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ABSTRACT

In system identification one problem is the autocorrelation of the
excitation signal which often crucially affects the adaptation process.
This paper focuses on the Kalman filter based adaptation working in
the frequency domain and the implication due to correlated signal
input. Principle simulations and the introduction of a reference model
indicate to which extent correlation take effect. The experimental
results demonstrate that even though the Kalman approach already
takes advantage from a certain level of inherent decorrelation, it also
benefits from additional decorrelation. To address this issue, we
derive a new realizable efficient structure combining the Kalman filter
based adaptation with linear prediction techniques. The performance
gains of the proposed approach are confirmed via experiments for an
acoustic echo cancellation application for different scenarios.

Index Terms— System identification, Kalman filter, linear pre-
diction, decorrelation, acoustic echo cancellation.

1. INTRODUCTION

The problem of single-channel system identification, such as needed
for acoustic echo cancellation (AEC) or active noise control (ANC),
has been investigated for several decades. Least mean square (LMS)
based algorithms are cost-beneficial solutions in terms of complexity,
simplicity and performance [1–3]. However, for a robust perfor-
mance accurate control mechanisms are required [4, 5]. In addition,
the LMS algorithm suffers severely from correlated excitation sig-
nals. This problem has been counteracted, e.g., by the introduction of
decorrelation filters in the adaptation process [6–11] or projection al-
gorithms [12–14]. Recently, more and more solutions rely on Kalman
filter based adaptation in the time domain [15, 16] or frequency do-
main [17,18]. The Kalman filter is the optimal linear solution in terms
of a minimum mean square error criterion. It is of special interest that
the LMS algorithm with perfect stepsize control can be interpreted as
a special case of the Kalman filter [19]. This strong relation between
the Kalman filter and the LMS algorithm leads us to the questions,
whether correlation affects the Kalman filter based adaptation and
to which extent we could improve the performance introducing, in
analogy to [6, 7, 9], an additional decorrelation stage into the adapta-
tion process. It is well understood that these two questions gain even
more importance extending the Kalman identification problem in a
next step to multi-channel systems.

The paper is structured as follows. In Sec. 2, the Kalman filter
according to [17, 18] is reviewed and the influence of the correlation
on the adaptation is shown for different excitation signals. Within a
reference experiment the influence of a decorrelation stage prior to
the adaptation and transmission is investigated in Sec. 3. Afterwards
in Sec. 4 a new, realizable algorithm is proposed combining the
conventional Kalman filter with linear prediction. Furthermore, the

new algorithm is analyzed in terms of complexity. Finally, in Sec. 5
simulation results for different conditions are compared and evaluated
in the context of an AEC application.

2. FREQUENCY DOMAIN KALMAN FILTER

Figure 1 shows the principle block diagram of the system identifi-
cation approach using Kalman filtering. The excitation signal and
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Fig. 1. System identification with Kalman filter

measurement noise signal are denoted by x(i) and s(i), respectively,
with the time index i. The impulse response of the unknown system
is represented by the vector w(i). In contrast to scalars, in the fol-
lowing, vectors and matrices are denoted by boldface letters. In the
subsequent simulations, a finite length L of the impulse response is
presumed, so that it can be represented by

w(i) =
(
w1(i), w2(i), . . . , wL(i)

)T
, (1)

where (·)T denotes the transpose of a vector. The system response
d(i) can be expressed by the inner product d(i) = xT (i)w(i) with
the excitation vector

x(i) =
(
x(i), x(i− 1), . . . , x(i− L+ 1)

)T
. (2)

The measured signal is denoted by y(i). The adaptive filter is repre-
sented by the vector ŵ(i) of length L and the estimate of the system
response by d̂(i). The difference e(i) = y(i) − d̂(i) refers to the
resulting error signal.

As basic identification algorithm, the diagonalized Kalman filter
adaptation in the frequency domain with an overlap-save framework
is used [17, 18]. The processing is performed in frames of length M
with frameshift R where k denotes the frame index. Furthermore, the
vectors

xM (k) =
(
x(kR−M + 1), x(kR−M + 2), . . . , x(kR)

)T
yR(k) =

(
y(kR−R+ 1), y(kR−R+ 2), . . . , y(kR)

)T
, (3)
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the Fourier-matrix FM of size M ×M , and the zero-padding matrix
QR =

(
0M−R IR

)T of size M ×R are defined with the identity-
matrix IR of sizeR×R and zero-matrix 0M−R of sizeR×(M−R).
In the sequel, (·)H denotes the Hermitian and (·)−1 the inverse of a
matrix. The underlying observation matrix of the system model is
given by

C(k) = FMQRQH
RF−1

M X(k). (4)

With these definitions, the diagonalized Kalman equations result in

K(k) = P(k)XH(k)
(
X(k)P(k)XH(k) +

M

R
Ψss(k)

)−1

(5a)

E(k) = FMQR

(
yR(k)−QH

RF−1
M X(k)Ŵ(k)

)
(5b)

Ŵ+(k) = Ŵ(k) + K(k)E(k) (5c)

P+(k) =
(
IM − R

M
K(k)X(k)

)
P(k) (5d)

Ŵ(k + 1) = A · Ŵ+(k) (5e)

P(k + 1) = A2 ·P+(k) + Ψ∆∆(k) , (5f)

with X(k) = diag{FM · xM (k)} and forgetting factor A. The
estimate of the transfer function is denoted by

Ŵ(k) = FM

(
ŵM−R+1(kR)

0R−1

)
(6)

of size M × 1 with ŵM−R+1(kR) defined analogously to (1). The
column vector 0R−1 contains R − 1 zeros. After each update the
estimate Ŵ is restricted by zeroing the last R− 1 coefficients in the
time domain. This constraint is necessary to prevent cyclic artifacts
in the overlap-save framework used. The M × M matrices P(k)
and K(k) are the estimates of the covariance matrix of the estimation
error and the Kalman gain, respectively. Ψss(k) and Ψ∆∆(k) denote
the covariance matrices of the measurement noise and process noise,
respectively. In the actual implementation the covariance matrices
are approximated by diagonalized estimates (see [17], [18] for more
details).

2.1. Influence of Signal Correlation on System Identification
This section deals with the question whether the correlation properties
of the excitation signal degrade the performance of the Kalman filter
adaptation. For this purpose, the logarithmic system distance

SysDis(i) [dB] = 10 lg

(‖w(i)− ŵ(i)‖2
‖w(i)‖2

)
(7)
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Fig. 2. System identification with different excitation signals x(i)
(s(i): white noise, SNR = 30 dB, wslow(i))

is introduced. Figure 2 depicts the results for various excitation
signals with different correlation properties. For the comparison, a
speech signal, white Gaussian noise and two colored noise signals
have been considered. The colored noise relies on a first order auto re-
gressive model with different feedback factors α. For the simulations
slowly time variant impulse responses wslow(i) of length 192 (sam-
pling rate 8 kHz) have been used, which were generated according
to [20]. The underlying measurements for the results of Fig. 2 and
4 were carried out in an empty soundproof booth. The parameters
for the Kalman filter were set to M = 256, R = 64 and A = 1. At
the microphone an SNR of 30 dB between the system response and a
white Gaussian measurement noise was adjusted.

Figure 2 demonstrates that the adaptation performance depends
on the properties of the excitation signal. Although the Kalman filter
takes into account a certain amount of correlation via an automatic
adaptive stepsize control mechanism, a more uncorrelated excitation
signal obviously results in better performance in terms of conver-
gence speed and steady-state behaviour. As a result in the sequel,
a decorrelation stage is introduced for an improved Kalman filter
design.

3. REFERENCE MODEL: DECORRELATION
VIA LINEAR PREDICTION

In this section, the effect of a decorrelation prior to the adaptation
and transmission is analyzed. Therefore, in a first step a reference
model according to Fig. 3 is introduced. The excitation signal x(i) is
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Fig. 3. Reference model

spectrally whitened applying linear prediction (LP) techniques [21].
For this principle experiment the prediction is performed every 20 ms
on the next 20 ms of the excitation signal. An FIR filter with the
impulse response aLP (i) = (a0(i), a1(i), . . . , aP (i))

T performs
the actual decorrelation with prediction degree P , so that the residual

0 2 4 6 8 10 12

−40

−20

0

time [s]

Sy
sD

is
[d

B
]

conventional, x(i): speech

reference model, P = 2, x(i): speech

conventional, x(i): white noise

Fig. 4. Comparison of conventional Kalman algorithm and reference
model (s(i): white noise, SNR = 30 dB, wslow(i))
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signal xe(i) is spectrally whitened as described in [21]. The same
prediction filter is used for measurement noise s(i). As a result, the
reference model can also be interpreted as a conventional Kalman
algorithm running in the “residual signal domain”. The simulations
were performed with the system parameters as specified in Sec. 2.1.
The prediction degree is set to P = 2 as numerous experiments
verified that in most cases this prediction degree is sufficient. Figure 4
shows the effect of the linear prediction filters. Even though the
results of white noise excitation cannot be achieved, the reference
model results in significant improvements of several dB.

Obviously, the reference model in this structure is not realizable,
since in real applications, e.g., AEC, a residual signal xe(i) cannot be
applied as excitation, the measurement noise s(i) is not particularly
available, and a delay due to the LP-analysis should be avoided.
In order to derive an appropriate realizable structure, the physical
transmission and the adaptation process are decoupled in analogy
to ideas presented in [6, 7, 9] for the NLMS-algorithm in the time
domain. In the next section, this idea will be adapted and generalized
for the Kalman algorithm in the frequency domain.

4. KALMAN ALGORITHM WITH DECORRELATION

The principle idea of decoupling of adaptation and transmission is
to shift the decorrelation filters aLP (i) in Fig. 3 into the adaptation
paths as depicted in Fig. 5.
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Fig. 5. Kalman filter with decorrelation in the adaptation paths

A system theoretical analysis shows that the required shifting
of the LP-filter from the “s(i)-path” and subsequent swapping with
w(i) and ŵ(i) causes principal errors due to the time variance of the
involved filters. While in case of w(i) the error due to the swapping
is relatively small, and turned out to be irrelevant for practical appli-
cations, the introduced error due to the time variance of ŵ(i) affects
the adaptation process notably. This error can be compensated by
introducing a refiltering stage in the adaptation paths as described
in [9]. The aim of this stage is to refilter the signals x(i) and e(i)
in such a way that they only depend on one set of prediction coeffi-
cients aLP (i) and on the current filter coefficients ŵ(i). As a result,
system theoretically the filters aLP (i) and ŵ(i) can be exchanged.
The corresponding principal block diagram of the new structure is
illustrated in Fig. 6.

For the decorrelation and refiltering of the excitation signal x(i),
the matrix

xstates(k) =

x(kR−M + 1) · · · x(kR−M − P + 1)
...

...
x(kR) · · · x(kR− P )


which contains the filter states of the decorrelation filter aLP (kR) for
the lastM time instances, is defined. The decorrelation and refiltering
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Fig. 6. Kalman filter with decorrelation and refiltering

of x(i) can now be formulated in the frequency domain according to

Xr
e(k) = diag {FM · xstates(k) · aLP (kR)} . (8)

In comparison to Xe(k) = diag{FM · xe(k)}, which can depend
on different sets of coefficients aLP (i), the signal Xr

e(k) depends
only on the current coefficients aLP (kR). Starting from (5b) and
adding the decorrelation filtering in the frequency domain expressed
by multiplication with FMQRQH

RF−1
M ALP (k), the decorrelation

and refiltering of the error signal E(k) can be calculated by

Er
e(k) = FMQRQH

RF−1
M ALP (k)FMQR+P

(
yR+P (k)−

QH
R+PF−1

M X(k)Ŵ(k)
)
. (9)

Here, the matrix

ALP (k) = diag

{
FM

(
aLP (kR)
0M−P−1

)}
(10)

represents the transfer function of the decorrelation filter, with
0M−P−1 being a column vector containingM−P −1 zeros. Vector
yR+P (k) and matrix QR+P are defined analogically to (3) and to
QR, respectively. In (9) R + P values yR+P (k) have to be used
in contrast to R values in (5b). This is because P additional values
of the error signal are needed as refiltered decorrelation filter states.
After performing the cyclic convolution in the frequency domain, by
multiplying with ALP (k), R valid values can be obtained. This also
leads to the constraint that the impulse response of the adaptive filter
ŵ(k) has to be of lengthM−R−P+1, so that the cyclic corruption
caused by filtering in the frequency domain is short enough to yield
R+ P correct values.

If the decorrelated and refiltered quantities from (8) and (9) are
used instead of X(k) and E(k), the diagonalized Kalman equations
with decorrelation

K(k) = P(k)Xr
e
H
(k)
(
Xr

e(k)P(k)Xr
e
H
(k) +

M

R
Ψss(k)

)−1

(11a)

Ŵ+(k) = Ŵ(k) + K(k)Er
e(k) (11b)

P+(k) =
(
IM − R

M
K(k)Xr

e(k)
)
P(k) (11c)

Ŵ(k + 1) = A · Ŵ+(k) (11d)

P(k + 1) = A2 ·P+(k) + Ψ∆∆(k) (11e)

can be derived. The observation matrix

Cr
e(k) = FMQRQH

RF−1
M ALP (k) · FMQR+PQH

R+PF−1
M X(k)

is effective. Comparing Cr
e(k) with (4) shows that the new

observation matrix can be interpreted as a concatenation of a
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physically observable part FMQR+PQH
R+PF−1

M X(k) and a part
FMQRQH

RF−1
M ALP (k) that describes the decorrelation.

In contrast to the reference model in Fig. 3, where the prediction
was performed every 20 ms on the next 20 ms of the excitation signal,
the prediction in the refiltered case has to be performed on the last M
samples every R samples to ensure that the prediction is performed
on the relevant samples. As positive side effect, the prediction causes
no algorithmic delay and is adapted for each frame.

4.1. Complexity Figures

The Kalman filter with decorrelation according to Fig. 6 requires an
additional LP-analysis, decorrelation, and refiltering in the adaptation
paths for each block. The LP-analysis is performed on a frame of
M samples with frameshift R and prediction order P . Equation (8)
comprises the decorrelation operations (with an inherent refiltering)
performed in the lower adaptation path. Thus, additional complex-
ity originates from the matrix multiplication xstates(k) · aLP (kR)
which consists of M · P real multiplications and M · P real addi-
tions. For the increase of complexity in the upper adaptation path,
(9) has to be compared to (5b). The decorrelation in (9) is calcu-
lated by FMQRQH

RF−1
M ALP (k). Hence, one FFT, one IFFT and

M complex multiplications are needed. The refiltering is performed
by taking P additional differences (within the brackets of (9)) into
account. Concludingly, in the underlying simulation examples the
complexity increases in an order of 20 to 25 %.

5. SIMULATION RESULTS

Simulations were carried out to evaluate the effect of the proposed
decorrelation and refiltering method in an AEC application in terms
of logarithmic system distance. Besides the time variant, stationary
impulse responses wslow(i) (see Sec. 2.1) for the simulations also
strongly time variant impulse responses wfast(i) have been applied.
The corresponding measurements for wfast(i) were performed with
a person moving between loudspeaker and microphone in the sound-
proof booth. As a time variance indication (TVI) of wslow(i) or
wfast(i), respectively, the logarithmic system distance between suc-
cessive impulse responses is utilized. The parameters of the Kalman
filter are set to M = 256, R = 64 and P = 2.

Figure 7 shows the results for a far-end single talk scenario (i.e.,
x(i): speech, s(i): white noise) with the slowly time variant impulse
responses wslow(i). In order to choose realistic “best case” condi-
tions for the AEC, the simulations were performed for two different
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Fig. 7. Comparison of conventional Kalman algorithm with new
approach including LP filtering. (x(i): speech, s(i): white noise,
A = 1 for SNR = 30 dB and A = 0.99995 for SNR = 100 dB,
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SNR values of 30 dB ( ) and 100 dB ( ) at the microphone. At an
SNR of 30 dB the decorrelation leads to an improvement in system
distance of approximately 5 dB. At an SNR of 100 dB especially the
improvement in convergence speed can be observed. The correspond-
ing steady state performance is obviously limited by the time variance
of the impulse responses wslow(i).

Figure 8 summarizes the results for a “worst case” condition, i.e.,
a double talk scenario (x(i), s(i): speech) with strongly time variant
impulse responses wfast(i). It can be observed that the logarithmic
system distance follows to a certain extent the course of the TVI
leading to misalignments, e.g., at the time instance of 7.5 s. Never-
theless, even under these severe conditions both Kalman algorithms
show stable performance. In comparison, the new approach with LP
filters outperforms the conventional Kalman algorithm and provides
an improvement in system distance of up to 3 dB.

The results clearly indicate that even in case of a Kalman filter
based adaptation correlation affects the identification process and that
the introduction of LP filters leads to an attractive solution to address
this problem.

6. CONCLUSION

In this paper a decorrelation method based on linear prediction was
reviewed and adapted to Kalman filter based adaptation, working
blockwise in the frequency domain. Within some principal experi-
ments, it has been shown that a decorrelation of the excitation signal
improves the identification performance. The introduction of a refer-
ence model proved the effectiveness of spectrally whitened excitation
signals produced by linear prediction techniques. Motivated by the
promising results, a new Kalman filter based approach including lin-
ear prediction filters was derived. Simulation results for an acoustic
echo cancellation application show improvements in term of conver-
gence speed and steady-state behaviour. Depending on the simulation
conditions, gains in an order of 5 dB can be achieved. With respect
to a gain/complexity tradeoff it is of interest that these gains can
be obtained taking only a reasonable increase of complexity into
account.

In the next step we extend our new concept to multi-channel
systems, where besides the autocorrelation also the cross-correlation
between the channels is of interest. The question is, to which extent
the linear prediction can improve the correlation properties of the
excitation signals, to counteract the non-uniqueness problem of multi-
channel system identification.
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