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ABSTRACT

In this paper we analyze the convergence behavior of a sampling
based system approximation process, where the time variable is in
the argument of the signal and not in the argument of the bandlim-
ited impulse response. We consider the Paley–Wiener space PW2

π

of bandlimited signals with finite energy and stable linear time-
invariant (LTI) systems, and show that there are signals and systems
such that the approximation process diverges in the L2-norm, i.e.,
the norm of the signal space. We prove that the sets of signals and
systems creating divergence are jointly spaceable, i.e., there exists
an infinite dimensional closed subspace of PW2

π and an infinite
dimensional closed subspace of the space of all stable LTI systems,
such that the approximation process diverges for any non-zero pair
of signal and system from these subspaces.

Index Terms— Paley–Wiener space, linear time-invariant sys-
tem, approximation, convolution sum, L2-norm

1. INTRODUCTION

Although sampling theorems are very important on their own [1–6],
often the interest is not in a reconstruction of the sampled signal it-
self, but in the approximation of some processed version of it. This
is the situation that is encountered in digital signal processing appli-
cations, where the interest is not in the reconstruction of a signal, but
rather in the implementation of a system, i.e, the interest is in some
transform Tf of the sampled input signal f . Typical transforms are
the derivative, the Hilbert transform, or, more generally, the output
of any other stable linear time-invariant (LTI) system T .

The approximation of LTI systems by sampling series is a well-
studied field [7–12]. A common approach to perform the approxi-
mation is to use convolution sum

∞∑
k=−∞

f(k)hT (t− k), t ∈ R, (1)

where {f(k)}k∈Z denotes the sequence of equidistant samples of f ,
and hT = T sinc the response of the LTI system T to the sinc func-
tion. Exactly as in the case of signal reconstruction, the convergence
and approximation behavior of (1) is important for practical applica-
tions and, therefore, has been studied for various signal spaces [12].
For PW2

π , i.e., bandlimited signals with finite L2-norm, the series
(1) converges in the L2-norm and uniformly on the real axis for all
stable LTI systems and all signals.

Another possible approximation process is the convolution sum
where the time variable is in the argument of the signal f , i.e.,

∞∑
k=−∞

f(t− k)hT (k), t ∈ R. (2)

While this convolution sum is also uniformly convergent on the
whole real axis for all signals in PW2

π and all stable LTI systems,
the L2-norm, as we will show, can be divergent. That is, for certain
signals and systems, the convolution sum (2) does not converge in
the norm of the considered space PW2

π . In this work we will prove
this result, and, further, will analyze the structure of the sets of
signals and systems creating divergence.

2. NOTATION

Let f̂ denote the Fourier transform of a function f , where f̂ is to
be understood in the distributional sense. For Ω ⊆ R, let Lp(Ω),
1 ≤ p < ∞, be the space of all measurable, pth-power Lebesgue
integrable functions on Ω, with the usual norm ‖ · ‖p, and L∞(Ω)
the space of all functions for which the essential supremum norm
‖ · ‖∞ is finite. C(Ω), equipped with the supremum norm, is the
space of continuous functions on Ω.

For 1 ≤ p ≤ ∞, PWp
π denotes the Paley–Wiener space of

signals f with a representation f(z) = 1/(2π)
∫ π

−π
g(ω) eizω dω,

z ∈ C, for some g ∈ Lp[−π, π]. If f ∈ PWp
π then g(ω) =

f̂(ω). The norm for PWp
π , 1 ≤ p < ∞, is given by ‖f‖PWp

π
=

(1/(2π)
∫ π

−π
|f̂(ω)|p dω)1/p. PW2

π is the frequently used space of

bandlimited signals with finite L2-norm.

We briefly review some basic definitions and facts about stable
linear time-invariant (LTI) systems. A linear system T : PWp

π →
PWp

π , 1 ≤ p ≤ ∞, is called stable if the operator T is bounded, i.e.,
if ‖T‖ = sup‖f‖PWp

π
≤1‖Tf‖PWp

π
< ∞. Furthermore, it is called

time-invariant if (Tf( · − a))(t) = (Tf)(t− a) for all f ∈ PWp
π

and t, a ∈ R.

In this paper we are mainly interested in stable LTI systems op-
erating on the space PW2

π , i.e., in the case p = 2. For every stable
LTI system T : PW2

π → PW2
π there exists exactly one function

ĥT ∈ L∞[−π, π] such that

(Tf)(t) =
1

2π

∫ π

−π

f̂(ω)ĥT (ω) e
iωt dω, t ∈ R,

for all f ∈ PW2
π . Conversely, every function ĥT ∈ L∞[−π, π]

defines a stable LTI system T : PW2
π → PW2

π . We have hT =
T sinc, where sinc denotes the usual sinc function, which is de-
fined by sinc(t) = sin(πt)/(πt) for t �= 0 and sinc(t) = 1 for
t = 0. The operator norm of a stable LTI system T is given by

‖T‖ = ‖ĥ‖L∞[−π,π]. Note that ĥT ∈ L∞[−π, π] ⊂ L2[−π, π],

and consequently hT ∈ PW2
π .

By T we denote the set of stable LTI systems T : PW2
π →

PW2
π . Every stable LTI system T ∈ T can be identified with a

function ĥT ∈ L∞[−π, π] and we have ‖T‖ = ‖T‖PW2
π→PW2

π
=

‖ĥT ‖L∞[−π,π].
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3. SPACEABILITY

Before we state the main result, we introduce the concept of space-
ability. Spaceability, which has recently been used for example
in [13–15], is a concept that describes the structure of some given
subset of an ambient normed space or, more generally, topological
space. A set S in a linear topological space X is said to be spaceable
if S ∪ {0} contains a closed infinite dimensional subspace of X .

4. BASIC PROPERTIES

It is well-known that the partial sums of the Shannon sampling series

(SNf)(t) =

N∑
k=−N

f(k)
sin(π(t− k))

π(t− k)
, t ∈ R,

converge to f in the PW2
π-norm, i.e., that we have

lim
N→∞

‖f − SNf‖PW2
π
= 0 (3)

for all f ∈ PW2
π . However, often the interest is not in the recon-

struction of the signal f , but in the approximation of some trans-
formation Tf of f from the samples {f(k)}k∈Z. A common class
of transform operators are stable linear time-invariant (LTI) systems,
and a possible approximation process is given by

(TNf)(t) =

N∑
k=−N

f(k)hT (t− k), t ∈ R. (4)

For f ∈ PW2
π and all stable LTI systems T : PW2

π → PW2
π we

have

lim
N→∞

∫ ∞

−∞
|(Tf)(t)− (TNf)(t)|2 dt = 0, (5)

as can be easily seen: Since TN = TSN , we have

‖Tf − TNf‖PW2
π
= ‖T (f − SNf)‖PW2

π

≤ ‖T‖‖f − SNf‖PW2
π
.

and (5) follows immediately from (3). Further, it follows from (5)
that

lim
N→∞

max
t∈R

|(Tf)(t)− (TNf)(t)| = 0 (6)

for all f ∈ PW2
π . Hence, as shown by (5) and (6), the approxima-

tion process (4) converges in the PW2
π-norm and uniformly on the

real axis.
Another approximation process is given by

(T 1
Nf)(t) =

N∑
k=−N

f(t− k)hT (k), t ∈ R.

Here, the time variable t ∈ R is in the argument of f . We will
see that this small, seemingly unimportant difference, will make a
huge difference in the approximation behavior. As for the global
convergence, we have the same uniform convergence as before: For
all f ∈ PW2

π and all stable LTI systems T : PW2
π → PW2

π we
have

lim
N→∞

max
t∈R

∣∣(Tf)(t)− (T 1
Nf)(t)

∣∣ = 0.

Thus, both series,
∞∑

k=−∞
f(k)hT (t− k)

and ∞∑
k=−∞

f(t− k)hT (k), (7)

are equiconvergent with respect to the maximum norm. However, in
general we do not have equiconvergence with respect to the PW2

π-
norm. The convergence of (7) in the maximum norm is too weak to
make an assertion about the behavior of the PW2

π-norm. Roughly
speaking, the energy concentration of (T 1

Nf)(t) on R is too weak,
i.e., for all τ > 0 there exist a input signal f ∈ PW2

π and a stable
LTI system T : PW2

π → PW2
π such that

lim sup
N→∞

∫
|t|≥τ

∣∣∣∣∣
N∑

k=−N

f(t− k)hT (k)

∣∣∣∣∣
2

dt = ∞. (8)

We will prove an even stronger statement in the next section. It is
stronger, because we can show that there exist two infinite dimen-
sional closed subspaces Dsig ⊂ PW2

π and Dsys ⊂ T such that we
have (8) for all pairs (f, T ) ∈ Dsig × Dsys with f �≡ 0 and T �≡ 0.
Hence, the sets of signals and systems creating divergence are jointly
spaceable.

5. MAIN RESULT

Theorem 1. There exist an infinite dimensional closed subspace
Dsig ⊂ PW2

π and an infinite dimensional closed subspace Dsys ⊂ T
such that for all f ∈ Dsig, f �≡ 0, and all T ∈ Dsys, T �≡ 0, we have

lim sup
N→∞

∫ ∞

−∞

∣∣∣∣∣
N∑

k=−N

f(t− k)hT (k)

∣∣∣∣∣
2

dt = ∞.

For the proof of Theorem 1, we need a lemma, the statement of
which requires the introduction of some notation. For M ∈ Z and
N ∈ N, let

q∗N (k) =

⎧⎪⎨
⎪⎩

1
k
, −N ≤ k ≤ −1,

1
k
, 1 ≤ k ≤ N,

0, k = 0 or |k| > N,

and

qM,N (k) =
i

2
q∗N (k +M), k ∈ Z.

It is easy to see that the function

q̂M,N (ω) =

∞∑
k=−∞

qM,N (−k) eiωk, ω ∈ [−π, π],

i.e., the Fourier series with coefficients {qM,N (−k)}k∈Z, is given
by

q̂M,N (ω) = eiMω

(
N∑

k=1

1

k
sin(kω)

)
, ω ∈ [−π, π].

Note, that we have

|q̂M,N (ω)| =
∣∣∣∣∣

N∑
k=1

1

k
sin(kω)

∣∣∣∣∣ ≤ C1 (9)

for all M ∈ Z, N ∈ N, and ω ∈ [−π, π] [16, p. 183]. Further, for
K ∈ N, let

(FK q̂)(ω) =
K∑

k=−K

q(−k) eiωk, ω ∈ [−π, π],
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be the partial sum of the Fourier series of a function q̂ ∈ L∞[−π, π],
where

q(−k) =
1

2π

∫ π

−π

q̂(ω) e−iωk dω

denotes the k-th Fourier coefficient of q̂.

Lemma 1. There exists a constant C2 such that for all K,M,N ∈
N, M ≥ N , and all ω ∈ [−π, π] \ {0} we have

|(FK q̂M,N )(ω)| ≤ log

(
1

|ω|

)
+ C2.

Lemma 1 can be proved by using standard estimates for trigono-
metric sums [16, pp. 182–191].

Proof of Theorem 1. The key idea of the proof is to construct an in-
finite dimensional closed subspace Dsig of PW2

π and an infinite di-

mensional closed subspace D̂sys of C[−π, π] ⊂ L∞[−π, π], such

that we have divergence of (7) in the L2-norm for any pair (f, ĥT ) ∈
Dsig × D̂sys with f �≡ 0 and ĥT �≡ 0. Due to page constraints, some
details of the calculation are omitted in the proof.

We first construct a sequence {φ̂n}n∈N of functions in C[−π, π].

For r ∈ N, let Nr = 2(r+1)7 . The construction is done iteratively. In
the first iteration, i.e., s = 1, we set M1(1) = N1, N1(1) = N1, and

define φ̂1,1(ω) = q̂M1(1),N1
(ω). Further, we set M1 = 2N1 + 1.

Now, let s = 2. We set M2(1) = M1+N2, M2(2) = M2(1)+

2N2 + 1, and define φ̂1,2(ω) = φ̂1,1(ω) +
1
22
q̂M2(1),N2

(ω) and

φ̂2,2(ω)=
1
22
q̂M2(2),N2

(ω). Further, we set M2=M1+2(2N2+1).
Assume that, for some s ∈ N, and all k,m ∈ N with 1 ≤ k ≤ s

and k ≤ m ≤ s, we have constructed the functions φ̂k,m and the
numbers Mm(k) and Mk. We set Ms+1(1) = Ms + Ns+1 and
Ms+1(n) = Ms+1(n− 1) + 2Ns+1 + 1 for n = 1, . . . , s+ 1, and

define φ̂n,s+1(ω) = φ̂n,s(ω) +
1

(s+1)2
q̂Ms+1(n),Ns+1

(ω) for n =

1, . . . , s, and φ̂s+1,s+1(ω) =
1

(s+1)2
q̂Ms+1(s+1),Ns+1

(ω). Further,

we set Ms+1 = Ms + s(2Ns+1 + 1).
For each n ∈ N we have inductively constructed a sequence of

C[−π, π] functions φ̂n,m, m ≥ n. Due to the previous construc-
tion it is easy to see that for each n ∈ N there exists a function

φ̂n ∈ C[−π, π] such that limm→∞‖φ̂n − φ̂n,m‖C[−π,π] = 0. This
function is given by

φ̂n(ω) =
∞∑

k=n

1

k2
q̂Mk(n),Nk

(ω), ω ∈ [−π, π],

and it follows that

‖φ̂n‖C[−π,π] ≤
∞∑

k=n

1

k2
‖q̂Mk(n),Nk

‖C[−π,π] ≤
π2C1

6
, (10)

where we used (9) in the second inequality.
By using (9) it is easy to see that

|(FMs(m)φ̂n)(ω)| ≤ π2C1

6

for all ω ∈ [−π, π], m,n ∈ N with m �= n, and s ∈ N with s > n.
Further, for s > n and m = n, we have

(FMs(n)φ̂n)(ω) =

s−1∑
k=n

1

k2
q̂Mk(n),Nk

(ω)

+
1

s2

Ms(n)−1∑
k=Ms(n)−Ns

1

2i

1

k −Ms(n)
eikω .

Using basic inequalities and estimates for sums, it can be shown that

|(FMs(n)φ̂n)(ω)| ≥ log(2)

2
s5 − C3 (11)

for ω ∈ [− 1
2Ns

, 1
2Ns

] and s > n, where C3 is a constant that does
not depend on s.

For r ∈ N we consider the numbers ωr = π/2r and the intervals

Ir =
[
ωr − ωr−ωr+1

2
, ωr +

ωr−ωr+1

2

]
. We have Ir∩Ir+1 = ∅ for

all r ∈ N. Further, the length of the gap between intervals Ir and
Ir+1 is given by Δr = π/2r+3. Next, for n ∈ N, we define the
functions

ĥn(ω) =
∞∑
r=1

1

r3
φ̂n(ω − ωr), ω ∈ [−π, π]. (12)

Originally, the functions φ̂n, n ∈ N, were defined as functions in

C[−π, π]. However, as easily can be seen, each φ̂n naturally extends
to a continuous 2π-periodic function. Whenever we consider shifts
of such a function, as for example in (12), we implicitly use the 2π-
periodic extension. Since

‖ĥn‖C[−π,π] ≤
∞∑
r=1

1

r3
‖φ̂n‖C[−π,π] ≤

π2C1

6

∞∑
r=1

1

r3
= C4, (13)

where we used (10), it follows that ĥn ∈ C[−π, π], and that the

C[−π, π]-norm of ĥn is bounded independently of n.
Using Lemma 1, it can be shown that∣∣∣∣(FK ĥn)(ω)− 1

r̂3
(FK φ̂n( · − ωr̂))(ω)

∣∣∣∣ ≤ C5(r̂), (14)

for all K,n, r̂ ∈ N and ω ∈ Ir̂ , where C5(r̂) is a constant that
depends only on r̂.

For r ∈ N we construct input signals fr such that f̂r ≥ 0 almost

everywhere and such that the Fourier transform f̂r is concentrated
on the interval Ir . For δ with 0 < δ < π we set

ĝδ(ω) =

{√
1
δ
, |ω| ≤ δ

2
,

0, δ
2
< |ω| ≤ π.

Clearly, we have gδ ∈ PW2
π with ‖gδ‖PW2

π
= 1, and

gδ(t) =

√
1

δ

sin(δt/2)

πt
, t ∈ R.

Let r ∈ N be arbitrary but fixed. Further, let sr be the smallest

natural number such that
ωr−ωr+1

2
≥ 1

2Ns
for all s ≥ sr . We set

γr(t) =

∞∑
s=sr

1

s2
g 1

Ns
(t) eiωrt, t ∈ R,

which corresponds to

γ̂r(ω) =

∞∑
s=sr

1

s2
ĝ 1

Ns
(ω − ωr), ω ∈ [−π, π].

We have

‖γr‖PW2
π
≤

∞∑
s=sr

1

s2
‖g 1

Ns
‖PW2

π
≤

∞∑
s=1

1

s2
=

π2

6
,
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and the Fourier transform γ̂r is concentrated on Ir . Moreover, since
Ir ∩ Ir+1 = ∅ for all r ∈ N, it follows that the functions {γr}r∈Z

are orthogonal.

Using (11) and (14) it can be shown that

lim
s→∞

∫ ∞

−∞

∣∣∣∣∣∣
Ms(n)∑

k=−Ms(n)

γr(t− k)hn(k)

∣∣∣∣∣∣
2

dt = ∞ (15)

for all r, n ∈ N.

Let fr = γr/‖γr‖PW2
π

, r ∈ N. Then ‖fr‖PW2
π

= 1 for all

r ∈ N, and {fr}r∈N is a orthonormal system in PW2
π . It follows

that {fr}r∈N is a basic sequence, i.e., a Schauder basis for

Dsig = span({fr}r∈N)
PW2

π .

Further, for n ∈ N, let en(ω) = ei2
nω , ω ∈ [−π, π]. Then {en}n∈N

is a basic sequence in C[−π, π] [16, p. 247], i.e., a Schauder basis

for B1 = span({en}n∈N)
C[−π,π]

. It follows that every f ∈ Dsig

has the representation f =
∑∞

r=1 αr(f)fr with unique coefficients
{αr(f)}r∈N. For the coefficient functionals αr : Dsig → C we have

‖αr‖ = 1, r ∈ N. Further, every ĥ ∈ B1 has the representation

ĥ =
∑∞

n=1 βn(ĥ)en with unique coefficients {βn(ĥ)}n∈N, satisfy-
ing [16, p. 247]

∞∑
n=1

|βn(ĥ)| < ∞. (16)

Further, there exists a constant C6 > 0 such that

C6

∞∑
n=1

|βn(ĥ)| ≤ ‖ĥ‖C[−π,π] ≤
∞∑

n=1

|βn(ĥ)|.

Hence
∑∞

n=1 βn(ĥ)en converges if and only if (16) is satisfied. For
the coefficient functionals βn : B1 → C we have ‖βn‖ = 1, n ∈ N.
Let

ûn = en +
1

C42n+1
ĥn,

where C4 is the upper bound on ‖ĥn‖C[−π,π] given in (13). Then
we have

∞∑
n=1

‖βn‖‖ûn − en‖C[−π,π] < 1.

It follows that {ûn}n∈N is a basic sequence for C[−π, π] that is
equivalent to {en}n∈N [17, p. 46]. Hence,

∑∞
n=1 bnûn converges if

and only if
∞∑

n=1

|bn| < ∞.

Let

D̂sys = span({ûn}n∈N)
C[−π,π]

.

Next, we will show divergence for any pair (f, ĥ) ∈ Dsig × D̂sys

with f �≡ 0 and ĥ �≡ 0. Let f ∈ Dsig, f �≡ 0, and ĥ ∈ D̂sys,

ĥ �≡ 0, be arbitrary. f can be written as f =
∑∞

r=1 αr(f)fr and ĥ

as ĥ =
∑∞

n=1 bn(ĥ)ûn. Let r0 be the smallest natural number for
which αr0(f) �= 0, and n0 the smallest natural number for which

bn0(ĥ) �= 0. Then we have

f(t) =
∞∑

r=r0

αr(f)fr(t)

for t ∈ R, and

ĥ(ω) =

∞∑
n=n0

bn(ĥ)en(ω) +

∞∑
n=n0

1

C42n+1
bn(ĥ)ĥn(ω)

for ω ∈ [−π, π]. From

1

2π

∫
Ir0

|f̂r0(ω)|2|(FMs(n0)ĥn0)(ω)|2 dω

=
1

2π

∫ π

−π

|f̂r0(ω)|2
∣∣∣∣∣∣

Ms(n0)∑
k=−Ms(n0)

hn0(k) e
−iωk

∣∣∣∣∣∣
2

dω

=

∫ ∞

−∞

∣∣∣∣∣∣
Ms(n0)∑

k=−Ms(n0)

fr0(t− k)hn0(k)

∣∣∣∣∣∣
2

dt

and (15), it follows that

lim
s→∞

1

2π

∫
Ir0

|f̂r0(ω)|2|(FMs(n0)ĥn0)(ω)|2 dω = ∞. (17)

Using (17) it can be shown that

lim
s→∞

1

2π

∫ π

−π

|f̂(ω)|2|FMs(n0)ĥ(ω)|
2 dω = ∞.

Since

∫ ∞

−∞

∣∣∣∣∣∣
Ms(n0)∑

k=−Ms(n0)

f(t− k)h(k)

∣∣∣∣∣∣
2

dt

=
1

2π

∫ π

−π

|f̂(ω)|2|(FMs(n0)ĥ)(ω)|
2 dω,

and f ∈ Dsig, f �≡ 0, and ĥ ∈ D̂sys, ĥ �≡ 0, were chosen arbitrarily,
this completes the proof.

6. RELATION TO PRIOR WORK

Although the approximation of LTI systems by sampling series is
well-studied [7–12], the convergence behavior of the series (2) is
less well understood. In this paper we considered the Paley–Wiener
space PW2

π of bandlimited signals with finite energy, i.e., L2-norm.
Concerning the maximum norm, the series (1) and (2) are equicon-
vergent, however, as shown by Theorem 1, the L2-norm of (2) di-
verges unboundedly for certain signals and systems. That is, the
system approximation process (2) does not converge in the norm of
the considered signal space.

Further, it was proved that the sets of signals and systems cre-
ating divergence are jointly spaceable. Spaceability is a relatively
recent concept to describe linear structures in subsets of normed
spaces. In [13] it was shown that the set of continuous nowhere
differentiable functions on C[0, 1] is spaceable.

The approximation processes (1) and (2) and their pointwise ap-
proximation behaviors, were analyzed in [18] for the signal space
PW1

π , and joint spaceability of the sets of signals and systems cre-
ating divergence was proved. For further results please also see [19].
The significant differences to the present paper are the considered
signal spaces (PW1

π versus PW2
π) and the modes of convergence

(pointwise convergence versus convergence in the L2-norm).
An extended version of this paper is in preparation [20], where

the full proofs are given and further discussion is provided.

4798



7. REFERENCES

[1] Claude E. Shannon, “Communication in the presence of
noise,” in Proceedings of the IRE, Jan. 1949, vol. 37, pp. 10–
21.

[2] Abdul J. Jerri, “The Shannon sampling theorem–its various
extensions and applications: A tutorial review,” Proc. IEEE,
vol. 65, no. 11, pp. 1565–1596, Nov. 1977.

[3] John R. Higgins, “Five short stories about the cardinal series,”
Bull. Amer. Math. Soc., vol. 12, no. 1, pp. 45–89, 1985.
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