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ABSTRACT

Exploiting the sparsity in learning algorithms is a key to achieve
excellent performances of adaptive filters. This can be realized
by the adaptive proximal forward-backward splitting with carefully
chosen parameters. In this paper, we propose an automatic parameter
tuning based on a minimization principle of a stochastic approxi-
mation of the system-mismatch. The proposed approximation has
a Tikhonov-type regularization term, which aims to minimize the
disturbance by the update of the adaptive filter and mitigates over-
fitting to an instantaneous observation. Thanks to these properties,
the proposed method realizes adaptive parameter tuning without any
user-defined parameters, unlike our previous method that utilizes the
user-defined parameter to avoid over-fitting. A numerical example
demonstrates the efficacy of the proposed parameter tuning.

Index Terms— Sparsity-aware adaptive filter, automatic param-
eter tuning, adaptive proximal forward-backward splitting algorithm

1. INTRODUCTION

Exploiting the sparsity in learning algorithms is a key to achieve
excellent performance of adaptive filters, where the sparsity implies
that many coefficients of the system are zero. The sparsity of the
system to be estimated has been observed and exploited in many
applications including network/acoustic echo cancellation and active
noise control (e.g. see [1–19] and references therein).

A typical way to exploit the sparsity is to utilize a sparsity pro-
moting term with a regularization parameter in implicit/explicit opti-
mization problems in adaptive learning algorithms. One of this kind
of algorithms is the adaptive proximal forward-backward splitting
(APFBS) scheme [8, 9], which is a principle to adaptively suppress
the sum of a smooth convex function and a nonsmooth convex func-
tion. A typical choice of the nonsmooth convex term to promote
the sparsity is a weighted ℓ1 norm with a regularization parameter
(which we refer to as shrinkage parameter in this paper). In this
technique, careful adaptive tuning of the weight and the shrinkage

parameter is required to achieve excellent performance.1 Our pre-
vious method in [22] realizes an adaptive tuning by using an un-
biased estimate of the mean squared error (MSE) which measures
the difference of the outputs of the adaptive filter and the system to
be estimated. More precisely, by adaptively determining the weight
with conventional weight designs (e.g. [14]), the shrinkage param-
eter is chosen in a way to minimize an unbiased estimate of the
MSE. Although this technique achieves excellent performance ro-
bustly against SNR environmental change, it requires to select a user-
defined parameter to avoid selecting an excessively large shrinkage
parameter due to over-fitting to the single observation. This is caused
by its instantaneous nature, i.e., the unbiased estimate defined only
with the instantaneous observation.

In this paper, to realize adaptive tuning of the shrinkage pa-
rameter without any user-defined parameters, we propose an auto-
matic shrinkage parameter tuning based on a minimization principle

This work was supported in part by JSPS Grants-in-Aid (26730128).
1See [20, 21] for shrinkage tuning in non-adaptive settings.

of a stochastic approximation of the system-mismatch, where the
system-mismatch measures the difference between the adaptive filter
and the system to be estimated. Obviously, selecting the parameter
minimizing the system-mismatch is a natural choice. However, the
system-mismatch is unavailable in practice. To alleviate this diffi-
culty, we focus on an identity of the system-mismatch where most
terms of the identity are available in practical situations, directly or
with the aid of stochastic approximation. By using this nature, we
introduce a stochastic approximation of the identity as an approxi-
mation of the system-mismatch with renouncing a few terms that are
unavailable in practice. This idea yields, in our stochastic approxi-
mation, the so-called Tikhonov regularization term which incorpo-
rates the principle of minimal disturbance [23], i.e., it attempts to
minimally disturb the adaptive filter already trained, which mitigates
the instantaneous nature as well as the over-fitting. Consequently,
the proposed method does not require the user-defined parameter to
avoid over-fitting, unlike our previous method [22]. In addition, the
proposed approximation is piecewise quadratic, so that the global
minimizer is computed efficiently.

A numerical example demonstrates the efficacy of the proposed
parameter tuning by showing excellent performance robustly against
environmental changes.

2. PRELIMINARIES

2.1. Adaptive Filtering Problem

Let R,R+, and N denote the sets of all real numbers, nonnegative
real numbers, and nonnegative integers, respectively. Denote the set

N \ {0} by N
∗ and transposition of a matrix or a vector by (·)⊤.

Suppose that we observe an output sequence (dk)k∈N ⊂ R (i.e.,
dk ∈ R,∀k ∈ N) that obeys the model,

dk = u
⊤
k h⋆ + ǫk, (1)

where k ∈ N denotes the time index, uk := [uk, uk−1, . . . ,

uk−N+1]
⊤ ∈ R

N a known vector defined with the input sequence

(uk)k∈N ⊂ R (where N ∈ N
∗ is the tap length), h⋆ ∈ R

N the
unknown system to be estimated (e.g., echo impulse response), and
ǫk ∈ R the noise process.

The major goal of adaptive system identification is to ap-
proximate the unknown system h⋆ by the adaptive filter hk :=

[h
(1)
k , h

(2)
k , . . . , h

(N)
k ]⊤ ∈ R

N with (ui, di)
k
i=0 together with a

prior knowledge on h⋆, e.g., the sparsity.

2.2. Adaptive proximal forward-backward splitting (APFBS)

The APFBS [8, 9] provides a systematic design of the update of

adaptive learning algorithm. Define a time-varying cost function2

2Γ0(RN ) is the class of all lower semicontinuous convex functions from
RN to (−∞,+∞] that are not identically +∞ [24].
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Θk ∈ Γ0(R
N) for k ∈ N by

Θk(h) := ϕk(h) + ψk(h), (2)

where ψk ∈ Γ0(R
N ) and ϕk : R

N → R is a smooth convex func-
tion with its gradient ∇ϕk Lipschitz continuous, i.e., there exists a
some Lk > 0 (which is called a Lipschitz constant) s.t.

‖∇ϕk(h)−∇ϕk(g)‖≤Lk‖h− g‖ (3)

for all h, g ∈ R
N , where || · || stands for the standard Euclidean

norm. Typically, ϕk plays the role of a data fidelity term and ψk
plays the role of a penalty term that exploits the sparsity of h⋆ in the
learning process (e.g. weighted ℓ1 norms are adopted as ψk). Then,
the APFBS is summarized as follows.

Algorithm 1 (APFBS). For an arbitrarily chosen h0 ∈ R
N , gener-

ate a sequence (hk)k∈N ⊂ R
N by

hk+1 := prox µk
Lk

ψk

(
hk −

µk
Lk

∇ϕk(hk)
)
, (4)

where µk ∈ (0, 2) is the step-size and prox µk
Lk

ψk
: RN → R

N :

prox µk
Lk

ψk
(h) := argmin

g∈RN

(
ψk(g) +

Lk
2µk

||h− g||2
)

is called the proximity operator of ψk of index
µk

Lk
> 0 [25].

Note that Algorithm 1 is a time-varying extension of the proximal
forward-backward splitting method [26, 27] (see also [28, 29]) and
satisfies the (strictly) monotone approximation property [30]:

∥∥hk+1 − h
∗
Θk

∥∥ <
∥∥hk − h

∗
Θk

∥∥ (5)

for every h∗
Θk

∈ Ωk := argmin
h∈RN

Θk(h) if hk /∈ Ωk 6= ∅. An

acceleration of the APFBS has been proposed in [11].
Here we show a simple sparsity-aware adaptive filtering algo-

rithm in the frame of the APFBS.

Example 1. Let the smooth term ϕk be the squared distance3

ϕk(h) :=
1

2
d2(h, Sk) (6)

to a closed convex set Sk := argminh∈RN |dk − u⊤
k h|, of which

the elements are consistent with the data available at time k (note:
Lk = 1 in this case). Moreover, we adopt a weighted ℓ1-norm as the
sparsity promoting nonsmooth term, i.e., ψk = λk‖ · ‖ωk

1 with

‖h‖ωk
1 :=

N∑

j=1

ω
(j)
k |hj |, h := [h1, h2, · · · , hN ]⊤∈ R

N ,

where λk > 0 is the regularization parameter, and ω
(j)
k > 0, j ∈

{1, 2, . . . , N}, the weights of the ℓ1 norm defined with available
knowledge. Then the update equation (4) becomes

hk+1 := prox
µkλk‖·‖

ωk
1

(
hk + µk

dk − u⊤
k hk

‖uk‖2
uk

)
, (7)

prox
µkλk‖·‖

ωk
1

(h) =
N∑

j=1

sgn
(
hj
)
max

{
|hj | − µkλkω

(j)
k , 0

}
ei,

where the signum function sgn : R → {−1, 0, 1} is defined as
sgn(x) := x/|x| if x 6= 0, sgn(x) := 0 otherwise, and the canoni-

cal basis of RN is denoted by {ej := [0, . . . , 0, 1, 0, . . . , 0]⊤}Nj=1
(the value 1 assigned to the j-th position).

3The distance between an arbitrary point x ∈ R
N and a closed convex

set C ⊂ RN is defined by d(x, C) := miny∈C ‖x− y‖.

2.3. Previous tuning based on unbiased MSE estimate

Our previous parameter tuning in [22] was derived from minimiza-
tion of an unbiased MSE estimate: select a candidate of the adaptive
filter at time k + 1 parameterized by λ ∈ R+, i.e.,

ĥk+1(λ) = prox
λ‖·‖

ωk
1

(
hk + µk

dk − u⊤
k hk

‖uk‖2
uk

)
(8)

by minimizing an unbiased MSE estimate J̃ (defined in (11) below).

Note that J̃ can be minimized efficiently with O(N) multiplications
because it is a piecewise quadratic function (see (11) and Fact 2).
Detail steps of our previous parameter tuning is described in Algo-
rithm 3 below for a comparison with the proposed parameter tuning.

Fact 1 ( [22]). Assume that the additive noise is according to the

zero mean Gaussian distribution with variance σ2, i.e.,

p(ǫk) =
1√
2πσ2

exp

(
− ǫ2k
2σ2

)
.

Then4 (i)

E
[
ǫkĥk+1(λ)

]
= E

[
σ2µkAk(λ)uk

]
(9)

with a diagonal matrix Ak(λ) whose diagonal entries indicate the

support of the adaptive filter ĥk+1(λ), i.e.,

Ak(λ) := diag(a
(1)
k (λ), a

(2)
k (λ), . . . , a

(N)
k (λ)) ∈ R

N×N , (10)

a
(j)
k (λ) :=

{
1, if

∣∣∣g(j)k
∣∣∣ > λω

(j)
k ;

0, otherwise,

gk := (g
(1)
k , g

(2)
k , . . . , g

(N)
k )⊤ := hk + µk

dk − u⊤
k hk

‖uk‖2
uk.

(ii) Define J̃ : R+ → R :

J̃(λ) :=
(u⊤

k ĥk+1(λ)− dk)
2

‖uk‖2
− σ2 + 2σ2µk

u⊤
kAk(λ)uk
‖uk‖2

. (11)

Then, it is an unbiased estimate of the MSE, i.e.,

E[J̃(λ)] = E[(u⊤
k ĥk+1(λ)− u

⊤
k h∗)

2]. (12)

Fact 2 ( [22]). Let (λ̂j)
N
j=0 be a sorted sequence of all entries of

(
0,

|g(1)k |
ω

(1)
k

,
|g(2)k |
ω

(2)
k

, . . . ,
|g(N)
k |
ω

(N)
k

)
(13)

in nondecreasing order.5 Then (i) Ak(λ) is invariant over [λ̂j , λ̂j+1):

Ak(λ) = Ak(λ̂j), ∀λ ∈ [λ̂j , λ̂j+1),

(ii) ĥk+1 is linear over [λ̂j , λ̂j+1), and

(iii) J̃ is quadratic over [λ̂j , λ̂j+1).

4For a given square matrix A, tr[A] indicates its trace. For a vector
x ∈ R

N , diag(x) ∈ R
N×N denotes the diagonal matrix whose diagonal

entries are given by x.
5In this paper, for simplicity, we assume that the vector (13) has no over-

lapping entries. This assumption can be relaxed easily.
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3. PROPOSED PARAMETER TUNING

We propose an automatic shrinkage parameter tuning based on mini-
mization of an estimation of the system-mismatch: select a candidate
of the adaptive filter at time k+1, i.e., (8) by minimizing the estimate

J (defined in (16) below) of the system-mismatch ‖ĥk+1(λ)−h⋆‖2.
Fortunately, our design of J preserves piecewise quadratic nature.
Hence its minimization is efficiently implemented (see Algorithm 2
for the detail of the proposed parameter tuning).

We shall derive the estimate J . Construction of J is motivated
by the identity6

‖h− h⋆‖2

=
(u⊤

k h− dk)
2

‖uk‖2
+

ǫ2k
‖uk‖2

+
2ǫk(u

⊤
k h− dk)

‖uk‖2

+

∥∥∥∥
(
I − uku

⊤
k

‖uk‖2
)
(h− hk)

∥∥∥∥
2

+

∥∥∥∥
(
I − uku

⊤
k

‖uk‖2
)
(hk − h⋆)

∥∥∥∥
2

+ 2

〈(
I − uku

⊤
k

‖uk‖2
)
(h− hk),hk − h⋆

〉
(15)

for any h ∈ R
N . Benefits of the identity (15) are three-fold: the 1st

and the 4th terms of the RHS are available in practice; the 2nd and
the 3rd terms of the RHS have affordable unbiased estimates in our
setting because of E[ǫ2k − 2ǫkdk] = −σ2 and (9); the 5th term of
the RHS is irrelevant to select parameters since it is constant.

Observing these benefits, we introduce an approximation of the
system-mismatch by replacing the 2nd and the 3rd terms of the iden-
tity (15) by their unbiased estimates, i.e., J : R+ → R :

J(λ) :=
(u⊤

k ĥk+1(λ)− dk)
2

‖uk‖2
− σ2 + 2σ2µk

u⊤
kAk(λ)uk
‖uk‖2

+

∥∥∥∥
(
I − uk

‖uk‖
u⊤
k

‖uk‖

)
(ĥk+1(λ)− hk)

∥∥∥∥
2

= J̃(λ) +

∥∥∥∥
(
I − uk

‖uk‖
u⊤
k

‖uk‖

)
(ĥk+1(λ)− hk)

∥∥∥∥
2

, (16)

where we eliminate constants irrelevant to select the shrinkage pa-
rameter, and where we renounce the last term of the RHS of (15)
because it is unavailable in practice.

The global minimizer of J is obtained efficiently. Similar to J̃ ,
the function J is piecewise quadratic because of Fact 2(i)(ii). Hence
J is a quadratic function over the interval where Ak(λ) is invariant,
the local minimizer of J in each invariant interval can be computed
easily. In addition, by evaluating the value of J at all local minima,
we can find the global minimizer efficiently.

Proposition 1. (i) J is quadratic over [λ̂j , λ̂j+1).

6For completeness, we describe the derivation of the identity (15). First,
we decompose h−h⋆ orthogonally in the span of uk and in its complement

‖h− h⋆‖
2 =

∥∥∥∥∥

(
uku

⊤
k

‖uk‖2

)
(h−h⋆)

∥∥∥∥∥

2

+

∥∥∥∥∥

(
I−

uku
⊤
k

‖uk‖2

)
(h−h⋆)

∥∥∥∥∥

2

. (14)

Then we eliminate h⋆ in the first term of the RHS of (14) by substituting (1)

(1st term of the RHS of (14))

=
(u⊤
k h− dk + ǫk)

2

‖uk‖2
=

(u⊤
k h− dk)

2

‖uk‖2
+

ǫ2k

‖uk‖2
+

2ǫk(u
⊤
k h− dk)

‖uk‖2
.

Finally, we expand the second term of the RHS of (14) as the second order
Taylor series at hk , which completes the proof.

Algorithm 2: APFBS (7) with the proposed parameter tuning

Repeat the following step:

1. Compute λ∗ ∈ argmin
λ∈R+

J(λ) in (16) by Steps (1a)–(1e).

2. Update hk+1 = prox
λ∗‖·‖

ωk
1

(
hk + µk

dk−u⊤

k hk

‖uk‖
2 uk

)
.

Minimization of J with efficient O(N) multiplications

1(a). Compute gk = hk + µk
dk−u⊤

k hk

‖uk‖
2 uk.

1(b). Calculate the weight ωk (e.g. (18)).

1(c). Sort

(
0,

|g
(1)
k |

ω
(1)
k

,
|g

(2)
k |

ω
(2)
k

, . . . ,
|g

(N)
k |

ω
(N)
k

)

into (λ̂j )Nj=0 by nondecreasing order.

1(d). Compute (λ̂∗
j )
N
j=0 by

λ̂∗
j := P

[λ̂j,λ̂j+1]


(µk − 1)

dk − u⊤
k hk

‖uk‖2

tr
[
Ak(λ̂j) diag(ξk)

]

tr
[
Ak(λ̂j) diag(ζk)

]


 ,

where Ak(λ̂j ) = diag(a
(1)
k

(λ̂j), . . . , a
(N)
k

(λ̂j ))

a
(i)
k

(λ̂j) =

{
1,

∣∣∣g(i)k
∣∣∣ > λ̂jω

(i)
k ;

0, otherwise,

ξk := ωk ⊙ gk ⊙ uk , and ζk := ωk ⊙ ωk .

1(e). Find λ∗ ∈ argmin{J(λ) | λ ∈ {λ̂∗
j}
N
j=0}.

Algorithm 3: APFBS (7) with our previous parameter tuning [22]

Repeat the following step:

1. Compute λ∗ ∈ argmin
λ∈R+

J̃(λ) in (11) by Steps (1a)–(1e).

2. Same as Step 2 of Algorithm 2.

Minimization of J̃ with efficient O(N) multiplications

1(a)(b)(c). Same as Steps 1(a)(b)(c) in Algorithm 2.

1(d). Compute (λ̂∗
j )
Nmax

j=0 by

λ̂∗
j := P

[λ̂j,λ̂j+1]



tr
[
Ak(λ̂j) diag(ξk)

]
− dk

tr
[
Ak(λ̂j) diag(ζk)

]


 ,

1(e). Find λ∗ ∈ argmin{J(λ) | λ ∈ {λ̂∗
j }
Nmax

j=0 }.

(ii) min
λ∈R+

J(λ) = min
λ∈{λ̂∗

j
}N
j=0

J(λ), where7

λ̂∗
j := P[λ̂j,λ̂j+1]



(µk − 1)
dk − u⊤

k hk

‖uk‖2
tr
[
Ak(λ̂j) diag(ξk)

]

tr
[
Ak(λ̂j) diag(ζk)

]





is a minimizer of the local quadratic function Jj : [λ̂j , λ̂j+1] → R :

λ 7→ (u⊤
k ĥk+1(λ)− dk)

2

‖uk‖2
+

∥∥∥∥
(
I− uk

‖uk‖
u⊤
k

‖uk‖

)
(ĥk+1(λ)−hk)

∥∥∥∥
2

of J except that λ̂∗
N := λ̂N , and where ξk := ωk ⊙ gk ⊙ uk ,

ζk := ωk ⊙ ωk, and ⊙ represents Hadamard product (or entry-
wise multiplication).

7For a, b ∈ R : a < b, the projection onto [a, b] is given as

P[a,b] : R → R : P[a,b](r) =






a, if r < a;

r, if r ∈ [a, b];

b, if r > b.
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(a) NA = 30.
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(b) NA = 52.

Fig. 1. Steady-state performance averaged over 100 trials.

Remark 1: (Comparison with the previous method [22])
The so-called Tikhonov regularization is incorporated as the last

term of J in (16) in contrast with J̃ in (11). It realizes to select a
filter consistent with the previous adaptive filter hk , which robusti-
fies the resulting parameter tuning.

Paradoxically, J̃ in (11) does not care for the consistency with
hk as it is defined by instantaneous observations. For example, if the

observation vanishes (i.e. dk = 0), any λ satisfying ĥk+1(λ) = 0

(i.e. Ak(λ) = O) is a minimizer of J̃(λ). In other words, at every
time the observation vanishes, the filter coefficient may be initialized

to 0 through the direct minimization of J̃ , which discards coefficients
already trained. This demonstrates incorrect tuning based on the di-

rect minimization of J̃ . To avoid this, we employed in [22] a heuris-
tic to limit the choice of λ by introducing a user-defined parameter
Nmax (see Step 1(e) in Algorithm 3).

Meanwhile, Algorithm 2 does not require Nmax because the
above situations are avoided by the Tikhonov regularization term.

Remark 2: (Computational Cost for Parameter Tuning)
The computational cost of Step 1 in Algorithm 2 is O(N logN) com-
parisons and O(N) multiplications. Comparison is required in
Steps 1(c)(e). In Step 1(c), the sorting requires O(N logN) com-

parisons. In Step 1(e), the N + 1 elements in {J(λ̂∗
j )}Nj=0 are com-

pared hence O(N). Multiplication is required in every step. Steps
1(a)(c)(d) require O(N) multiplications. Step 1(b) depends on the
weight design but typically has O(N). Step 1(e) can be imple-
mented with O(N) multiplications because the difference ∆Jj :=

J(λ̂∗
j+1)− J(λ̂∗

j ) can be computed with O(1) multiplications.
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Fig. 2. Learning curves averaged over 100 trials (NA = 52 and

SNR = 50).
4. NUMERICAL EXAMPLE

We examine the efficacy of the proposed parameter tuning tech-
nique. The unknown system h⋆ ∈ R

N (N = 100) is generated
artificially to be sparse, where we consider two scenarios: h⋆ has
NA = 30 or NA = 52 active coefficients. The additive noise
(ǫk)k≥0 is drawn from the zero mean Gaussian noise with unit vari-
ance. The input signal (uk)k≥0 is also generated from the zero mean
Gaussian noise, and the SNR is varied in 5dB increments from 0dB
to 50dB. We adopt as a performance measure the system-mismatch

F⋆(hk) = 10 log10

(
‖hk − h⋆‖2/‖h⋆‖2

)
(17)

of hk normalized by ‖h⋆‖2.
Four adaptive filtering algorithms are examined: the normalized

least mean square (NLMS) [31]; the APFBS (7) with adaptively
weighted soft-thresholding of fixed parameter (labeled as APFBS-
Fixed) [8]; Algorithm 3 (referred to as APFBS-MSE) [22]; Algo-
rithm 2 (referred to as Proposed). The step-size of the algorithms is
chosen as µk = 0.2. We adopt as the weight design in [14]

ω
(j)
k :=

(∣∣∣h(j)
k

∣∣∣
1−p

+ ν

)−1

, (18)

where ν > 0 is a small positive constant. In this experiment, we
set p = 0 and ν = 10−5 (see [14] for a superior performance of
the choice p = 0 compared with different choices). The parame-
ter λk = 4.5 × 10−2 of APFBS-Fixed is chosen to minimize the
system-mismatch at 25dB for NA = 30. The interest region of λ
of the APFBS-MSE is limited as Nmax = 50, 60, 70, 80, or 90. All
the algorithms are terminated at 30000 iterations. The steady-state
system-mismatch is evaluated by the average of F⋆(hk) over the last
10000 iterations.

Figure 1 depicts the steady-state performance averaged over
100 trials. Figure 1(a) shows that the proposed method achieves
excellent steady-state performance over observed SNR situations,
while APFBS-Fixed deteriorates the performance in high SNR. In
this case, APFBS-MSE appears good performance if the parameter
Nmax is chosen appropriately (Nmax = 50, 60). Meanwhile, Figure
1(b) illustrates that the suitable parameter Nmax is directly affected
by the number NA of active coefficients of h⋆. In this case, all
the choice of Nmax fail to select a suitable shrinkage parameter in
a certain SNR range. Even for this situation, the proposed tuning
achieves robustness against environmental changes. Finally, Figure
2 illustrates learning curves averaged over 100 trials, which shows
that the proposed parameter tuning does not affect convergence
speed of adaptive learning.

5. CONCLUDING REMARKS

We have proposed an automatic shrinkage parameter tuning for a
sparsity-aware variant of the APFBS based on the minimization of an
estimation of the system-mismatch. In addition, we have introduced
its efficient implementation with O(N) multiplications. A numeri-
cal example demonstrated that the proposed method have succeeded
in selecting suitable shrinkage parameter robustly against environ-
mental changes. Our future work includes extensions of the pro-
posed parameter tuning strategy to various sparsity-aware adaptive
filtering algorithms, e.g., [1–7, 10, 17–19].
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