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ABSTRACT

The object of this paper is to introduce a new estimation al-
gorithm specifically designed for the latent high-order autore-
gressive models. It implements the concept of the filter-based
maximum likelihood. Our approach is fully deterministic and
is less computationally demanding than the traditional Monte
Carlo Markov chain techniques. The simulation experiments
and real-world data processing confirm the interest of our ap-
proach.

Index Terms— Asymmetric stochastic volatility, Gaus-
sian quadrature, Unsupervised learning, BIC criterion, Gaus-
sian filter.

1. INTRODUCTION

Let p be a positive integer, the p-order asymmetric autoregres-
sive stochastic volatility model [1] A-ARSV(p) is defined as
follows:

Ln+1 =

p∑
j=1

φjLn+1−j + ψWn + σVn+1; (1a)

Yn = Wn exp

(
Ln
2

+
µ

2

)
, (1b)

where {Vn}n≥1, {Wn}n≥1 are standard Gaussian white
noises. The parameter vector θ = (φ1, .., φp, ψ, σ, µ) is fixed,
unknown and is to be estimated. The equation (1a) describes
an autoregressive model assumed to be stationary (see Sec-
tion 3 for a statinoarity condition). The process {Ln}n≥1
is hidden while {Yn}n≥1 is observable, as in the hidden
Markov model framework (HMM, see, e.g., [2]). Moreover,
{Lm}m≥n behaves differently depending on the value taken
by Yn, that is why this is an asymmetric model. We denote
the subclass of the A-ARSV(p) models for which ψ = 0 by
A-ARSV(p). The unsupervised learning of the A-ARSV(p)
model consists in estimating θ from {yn}Nn=1.

In the literature, one finds the estimation algorithms for
the ARSV(1) (see, e.g., [3]), A-ARSV(1) (see, e.g., [4]) and
ARSV(p) (see, e.g., [1]) models. The object of the paper is
to describe a new deterministic parameter estimation method
for the A-ARSV(p) model for p ≥ 1. Note that since the
models ARSV(1), A-ARSV(1) and ARSV(p) are nested in

the A-ARSV(p) model, our algorithm allows estimating them
as well.

Our idea is to define a quasi-likelihood function from
an assumed-density filter (ADF, see, e.g., [5, 6]). Next,
we use an optimization algorithm [7] to compute the quasi-
maximum likelihood parameter estimates from the observed
series {yn}Nn=1.

The novelty of this work consists in designing an ADF for
the high-order latent asymmetric models, then combining it
with the Gaussian quadrature [8] to define a quasi-likelihood
function. As a result, in contrast with the Monte Carlo
Markov chain (MCMC) approaches, our method avoids any
random sampling.

Our primary motivation is to provide a new, simple and
robust unsupervised learning algorithm for the A-ARSV(p)
models. Another motivation arises from the lack of use of
the high-order A-ARSV(p) models in the current academic
literature. However, as we will see in the section devoted to
the experiments, there are stock indexes for which the use of
such models is advisable.

The object of the next section is to define our parame-
ter estimation method. The third section focuses on the im-
plementation of the assumed-density filter used in our ap-
proach. The fourth section demonstrates the effectiveness of
our method through experiments on both synthetic and real-
world data. The fifth section concludes the paper.

2. PARAMETER ESTIMATION

The maximum-likelihood estimation is a well-known method
of estimating the parameters of a statistical model. It searches
for the most likely value of the unknown parameter vector θ
that would reproduce the observed time series {yn}Nn=1. In
other words, it maximizes the function f(θ) where

f(θ) = log pθ (y1..N ) =

N∑
n=1

log pθ (yn |y1..n−1 ) ,

where y1..n stands for {yi}ni=1 for any n. Regarding the
model (1a), (1b), we have

pθ (yn |y1..n−1 ) =
∫
hθ (yn, ln) pθ (ln |y1..n−1 ) dln, (2)
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with hθ (yn, ln) = pθ (yn |ln ), or equivalently

hθ (yn, ln) =
1√
2π

exp

(
− ln

2
− µ

2
− y2n

2
exp(−ln − µ)

)
.

(3)
The exact predictive distribution pθ (ln |y1..n−1 ) is unavail-
able in the A-ARSV(p) model cf. [9], therefore the exact
value of pθ (yn |y1..n−1 ) is not computable for a given θ, nei-
ther is the exact value of f(θ).

The general quasi-maximum likelihood (QML) method
consists in approximating (2), which results in approximating
f(θ). Our original way to do so is the following:

1. Compute

l̂n|n−1(θ) = Eθ [ln |y1..n−1 ] ; (4a)

ν̂2n|n−1(θ) = Eθ

[
(ln − l̂n|n−1(θ))

2 |y1..n−1
]

(4b)

with an ADF cf. Section 3;

2. Let p̂θ (ln |y1..n−1 ) = N
(
ln; l̂n|n−1(θ), ν̂

2
n|n−1(θ)

)
,

i.e. p̂θ (ln |y1..n−1 ) is a Gaussian distribution with
mean l̂n|n−1(θ) and variance ν̂2n|n−1(θ).

3. Use the Gaussian quadrature to evaluate p̂θ (yn |y1..n−1 )
by ∫

hθ (yn, ln) p̂θ (ln |y1..n−1 ) dln ≈

M∑
i=1

hθ

(
yn, l̂n|n−1(θ) + ν̂n|n−1(θ)ξi

)
πi. (5)

Let us recall that the Gaussian quadrature is a numeric in-
tegration technique. The points {ξi}Mi=1 in R and their corre-
sponding weight factors are tabulated e.g. in [10] for different
values of M .

Finally, the quasi-likelihood function that we define is

f̂(θ) =

N∑
n=1

log

(
M∑
i=1

hθ

(
yn, l̂n|n−1(θ) + ν̂n|n−1(θ)ξi

)
πi

)
.

(6)

We obtain the related QML parameter estimate by solving
numerically

θ̂ = argmax
θ

f̂(θ) (7)

with an implementation of the Broyden-Fletcher-Goldfarb-
Shanno optimization routine described in [7].

3. ASSUMED-DENSITY FILTERING

In this section, we detail the computation of (4) with the
ADF. Since {Ln}n≥1 is not Markovian, we begin by refor-
mulating the system (1) as a classic HMM. Let us consider

the following state vector Xn in Rp+1:

Xn =
[
L(n+1)−p+1 L(n+1)−p+2 . . . Ln+1 Wn

]>
.

(8)
By the stationarity assumption of {Ln}n≥1 and since {Wn}n≥1
is a white noise, we see that {Xn}n≥1 is a stationary AR (1)
process:

Xn+1 = AXn +BUn; (9a)

A =


1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

φp φp−1 . . . φ1 0
0 0 . . . 0 0

 ; (9b)

BB> =


0 . . . 0 0
...

. . .
...

...
0 . . . ψ2 + σ2 ψ
0 . . . ψ 1

 , (9c)

where {Un}n≥1 is standard Gaussian white noise in Rp+1.
Therefore, the probability density function (pdf) of Xn is
zero-mean Gaussian. Let Γ be the variance of Xn, then

AΓA> +BB> = Γ. (10)

In practice, one considers the following recursion to
solve (10) in Γ:

Γ(k + 1) = AΓ(k)A> +BB>, (11)

where Γ(1) is the identity matrix. If all the absolute eigenval-
ues ofA are strictly smaller than 1 then the stationary solution
exists and we have

lim
k→∞

Γ(k) = Γ.

Our filtering algorithm implements the assumed-density
principle. The underlying idea is to assume that for each n,
the filtering pdf pθ (xn |y1..n ) and the one step-ahead pre-
dictive pdf pθ (xn |y1..n−1 ) have a pre-specified form. We
approximate classically the filtering and predictive densities
by Gaussian distributions:

p̂θ (xn |y1..n ) = N
(
xn; x̂n|n(θ), Γ̂n|n(θ)

)
;

p̂θ (xn |y1..n−1 ) = N
(
xn; x̂n|n−1(θ), Γ̂n|n−1(θ)

)
.

Likewise to the classic, extended and unscented Kalman fil-
ters, the ADF performs for each n the prediction and update
steps.

In the prediction step, one takes the expectation of (9a)
given the information available at n− 1 to obtain the param-
eters of the predictive pdf:

x̂n|n−1(θ) = Ax̂n−1|n−1(θ); (12a)

Γ̂n|n−1(θ) = AΓ̂n−1|n−1(θ)A
> +BB>. (12b)
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The updating step incorporates the n-th measurement yn
into the predictive pdf to obtain the filtering pdf at time n.
The parameters of this updated pdf derive from the general
Bayesian framework:

x̂n|n(θ) =

∫
xnω(xn,θ)dxn; (13a)

Γ̂n|n(θ) =

∫
xnx>nω(xn,θ)dxn − x̂n|n(θ)x̂

>
n|n(θ);

(13b)

ω(xn,θ) =
pθ (yn |xn ) p̂θ (xn |y1..n−1 )

dn(θ)
; (13c)

dn(θ) =

∫
pθ (yn |xn ) p̂θ (xn |y1..n−1 ) dxn. (13d)

We see that the formulas above require an integration
over Rp+1. However, we remark that the context of the
A-ARSV(p) model allows replacing this multidimensional
integration by an integration over R. In fact, let us consider
the following partitioning of Xn into Rn and Zn:

Rn =
[
L(n+1)−p+1 . . . L(n+1)−2 Ln+1

]>
(14a)

Zn =
[
Ln Wn

]>
. (14b)

We suggest the following reasoning given the system state
at n− 1. In the A-ARSV(p) model, Rn and Yn are indepen-
dent given Zn. We can use this to begin by updating the mean
ẑn|n(θ) and variance Σ̂n|n(θ) parameters of Zn, then to de-
rive the mean and variance parameters of Xn by appropriate
linear and quadratic transformations, since Xn is assumed to
be Gaussian. Moreover, there is a deterministic link between
Wn, Yn and Ln, so we can compute the parameters of Zn
given Yn by taking the expectation of an appropriate function
of Ln. The following original algorithm implements this idea:

Algorithm 1 The updating step

1. Extract ẑn|n−1(θ), Σ̂n|n−1(θ) and Ĉn|n−1(θ) from
x̂n|n−1(θ) and Γ̂n|n−1(θ) cf. (14), where

p̂θ (zn |y1..n−1 ) = N
(
zn; ẑn|n−1(θ), Σ̂n|n−1(θ)

)
;

Ĉn|n−1(θ) = Covθ (Xn,Zn |y1..n−1 ) .

2. Use the classic Gaussian conditioning formulas to de-
rive the coefficients of linear and quadratic transforma-
tions corresponding to the partitioning (14):

α̂n(θ) = Ĉn|n−1(θ)Σ̂
−1
n|n−1(θ); (16a)

β̂n(θ) = x̂n|n−1(θ)− α̂n(θ)ẑn|n−1(θ); (16b)

γ̂n(θ) = Γ̂n|n−1(θ)− α̂n(θ)Ĉ
>
n|n−1(θ). (16c)

3. Compute ẑn|n(θ) and Σ̂n|n(θ) by using the Gaussian
quadrature:

ẑn|n(θ) =

M∑
i=1

gθ

(
yn, l̂n|n−1(θ) + ν̂n|n−1(θ)ξi

)
ω(πi,θ);

Σ̂n|n(θ) =

M∑
i=1

(
gθ

(
yn, l̂n|n−1(θ) + ν̂n|n−1(θ)ξi

)
×

g>θ

(
yn, l̂n|n−1(θ) + ν̂n|n−1(θ)ξi

)
ω(πi,θ)

)
−

ẑn|n(θ)ẑ
>
n|n(θ),

where

ω(πi,θ) =
hθ

(
yn, l̂n|n−1(θ) + ν̂n|n−1(θ)ξi

)
πi

dn(θ)
;

dn(θ) =

M∑
i=1

hθ

(
yn, l̂n|n−1(θ) + ν̂n|n−1(θ)ξi

)
πi,

with

l̂n|n−1(θ) = x̂n−1|n−1(θ)[p]; (19a)

ν̂2n|n−1(θ) = Γ̂n−1|n−1(θ)[p, p]; (19b)

gθ (yn, ln) =
[
ln yn exp

(
− ln

2 −
µ
2

)]>
. (19c)

4. The values of x̂n|n(θ) and Γ̂n|n(θ) are:

x̂n|n(θ) = α̂n(θ)ẑn|n(θ) + β̂n(θ); (20a)

Γ̂n|n(θ) = α̂n(θ)Σ̂n|n(θ)α̂
>
n (θ) + γ̂n(θ). (20b)

The overall algorithm for evaluating our quasi-likelihood
function at a parameter vector value θ runs as follows.

Algorithm 2 The quasi-likelihood function

1. Initialize x̂0|0(θ) = 0, Γ̂0|0(θ) = Γ;

2. For each n in 1..N ,
-Perform the prediction step cf. (12);
-Obtain l̂n|n−1(θ) and ν̂2n|n−1(θ) from (19);
-Run the updating step cf. Algorithm 1.

3. Evaluate f̂(θ) by (6).

4. EXPERIMENTS

In this section, we first provide an experiment on synthetic
data to validate our approach. Next, we illustrate the applica-
bility of our method to a real-world data set by using the BIC
criterion [11].
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0.0 −0.4 −0.7 −0.9
GARCH 1.31 1.30 1.32 1.30
A-ARSV(1) 0.87 0.73 0.72 0.72
ARSV(7) 0.70 0.70 0.70 0.71
A-ARSV(7) 0.71 0.61 0.49 0.40
A-ARSV(7)* 0.70 0.59 0.49 0.40

Table 1. MSE of different estimators in a synthetic setting
(lower is better), for varying values of ρ. The results for A-
ARSV(7)* are given as a reference.

4.1. Experiments on synthetic data

We consider the A-ARSV(7) model with the parameter

θ0 = (1.73,−1.55, 1.32,−1.31, 1.6,−1.62, 0.77,

0.3ρ, 0.3
√
1− ρ2, 0). (21)

To choose the values of auto-regression coefficients
in (21), we have preliminary estimated several A-ARSV(p)
models from the public price histories of different stock in-
dexes. The parameter ρ designs the degree of the asymmetry
of the model and takes different values according to the test
case cf. Table 1.

We generate a data set {yn}1000n=1 , then we estimate the hid-
den state sequence {ln}1000n=1 by the following estimators:
• “GARCH” estimator computes the coefficients of the

GARCH(7,1) model cf. [12] from {yn}1000n=1 , then estimates
the log-volatility;
• “A-ARSV(1)” estimator implements the algorithm

from [4] to estimate the A-ARSV(1) model, then uses the
sequential importance sampling particle filter (SIR-PF, see,
e.g., [13]) to estimate the underlying log-volatility;
• “ARSV” estimator uses our unsupervised algorithm to

estimate the ARSV(7) parameters, then uses the SIR-PF.
Next, consider two estimators based on the A-ARSV(7)

model:
• “A-ARSV(7)” estimator uses our unsupervised algo-

rithm to estimate the A-ARSV(7) parameters, then uses the
SIR-PF;
• “A-ARSV(7)*” uses the true parameter vector θ0 to es-

timate the underlying log-volatility with the SIR-PF.
Table 1 summarizes the averaged results of these meth-

ods in terms of the mean square error (MSE, MSE =
1

1000

∑1000
n=1 (ln − l̂n)

2).
Regarding the processing time, our algorithm runs ap-

proximately 5 times faster than its MCMC counterparts, but
one may obtain different running times depending on the
CPU unit, operating system, compilation and implementa-
tion details. It is not surprising that the A-ARSV(7) and
A-ARSV(7)* estimators were the most accurate, thanks to
their consistency with the data-generating process. How-
ever, we see that the classic estimators may be particularly
suboptimal.

4.2. Experiments on stock data

Being able to determine which model, A-ARSV(p) or
A-ARSV(p), and the order p that describes sufficiently well
a given data is important for the practitioners. The common
way to do it consists in using the BIC criterion. The model
with the lowest BIC would be the best at forecasting, es-
pecially in a long-sample context [14]. The BIC is defined
as

BIC = −2 log p(y1..N |θ̂,M) + k logN.

Here, p(y1..N |θ̂,M) denotes the maximized value of the
likelihood function in the model M and k is the number of
free parameters. In the case of the ARSV(p) model, k = p+2
and k = p+ 3 in the case of the A-ARSV(p) model.

We use our method to estimate the A-ARSV(p) and
ARSV(p) models from the price histories of iShares Emerg-
ing Markets (EEM) index observed in-between 01/01/2010
and 04/01/2016 (1512 observations). Figure 1 plots the
BIC values that we find after estimating ARSV(p) and
A-ARSV(p) models on this data for various p.

0 5 10 15 20 25
 p

-3.965

-3.96

-3.955

-3.95

-3.945

-3.94

B
IC

#104

A-ARSV
ARSV

Fig. 1. BIC values of the ARSV(p), A-ARSV(p) mod-
els estimated from the EEM index (lower is better). For
p = 1, the ARSV(p) model is preferable to A-ARSV(p);
the A-ARSV(p) model is preferable to ARSV(p) for p ≥ 2.

5. CONCLUSION

We proposed a general method of parameter estimation in the
latent asymmetric autoregressive models. The solution results
from maximizing a specific approximation of the likelihood
function. This method is simple and robust. The order of the
underlying AR process may be chosen by using the BIC crite-
rion. Besides, our method may be easily generalized to apply
in various fields involving the latent autoregressive models in-
cluding e.g. the speech synthesis [15] and tracking [16].
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