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ABSTRACT
We address the problem of sparse signal reconstruction from a
few noisy samples. Recently, a Covariance-Assisted Match-
ing Pursuit (CAMP) algorithm has been proposed, improv-
ing the sparse coefficient update step of the classic Orthog-
onal Matching Pursuit (OMP) algorithm. CAMP allows the
a-priori mean and covariance of the non-zero coefficients to
be considered in the coefficient update step. In this paper,
we analyze CAMP, which leads to a new interpretation of the
update step as a maximum-a-posteriori (MAP) estimation of
the non-zero coefficients at each step. We then propose to
leverage this idea, by finding a MAP estimate of the sparse
reconstruction problem, in a greedy OMP-like way. Our ap-
proach allows the statistical dependencies between sparse co-
efficients to be modelled, while keeping the practicality of
OMP. Experiments show improved performance when recon-
structing the signal from a few noisy samples.

Index Terms— Sparse representations, signal reconstruc-
tion, inpainting, Orthogonal Matching Pursuit

1. INTRODUCTION

Sparse representations have proved to be an efficient tool for
the reconstruction of a signal from a few noisy measurements
[1–5]. Many natural signals such as images and audio can be
represented in an appropriate dictionary, where most coeffi-
cients are zero. The problem of sparse signal reconstruction
is that of estimating the sparse coefficients from the available
noisy samples. Finding a sparse decomposition is known to
be an NP-hard problem [6], but a variety of algorithms have
been proposed in the literature. Matching Pursuit (MP) [7] is a
greedy algorithm that iteratively selects an atom from the dic-
tionary, and updates its corresponding coefficient. Orthogonal
Matching Pursuit (OMP) [8] improves the coefficient update
step, by performing an orthogonal projection onto the support
set, ensuring a steepest descent of the residual error.
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One limitation of these algorithms is that they do not make
use of the a priori distribution of the coefficients. “Spike-and-
slabs” prior models have been introduced [9–11], but usually
assume that the coefficients are independent and identically
distributed, so they do not make use of the statistical depen-
dencies between coefficients. Graphical models have been
proposed to model theses dependencies [12–14]. However
this approach involves the design of specialised, and often
computationally expensive optimization methods. Recently, a
Covariance-Assisted Matching Pursuit (CAMP) has been pro-
posed [15]. The author introduced the mean and covariance
of the non-zero coefficients into the coefficient update step of
OMP, which allows the statistical dependencies between co-
efficients to be considered. CAMP demonstrates significant
improvement on image reconstruction tasks. However, the
atom selection step does not take into account the new coeffi-
cient update.

CAMP was derived using the Gauss-Markov theorem
[16], which does not need an explicit probabilistic model. In
the present paper, we instead provide a Bayesian interpre-
tation of the new coefficient update in [15]. The coefficient
update can be interpreted as a maximum-a-posteriori (MAP)
estimate of the non-zero coefficients, with a Gaussian prior.
We then propose to leverage this interpretation, by solving
a MAP estimation to the sparse reconstruction problem. In
order to enforce sparsity of the solution, we solve the problem
in a greedy OMP-like way. Our proposed algorithm shows
significant improvement compared to OMP and CAMP, when
reconstructing signals from only a few noisy measurements.

This paper is organized as follows: The problem of sparse
signal reconstruction from noisy samples is described in Sec-
tion 2. The OMP and CAMP algorithms are discussed in Sec-
tion 3. We then analyze CAMP in Section 4, and describe our
proposed algorithm in Section 5. The performance evaluation
is presented in Section 6, before the conclusion is drawn.

2. PROBLEM FORMULATION

We consider the case of a signal y ∈ RN , corrupted by addive
noise v ∈ RN , and where only a subset Ir ⊂ {1, . . . , N} of
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theN samples is observed, such that the received signal yr is:

yr = Mr(y + v), (1)

where Mr ∈ R|Ir|×N is a measurement matrix defining the
observed samples. We assume that the original signal y can
be decomposed on an overcomplete dictionary D ∈ RN×M

as y = Dx, with x sparse. The reconstruction problem can
then be formulated as:

x̂ = argmin
x
‖x‖0, s.t. ‖Mry −MrDx‖2 < ε

= argmin
x
‖x‖0, s.t. ‖yr −Drx‖2 < ε,

(2)

where Dr , MrD is the reduced dictionary, obtained by
keeping only the relevant rows from the original dictionary.
The constant ε is the approximation error, here set to be pro-
portional to the noise level. The clean signal can then be re-
constructed from the full dictionary D and the estimated co-
efficients x̂ as:

ŷ = Dx̂. (3)

3. BASELINE APPROACHES

3.1. Orthogonal Matching Pursuit

The OMP algorithm [8] iteratively selects the most correlated
atom with the residual vector at step k, and adds it to the
support set Ωk. It then performs an orthogonal projection of
the signal onto the subspace generated by the sub-dictionary
Dr

Ωk , defined as:
Dr

Ωk , DrST
k , (4)

where Sk ∈ Rk×M is the selection matrix, that extracts the k
relevant rows corresponding to the selected atoms. OMP for
signal reconstruction is presented in Algorithm 1.

The atom selection step (5) is derived so that the algorithm
performs the steepest descent of the residual error after each
coefficient update (6) (see e.g. [17]). Moreover, as a result of
the orthogonal projection (6) and the residual update (7), we
have after each iteration:

DT
Ωkrk = DT

Ωk(yr −DΩkxk)

= DT
Ωky

r −DT
ΩkDΩk(DT

ΩkDΩk)−1DΩkyr

= 0.

(8)

This ensures that at the next iteration, during the selection step
(5), |〈dri , rk−1〉|2 is zero for all i ∈ Ωk−1. In other words,
if an atom has already been previously added to the support
Ωk−1, it will not be selected again. This property of the OMP
makes it practical, as the number of selected atoms (i.e. the
sparsity level) is equal to the number of iterations. Sparsity of
the reconstructed signal is ensured by stopping the algorithm
after a few iterations.

In the literature, the selection step (5) is often written as
ı̂ = argmaxi |〈dri , rk−1〉|, assuming that the dictionary atoms

Algorithm 1 OMP for signal reconstruction

Require: yr, Dr = {dri }i=1..M , ε,Kmax
initialize: residual r0 = yr, x0 = 0,Ω0 = ∅, k = 0
while ‖rk‖2 > ε and ‖x‖0 < Kmax do

k ← k + 1
Atom selection step:

ı̂ = argmax
i

|〈dri , rk−1〉|2

‖dri ‖2
(5)

Support set update: Ωk = Ωk−1 ∪ {ı̂}
Coefficient update step:

xk = argmin
u
‖yr −Dr

Ωku‖22

= (DrT
ΩkD

r
Ωk)−1DrT

Ωky
r

(6)

Residual update:

rk = yr −Dr
Ωkxk (7)

return ŷ = Dx̂

are normalized to unit `2-norm. In this paper we keep the
general formulation (5), so that the discussed algorithm can
be used regardless of the measurement Mr and the norm of
the atoms dr. For convenience, we drop the index r in the
remainder of the paper.

3.2. Covariance-Assisted Matching Pursuit

The author in [15] recently proposed a novel approach to im-
prove the coefficient update step (6), using a-priori informa-
tion on the mean and covariance of the non-zero sparse coeffi-
cients. The assumption is that the non-zero (“nz”) coefficients
of the sparse vector x ∈ RM are generated from a random dis-
tribution with mean µnz ∈ RM and covariance Λnz ∈ RM×M .
As a consequence, at the k-th iteration of the OMP algorithm,
the coefficient vector xk ∈ Rk corresponding to the k non-
zero elements of x has a mean µk and covariance Λk, where
µk ∈ Rk and Λk ∈ Rk×k are defined as:

µk , Skµ
nz (9)

Λk , SkΛnzST
k , (10)

In (7), the OMP algorithm usually approximates the coeffi-
cients xk, assuming the following model:

y = DΩkxk + v. (11)

The model can be augmented as:

ỹ = D̃xk + ṽ, (12)

with ỹ =

[
y
µk

]
, D̃ =

[
DΩk

I

]
and ṽ =

[
v

µk − xk

]
.

Let us assume that the noise v has zero mean and covariance
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Σ. Using the Gauss-Markov theorem [16], the Best Linear
Unbiaised Estimator (BLUE) of xk in (12), is the solution of
the weighted least squares problem:

xk = argmin
u

(ỹ − D̃u)TW (ỹ − D̃u), (13)

where W =

[
Σ−1 0

0 Λ−1
k

]
. Solving (13) by setting the

derivative with respect to u to zero, gives [15]:

xk = (DT
ΩkΣ−1DΩk +Λ−1

k )−1(DT
ΩkΣ−1y+Λ−1

k µk). (14)

The atom selection and residual update are performed in a
similar way as in OMP, so that the CAMP algorithm can be
summarized by simply replacing the coefficient update step
(6) by the new update (14) in Algorithm 1.

4. ANALYSIS OF CAMP

CAMP provides an easy way to incorporate the mean and
covariance of the non-zero coefficients in the update step of
OMP. The covariance reflects the statistical dependencies of
the non-zero coefficients, but also the expected energy of each
atom. Although no explicit probability distribution of the co-
efficients was mentioned in [15] (the covariance was intro-
duced by invoking the Gauss-Markov theorem), the weighted
least squares (13) can be interpreted as a Bayesian linear re-
gression, with a Gaussian prior. To see this, (13) can be ex-
panded as:

xk = argmin
u

[
(y −DΩku)T Σ−1(y −DΩku)

+ (µk − u)T Λ−1
k (µk − u)

]
.

(15)

We can recognize the maximum-a-posteriori (MAP) [16] es-
timate of xk, assuming a Gaussian model y ∼ N (DΩkxk,Σ)
(i.e. a Gaussian noise v ∼ N (0,Σ)), and a Gaussian prior on
the non-zero coefficients xk ∼ N (µk,Λk).

While the CAMP algorithm improves the coefficient up-
date step of the OMP, it suffers from a few drawbacks:

• The coefficient update step has been modified, but the
residual update and selection step are identical to those
of the OMP. As a result, the derivations in (8) do not
hold anymore. This means that, unlike for the OMP,
there is no theoretical guarantee that the same atom
cannot be selected twice. In [15], the atom selection
is explicitly restrained to i /∈ Ωk−1. However this also
means that some residual energy might be lost at each
iteration.

• The atom selection step does not take into account the
new update step (13). This means that there is no guar-
antee that the selected atom will lead to a steepest de-
scent of the residual error, as for the OMP.

In the next section we propose a new formulation of the
sparse signal reconstruction problem, inspired by the model
in (15), which allows to capture the statistical dependencies
between atoms while keeping the practicality of OMP.

5. PROPOSED ALGORITHM

We propose to regularize the problem in (2), in a similar way
as (15). Instead of minimizing ‖y − Dx‖2 iteratively, we
propose instead to solve:

x̂ = argmin
x

[(y−Dx)T Σ−1(y−Dx)+(x−µ)T Λ−1(x−µ)],

(16)
where µ ∈ RM and Λ ∈ RM×M are the mean and covari-
ance of the full sparse coefficient vector x. This can be seen
as adding a multivariate Gaussian prior on the sparse coeff-
cient x ∼ N (µ,Λ), and solving the MAP-estimation of the
coefficients x.

The minimizer x̂ could be found in a closed form, but the
solution would not be sparse. Instead, we propose to solve
(16) in a greedy OMP-like way. For this, we notice that (16)
can be easily reformulated as:

x̂ = argmin
x
‖Σ−1/2(y −Dx)‖2 + ‖Λ−1/2(x− µ)‖2 (17)

= argmin
x
‖
[

Σ−1/2y
Λ−1/2µ

]
−

[
Σ−1/2D
Λ−1/2

]
x‖2, (18)

where we introduce Σ−1/2 and Λ−1/2, the Choleski factor-
ization of Σ−1 and Λ−1, defined as Σ−1 = (Σ−1/2)T Σ−1/2

and Λ−1 = (Λ−1/2)T Λ−1/2. Finally, the regularized prob-
lem (16) can be formulated as:

x̂ = argmin
x
‖ỹ − D̃x‖2 (19)

with ỹ ,

[
Σ−1/2y
Λ−1/2µ

]
, and D̃ ,

[
Σ−1/2D
Λ−1/2

]
. We can now

easily derive the OMP algorithm from the augmented model
(19). The residual update is now:

r̃k = ỹ − D̃ST
k xk

=

[
Σ−1/2(y −DΩkxk)
Λ−1/2(µ− ST

k xk)

]
=

[
Σ−1/2rk1
Λ−1/2rk2

]
, (20)

where rk1 , y−DΩkxk and rk2 , µ−ST
k xk are the residuals

of the cost function and the regularization term respectively
(one can recognize rk1 as the residual of the classic OMP al-

4777



gorithm). The new selection step is:

ı̂ = argmax
i

∣∣∣〈d̃i, r̃k−1〉
∣∣∣2

‖d̃i‖2

= argmax
i

∣∣∣∣∣
[

Σ−1/2Dei
Λ−1/2ei

]T
·
[

Σ−1/2rk−1
1

Λ−1/2rk−1
2

]∣∣∣∣∣
2

‖Σ−1/2Dei‖2 + ‖Λ−1/2ei‖2

= argmax
i

∣∣eTi DT Σ−1rk−1
1 + eTi Λ−1rk−1

2

∣∣2
eTi D

T Σ−1Dei + eTi Λ−1ei
, (21)

where ei ∈ RM is the column vector that is one at position
i and zero elsewhere, such that Dei is the i-th atom from the
dictionary. Once the atom is selected, the new coefficient up-
date at iteration k is:

xk = (SkD̃
T D̃ST

k )−1SkD̃
T ỹ

= (Sk(DT Σ−1D + Λ−1)ST
k )−1Sk(DT Σ−1y + Λ−1µ)

= (DT
ΩkΣ−1DΩk + SkΛ−1ST

k )−1(DT
ΩkΣ−1y + SkΛ−1µ).

(22)

5.1. Discussions

As the proposed algorithm has been directly derived from
the OMP algorithm, it inherits all the properties of the OMP.
The proposed selection step (21), along with the new coef-
ficient update (22) and residual update (20), unlike in [15],
ensure that the same atom is not selected twice. The proposed
method thus allows to incorporate the covariance and mean of
the sparse coefficients, while keeping the practicality of OMP.

Note that the major difference between the CAMP and our
algorithm, is that the CAMP uses statistics of the non-zero co-
efficients (µnz and Λnz), while our method uses the statistics
of the full vectors (µ and Λ). Assuming a Gaussian distri-
bution on the sparse coefficients might not reflect the actual
distribution of the coefficients, but allows one to capture the
statistical dependencies between atoms in a simple way.

Also note that the augmented dictionary D̃ is of size (N+
M) ×M , hence the new selection step is of computational
costO((N+M)×M), compared toO(N×M) for the OMP
and CAMP. The proposed approach is thus computationally
more expensive.

6. PERFORMANCE EVALUATION

To compare with the CAMP algorithm, we reproduced the
inpainting experiment presented in [15], using the code and
test data kindly provided by the author. The test data con-
sists of 150,000 patches taken from 6 images (25,000 patches
per image), each patch being of size N = 8 × 8 pixels. In
a similar fashion as in [15], the experiment was realized in
an oracle way (the covariance matrix was learned from the

Percentage of missing samples
10 20 30 40 50 60 70 80 90

S
N

R

6

8

10

12

14

16

18

20

22
Proposed algorithm-Oracle
CAMP-Oracle
OMP

Percentage of missing samples
10 20 30 40 50 60 70 80 90

S
N

R

6

8

10

12

14

16

18

20

22
Proposed algorithm-approx
CAMP-approx
OMP

Fig. 1: Comparison of OMP, CAMP and proposed algorithm
on image restoration from a few noisy samples. Top: Oracle
reconstruction. Bottom: Approximate reconstruction.

same test images), and in an approximate way (the covariance
was learned from another image, not in the test set). Each
patch was decomposed onto an overcomplete DCT dictionary
D ∈ R16×256. The performance is shown in Figure 1. The
experiment was realised by adding white noise (Σ = σ2I)
with σ = 30, and randomly deleting samples, from 10% to
90%. The OMP, CAMP and the proposed algorithm were
performed with a stopping criterion of ε = N × 1.1× σ, and
a maximum number of atoms Kmax = 32. The proposed al-
gorithm shows improved performance when more than 60%
of the pixels are missing, with an improvement of more than
6 dB compared to the baseline OMP, and 4 dB compared
to the CAMP when 90% of the pixels are missing. The in-
creased performance can be explained by the data augmenta-
tion performed in (19): adding prior information results in an
increased robustness when a lot of samples are missing.

7. CONCLUSION

In this paper, we have analyzed the recent CAMP algorithm,
and presented a new greedy sparse reconstruction algorithm.
The proposed algorithm provides an MAP solution for the
sparse reconstruction problem, in a greedy OMP-like way.
Experiments show improved performance over the classic
OMP and the CAMP algorithms.

4778



8. REFERENCES

[1] E. J. Candes, J. K. Romberg, and T. Tao, “Stable sig-
nal recovery from incomplete and inaccurate measure-
ments,” Communications on Pure and Applied Mathe-
matics, vol. 59, no. 8, pp. 1207–1223, 2006.

[2] J. A. Tropp and A. C. Gilbert, “Signal recovery
from random measurements via orthogonal matching
pursuit,” IEEE Transactions on Information Theory,
vol. 53, no. 12, pp. 4655–4666, 2007.

[3] P. Boufounos, M. F. Duarte, and R. G. Baraniuk, “Sparse
signal reconstruction from noisy compressive measure-
ments using cross validation,” in 2007 IEEE/SP 14th
Workshop on Statistical Signal Processing (SSP 2007).
IEEE, 2007, pp. 299–303.

[4] I. F. Gorodnitsky and B. D. Rao, “Sparse signal re-
construction from limited data using FOCUSS: A re-
weighted minimum norm algorithm,” IEEE Transac-
tions on Signal Processing, vol. 45, no. 3, pp. 600–616,
1997.

[5] T. T. Cai and L. Wang, “Orthogonal matching pursuit for
sparse signal recovery with noise,” IEEE Transactions
on Information Theory, vol. 57, no. 7, pp. 4680–4688,
July 2011.

[6] G. Davis, S. Mallat, and M. Avellaneda, “Adaptive
greedy approximations,” Constructive Approximation,
vol. 13, no. 1, pp. 57–98, 1997.

[7] S. Mallat and Z. Zhang, “Matching pursuits with time-
frequency dictionaries,” IEEE Transactions on Signal
Processing, vol. 41, no. 12, pp. 3397–3415, 1993.

[8] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Or-
thogonal matching pursuit: recursive function approxi-
mation with applications to wavelet decomposition,” in
1993 Conference Record of The Twenty-Seventh Asilo-
mar Conference on Signals, Systems and Computers,
Nov 1993, pp. 40–44 vol.1.

[9] L. Chaari, J. Y. Tourneret, and H. Batatia, “Sparse
Bayesian regularization using Bernoulli-Laplacian pri-
ors,” in 21st European Signal Processing Conference
(EUSIPCO 2013), Sept 2013.
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[13] A. Drémeau, C. Herzet, and L. Daudet, “Boltzmann
machine and mean-field approximation for structured
sparse decompositions,” IEEE Transactions on Signal
Processing, vol. 60, no. 7, pp. 3425–3438, 2012.

[14] C. Févotte, B. Torrésani, L. Daudet, and S. J. Godsill,
“Sparse linear regression with structured priors and ap-
plication to denoising of musical audio,” IEEE Trans-
actions on Audio, Speech, and Language Processing,
vol. 16, no. 1, pp. 174–185, 2008.

[15] A. Adler, “Covariance-assisted matching pursuit,” IEEE
Signal Processing Letters, vol. 23, no. 1, pp. 149–153,
Jan 2016.

[16] T. Hastie, R. Tibshirani, and J. Friedman, The Elements
of Statistical Learning. Springer New York Inc., 2001.

[17] M. Elad, Sparse and Redundant Representations: From
Theory to Applications in Signal and Image Processing,
1st ed. Springer Publishing Company, Incorporated,
2010.

4779


