
57
58
59
60
61

baseline student
52
53
54
55
56
57
58
59
60
61

baseline student

Fig. 2. Build baseline and student models on different data cate-
gories on Pashto

3.4. Semi-supervised Learning

Traditional semi-supervised learning transcribes the unlabeled data
automatically with a trained ASR model, then filters the data or down
scales it before mixing it with the original transcribed data. There
we use the student sequence trained model (row 3 in Table(2), with
WER 40.8%) to label the un-transcribed Georgian data (about 40
hours), we then build a model on this data only (U-auto), we end up
with WER 46.3% which is worse than the baseline 45.8%. Results
from these semi-supervised experiments are reported in Table2.

When we use LSTM to assign labels to these data and only se-
lect those whose teacher’s best labels are consistent with the auto
assigned labels (Uc), we can improve the baseline by simply adding
these data into the transcribed data (45.6% v.s. 45.8%). This shows
that choosing the easy frames is a promising method for data selec-
tion of unlabeled data.

Model and Data WER(XENT/sMBR/)/MTWV
DNN: T-original 45.8/41.6/0.6947
LSTM: T-original 43.8
Student1: T-teacher 44.6/40.8/0.6997
DNN: U-auto 46.3
DNN: T-original+Uc-original 45.6
Student2: U-teacher 44.8
Student3: (T+U)-teacher 44.2/40.2/0.7029
Student1: (L+Uc)-teacher 44.2

Table 2. Semi-supervised learning on Georgian

If we only apply teacher-student model to unlabeled data as in
[3], we can see significant gains from un-transcribed data. Table
2 shows that using un-transcribed data alone yield 44.8% WER,
better than the baseline 45.8% and close to the student model
trained on transcribed data 44.6%. When we combine both data, the
WER improves to 44.2% and with sequence training yields 40.2%.

The keyword search performance is also improved from 0.6997 to
0.7029%. However, removing the difficult automatically transcribed
data doesn’t seem to help (last row).

4. LEARNING WITHIN ENSEMBLES

4.1. Learning from the Baseline sMBR Model

Since the baseline sMBR model yields better performance, we won-
der whether it can be used as a teacher and if yes, what knowledge
will it pass to the student. Figure 3) shows the experimental re-
sult. The first bar is the baseline sMBR model, gives WER 52.0%.
The student model starts from random initialization, learning from
the soft labels provided by the baseline sMBR. After cross-entropy
training, the student model gives a very good WER (52.3%), almost
matches the teacher’s performance and much better than the student
learning from LSTM (54.0%). However, the follow-up sMBR train-
ing only yields a slight improvement, while the student learning from
LSTMs can improve all the way to 51.3%. There are two obser-
vations: first, a model can be trained with cross-entropy criterion
to reach the point that only sequence training can reach by learn-
ing from soft labels. This might suggest that the soft labels include
some sequence information; second, the model learning from its own
sMBR model could not outperform its own best result without new
knowledge.
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Fig. 3. Learning from the baseline sMBR model on Pashto

4.2. Various Multilingual Features for Georgian

In the following part of this section, we focus on DNN models with
different input features. We will compare performance of single
model as well as system combination implemented by unweighted
posterior averaging. We will check if the models, by learning from
one another, can improve the combination performance.

There are three multilingual (ML) models. The first one is the
baseline as introduced in the previous section. The other two are
LSTM and VGG ML models, both trained with 24 Babel languages
only. The LSTM model has 4 bidirectional LSTM layers with 512
units per direction, a linear bottleneck layer with 256 units and a
3000-unit output layer. It is fined tuned with Georgian training data
only. The VGG model [26, 34, 35, 36] comprises 12 convolutional
layers, with a max-pooling layer inserted after every 3 convolutional
layers, followed by 5 fully connected layers. All hidden layers are
ReLU. It is fine-tuned by a mixture of Georgian and the original
training data. There are also two derived ML features, CTC[37] and
Attention[25]. Both are monolingual Georgian models trained with
ML24 (CNN+DNN but with only 24 languages) features fused with
ML features from RWTH. The encoder activations from CTC and
Attention models are extracted as derived ML features. Again, all
those features are used as input for DNN training on Georgian data.
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4.3. DNN Learning From DNN

Table 3 shows a set of experiments with DNN models learning from
each other. The sequence trained models are used as teachers. The
student models are randomly initialized and trained with teacher la-
bels for pre-training and XENT training. The first three rows are
baseline models trained with original hard labels and with different
input features. The fourth and fifth rows show the student models
with ML28 as input, learning from soft labels generated by DNN
sMBR models trained with CTC and Attention features respectively.
We can see that both student models improve WER at the XENT
step, beating the baseline performance but not that of the teachers.
Sequence training of students gives further improvement in terms of
WER, but not always on MTWV. As in Section 3.2 where Igbo’s
teacher model is not as good as the baseline, here we notice that
the Attention sMBR model doesn’t outperform the baseline sMBR
model.

To investigate whether the teacher has to be better than the stu-
dent, we conduct further experiments as showed in the second group
of experiments in Table 3. fVGG is a strong ML feature. It’s own
baseline is better than the student1 model (cf. Section 4.2): 39.8%
v.s. 40.8%. To our surprise, the student model outperforms the
teacher model even before doing sequence training, reaching WER
40.0%, almost the same as the original sMBR model performance
(39.8%), 0.8% better than the teacher performance (40.8%). In or-
der to check if this gain is only from the sequence training, we con-
tinue sMBR training on the student model and it yields another 1.1%
WER improvement. The impact on keyword search performance is
also significant from 0.7055 to 0.7163.

Model XENT sMBR
WER (WER/MTWV)

ML28 45.1 41.6/0.6947
CTC - 40.6/0.6889
ATT - 43.9/0.6541
ML28-learn-from-CTC 41.6 40.0/0.7086
ML28-learn-from-ATT 42.8 41.1/0.6930
ML28-learn-from-LSTM(stu1) 44.2 40.8/0.6997
fVGG 42.7 39.8/0.7055
fVGG-learn-from-stu1 40.0 38.9/0.7163

Table 3. DNN learning from DNN on Georgian

4.4. Ensemble Evolution

Encouraged by our previous observation that a student can outper-
form the teacher, we continue to investigate if the ensemble of the
teacher and student models could perform better than the ensem-
ble of the teacher and the baseline models. In other words, when a
model in an ensemble improves itself by learning from models in the
same ensemble, will the combined performance of the ensemble be
improved or not?

Table 4 presents four groups of experimental results A denotes
the teacher model, B denotes a baseline model and B’ denotes the
student model. B and B’ take the same input features but learned
from original labels and teacher labels respectively. The ’+’ symbol
denotes system combination with posterior interpolation. In each of
these experiments, the student model outperforms its own baseline
and the new ensemble A+B’ outperforms the old ensemble A+B in
terms of MTWV. An interesting observation is that fVGG learns bet-
ter from the CTC model than from a better teacher fLSTM or stu1
model (0.7194 vs 0.7163 and 0.7147). Also, the student model itself

can sometimes beat the combination of the two baseline models as
showed in the third row of Table 4.

A B A+B B’ A+B’
stu1 0.6997 fVGG 0.7055 0.7203 0.7163 0.7228
fLSTM 0.6993 fVGG 0.7066 0.7268 0.7147 0.7323
CTC 0.6889 fVGG 0.7066 0.7182 0.7194 0.7212
CTC 0.6889 ML28 0.6947 0.7040 0.7086 0.7114

Table 4. Student v.s. baseline ensemble evaluated by MTWV

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have investigated knowledge distillation as applied
to different types of NN models and models trained with different
input features. We have conducted our experiments with Babel OP3
development and surprise language, evaluating performance in terms
of both recognition and keyword search.

We found that across all Babel languages student models im-
proved performance in terms of both WER and MTWV by learning
from soft labels provided by teachers. Our experiments showed that
the gain was mostly from difficult frames where the teacher’s best
label was not consistent with the original label. We also conducted
a simple experiment of using unlabeled data in this framework and
also got positive gains.

After observing student models outperforming teacher models,
we conducted a group of experiments where two different models
were paired and one is learning from the other. We found that in
all cases, the new pair (student+teacher) outperformed the old pair
(baseline+teacher). Sometimes, the student model itself yielded bet-
ter performance than the combination of baseline and teacher. Fur-
ther investigation on larger ensembles will be conducted, together
with learning from the un-labeled data set.

.
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