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ABSTRACT
The problem of recovering a signal from its phaseless short-time

Fourier transform (STFT) measurements arises in several applica-
tions, such as ultra-short pulse measurements and ptychography.
The redundancy offered by the STFT enables unique recovery
under mild conditions. We show that in some cases, the principle
eigenvector of a designed matrix recovers the underlying signal.
This matrix is constructed as the solution of a simple least-squares
problem. When these conditions are not met, we suggest to use this
principle eigenvector to initialize a gradient algorithm, minimizing
a non-convex loss function. We prove that under appropriate condi-
tions, this initialization results in a good estimate of the underlying
signal. We further analyze the geometry of the loss function and
show empirically that the gradient algorithm is robust to noise. Our
method is both efficient and enjoys theoretical guarantees.

Index Terms—phase retrieval, short-time Fourier transform,
gradient descent, non-convex optimization, ptychography

I. INTRODUCTION
Phase retrieval is the process of retrieving the phase information

of a signal from its Fourier transform magnitude. This problem
arises in many areas of engineering and science, such as optics, X-
ray crystallography, speech recognition, blind channel estimation
and astronomy (see for instance, [1], [2], [3], [4], [5], [6]). For al-
most all one-dimensional (1D) signals phase retrieval is an ill-posed
problem (see e.g. [7]). To overcome the fundamental ill-posedness,
it is common to employ measurement techniques that generate
redundancy in the acquired information. Such measurements can
be obtained by masks (see e.g. [8], [9]) or by measuring the
magnitude of the short-time Fourier transform (STFT). In [10], it
was demonstrated that the STFT magnitude leads to better recovery
than an over-sampled discrete Fourier transform (DFT) for the same
number of measurements.

This paper deals with the problem of recovering a 1D signal
from its STFT magnitude. This problem serves as the model
for ptychography, in which a moving probe is used to sense
multiple diffraction measurements, and laser pulse measurement
techniques [11], [12], [13]. It is now known that by choosing
windows with appropriate properties, only a small redundancy
in the measurements (i.e. short windows) is needed to enforce
uniqueness (for details, see [14], [15], [16], [17], [10]). The STFT
of a 1D signal x ∈ CN with respect to a real sliding window g of
length W is defined as

X[m, k] :=

N−1∑
n=0

x[n]g[mL− n]e−2πjkn/N , (I.1)

where k = 0, . . . , N−1, m = 0, . . . ,
⌈
N
L

⌉
−1 and L determines the

separation in time between adjacent sections. Hereafter, all indices
should be considered as modulo the signal’s length N . We assume
that x and g are periodically extended over the boundaries in (I.1)
and that L divides N .
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Two main approaches exist to recover a signal from STFT mag-
nitudes. The classic method, called Griffin-Lim algorithm (GLA)
[18], is a modification of the alternating projection algorithms
of Gerchberg and Saxton and Fineup [19], [20] (see also [12]).
The properties of this algorithm are not well-understood. Recently,
the authors of [16] suggested to relax the problem to a tractable
semidefinite program (SDP). While this algorithm works well,
solving an SDP requires high computational resources. We suggest
a third approach based on minimizing a non-convex loss function
by gradient descent. In contrast to previous works, our algorithm
reflects a practical setup, is computationally efficient and enjoys
theoretical guarantees.

We begin by taking the 1D DFT of the acquired information
with respect to the frequency variable. This transformation greatly
simplifies the analysis and implies, almost directly, a least-squares
(LS) algorithm for L = 1 and long windows W ≥

⌈
N+1

2

⌉
.

Specifically, under appropriate conditions one can recover the
signal by extracting the principle eigenvector of a designed matrix.
This matrix approximates the correlation matrix X := xx∗ and
is obtained as the solution of a simple LS problem. When the
conditions for a closed-form solution are not met, we propose
using the principle eigenvector of the designed matrix to initialize a
gradient descent (GD) algorithm that minimizes a non-convex loss
function. Our approach deviates in two important aspects from the
recent line of work in non-convex phase retrieval [21], [22], [23],
[24], [25]. First, all these papers focus their attention on the setup
of phase retrieval with random sensing vectors and rely heavily
on statistical considerations, while we consider a deterministic
framework. Second, we approximate X by solving a LS problem,
whereas the aforementioned papers approximate it by taking a
superposition of the measurements.

The properties of a GD algorithm depend on the initialization
method and the geometry of the loss function. For L = 1, we
estimate the distance between the proposed initialization and the
global minimum, which decays to zero as W tends to N+1

2
. We

also prove the existence of a basin of attraction around the global
minimum of the loss function for signals with unit module entries.
We note that while the theoretical guarantees of the algorithm are
limited, the algorithm performs well and is robust to noise.

The paper is organized as follows. We begin in Section II
by formulating mathematically the problem of phase retrieval
from STFT magnitude measurements. In Section III we present
conditions under which it has a closed-form LS solution. Section
IV considers the gradient algorithm, its initialization and numerical
results. Section V presents our theoretical findings and Section VI
concludes the paper.

Throughout the paper we use the following notation. Bold small
and capital letters denote vectors and matrices, respectively. We use
Z† and tr(Z) for the pseudo-inverse and the trace of the matrix Z,
respectively. The `th circular diagonal of a matrix Z is denoted
by diag(Z, `). Namely, diag(Z, `) is a column vector with entries
Z [i, (i+ `)modN ] for i = 0, . . . , N−1. We reserve ′◦′ and ′∗′ for
the Hadamard (point-wise) product and convolution, respectively.
The sign of a complex number a is defined as sign(a) = a

|a| .
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II. PROBLEM FORMULATION

We aim at recovering the underlying signal x from the magnitude
of its STFT, i.e. from measurements

Z[m, k] = |X[m, k]|2 . (II.1)
Note that the signals x and xejφ yield the same measurements
for any global phase φ ∈ R and therefore the phase φ cannot
be recovered by any method. This global phase ambiguity leads
naturally to the following definition:

Definition II.1. The distance between two vectors is defined as

d (z,x) = min
φ∈[0,2π)

∥∥∥z− xejφ
∥∥∥
2
.

We say that x and z are equal up to global phase if d (z,x) = 0 .

Instead of treating the measurements (II.1) directly, we consider
the acquired data in a transformed domain by taking its 1D DFT
with respect to the frequency variable (normalized by 1

N
). Then,

our measurement model reads

Y[m, `] =
1

N

N−1∑
k=0

Z[m, k]e−2πjk`/N

=

N−1∑
n=0

x[n]x∗[n+ `]g[mL− n]g[mL− n− `].

(II.2)

When W ≤ ` ≤ (N − W ), we have Y[m, `] = 0 for all m.
Observe that for fixed m, Y[m, `] is simply the auto-correlation of
x ◦ gmL, where gmL := {g[mL− n]}N−1

n=0 .
We will make repetitive use of two representations of (II.2).

The first is based on a matrix formulation. Let DmL ∈ RN×N be
a diagonal matrix composed of the entries of gmL and let P` be a
matrix that shifts (circularly) the entries of a vector by ` locations.
Then, X := xx∗ is mapped linearly to Y[m, `] by the relation:

Y[m, `] = x∗Hm,`x = tr (XHm,`) , (II.3)
where

Hm,` := P−`DmLDmL−`. (II.4)

Observe that PT
` = P−` and Hm,` = 0 for W ≤ ` ≤ (N −W ).

An alternative useful representation of (II.2) is as multiple
systems of linear equations. For fixed |`| ≤W − 1 we can write

y` = G`x`, (II.5)

where y` := {Y[m, `]}
N
L
−1

m=0 and x` := diag (X, `). The (m,n)th
entry of the matrix G` ∈ R

N
L
×N is given by g[mL− n]g[mL−

n− `]. Let g := {g[n]}N−1
n=0 . For L = 1, G` is a circulant matrix

and therefore it can be factored as G` = F∗Σ`F, where F is the
DFT matrix and Σ` is a diagonal matrix, whose entries are given
by F(g ◦ (P−`g)). Therefore the matrix G` is invertible if and
only if F(g ◦ (P−`g)) is non-vanishing.

Our problem of recovering x from the measurements (II.1) can
therefore be equivalently posed as

min
X̃∈HN

W−1∑
`=−(W−1)

∥∥∥y` −G`diag
(
X̃, `

)∥∥∥2
2

subject to X̃ � 0, rank
(
X̃
)
= 1, (II.6)

where HN is the set of all Hermitian matrices of size N . In the
spirit of standard phase retrieval techniques, the problem can then
be relaxed to a tractable SDP by dropping the rank constraint [26],
[27], [28], [29]. Nonetheless, it requires solving the problem in a
lifted domain with N2 variables. We take a different route to reduce
the computational load. In the next sections, we show that (II.6) has
a closed-form LS solution when the window g is sufficiently long.
If the conditions for the LS solution are not met, then we suggest
applying a GD algorithm. To initialize the GD, we approximate

Algorithm 1 Least-squares algorithm for L = 1

Input: The measurements Z[m, k] as given in (II.1).
Output: x0: estimation of x.

1) Compute Y [m, `], the 1D DFT with respect to the second
variable of Z[m, k] as given in (II.2).

2) Construct a matrix X0 such that

diag (X0, `) =

{
G†`y` ` = − (W − 1) , · · · , (W − 1) ,

0 otherwise,

where G` ∈ RN×N are defined in (II.5).
3) Let xp be the principle (unit-norm) eigenvector of X0. Then,

x0 =

√∑
n∈P

(
G†0y0

)
[n]xp,

where P :=
{
n :

(
G†0y0

)
[n] > 0

}
.

(II.6) in two stages by first solving the LS objective function and
then extracting its principal eigenvector.

III. LEAST-SQUARES ALGORITHM

The objective of the non-convex problem (II.6) implies that the
success of a recovery algorithm is related to the window’s length
W and the invertibility of the matrices G` for |`| < W . For that
reason, we focus our attention to windows for which the associated
matrices G` for |`| < W are invertible:

Definition III.1. A window g is called an admissible window of
length W if for all ` = −(W − 1), . . . , (W − 1) the associated
circulant matrices G` as given in (II.5) for L = 1 are invertible.

The family of admissible windows is quite large. For instance, a
rectangular window of any length is admissible if N is a prime
number (see Claim 3.3 in [14]).

For L = 1, we next derive a LS algorithm that stably recovers
any complex signal if the window is sufficiently long. In the
absence of noise, the recovery is exact (up to global phase). The
method, summarized in Algorithm 1, is based on constructing a
matrix X0 that approximates the correlation matrix X := xx∗. The
`th diagonal of X0 is chosen as the solution of the LS problem
minx̃∈CN ‖y` −G`x̃‖2 (see (II.5)). If G` is invertible, then

diag (X0, `) = G−1
` y` = diag (X, `) .

Therefore, when all matrices G` are invertible, X0 = X. In
order to estimate x, the (unit-norm) principle eigenvector of X0

is normalized by

α =

√∑
n∈P

(
G†0y0

)
[n], (III.1)

where P := {n : (G†0y0)[n] > 0}. If G0 is invertible then
N−1∑
n=0

(
G−1

0 y0

)
[n] =

N−1∑
n=0

(diag (X, 0)) [n] = ‖x‖22 = λ0,

where λ0 is the top eigenvector of X. If G0 is not invertible or in
the presence of noise, some terms of G†0y0 might be negative. In
this case, we estimate ‖x‖2 by summing only the positive terms.
Note that all matrix inversions can be performed efficiently using
the FFT due to the circular structure of G`.

The following proposition shows that for L = 1, Algorithm 1
recovers the underlying signal if the window is sufficiently long
and satisfies some additional technical conditions (the proof can be
found in [14], see also [30], [31]).

Proposition III.2. Let L = 1 and suppose that g is an admissible
window of length W ≥

⌈
N+1

2

⌉
. Then, Algorithm 1 recovers any

complex signal uniquely (up to global phase) and efficiently.
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Algorithm 2 Gradient descent algorithm
Input: The measurements Z[m, k] as given in (II.1) and (optional)
thresholding parameter B > 0.
Output: Estimation of x.

1) Initialization by Algorithm 1 (for L = 1) or Algorithm 3
(for L > 1).

2) Apply the update rule until convergence:
a) (gradient step)

x̃k = xk−1 − µ∇f (xk−1) ,

for step size µ and ∇f given in (IV.2).
b) (optional thresholding)

xk[n] = sign (x̃k[n])min {|x̃k[n]|, B}

If the signal has unit module entries, then a slight modification
of Algorithm 1 recovers the signal exactly for W ≥ 2 (see [14]).

In many cases, the window is shorter than
⌈
N+1

2

⌉
so that (II.6)

does not admit a closed-form LS solution. In these cases, we
employ a GD algorithm to minimize a non-convex loss function.
To initialize the algorithm, we use the same LS-based algorithm.
However, for short windows we cannot estimate diag(X, `) for ` =
W, . . . , (N−W ) as the matrices G` are simply zero. Nonetheless,
we will show by both theoretical results and numerical experiments
that under appropriate conditions, the principle eigenvector of X0,
with a proper normalization, is a good estimate of x.

IV. GRADIENT DESCENT ALGORITHM
Recall that by taking the DFT with respect to the frequency

variable, the measurement model reads Y[m, `] = x∗Hm,`x,
where Hm,` is defined in (II.4). It is therefore natural to minimize
the following non-convex loss function (also called empirical risk):

f(z) =
1

2

N/L−1∑
m=0

W−1∑
`=−(W−1)

(z∗Hm,`z−Y[m, `])
2
. (IV.1)

To keep the framework simple, we focus here on real signals.
If the signal is complex, we replace the inner term of (IV.1) by
|z∗Hm,`z−Y[m, `]|2. We suggest minimizing (IV.1) by employ-
ing a gradient algorithm, where the kth iteration takes on the form

xk = xk−1 − µ∇f (xk−1) ,

for step size µ. Direct computation of the gradient gives

∇f(z) =
N/L−1∑
m=0

W−1∑
`=−(W−1)

(h(z)−Y[m, `])∇h(z), (IV.2)

where h(z) := zTHm,`z and ∇h(z) =
(
Hm,` + HT

m,`

)
z. The

algorithm is summarized in Algorithm 2. The code is publicly
available on http://webee.technion.ac.il/Sites/People/YoninaEldar.

IV-A. Initialization for L = 1

We note that the function (IV.1) is non-convex. Hence, it is not
clear whether an arbitrary initialization will converge to a global
minimum. When L = 1, we propose initializing the GD algorithm
by using Algorithm 1. As explained in Section III, for W ≥

⌈
N+1

2

⌉
the algorithm returns x exactly. However, when W <

⌈
N+1

2

⌉
,

G` = 0 for ` = W, . . . , (N −W ) so Proposition III.2 does not
hold. Nevertheless, in Section V we provide theoretical guarantees
establishing that under appropriate conditions, this initialization
results in a good estimate of x.

IV-B. Initialization for L > 1

When L > 1, the representation (II.5) results in an underde-
termined system of equations as y` ∈ R

N
L , G` ∈ R

N
L
×N and

x` ∈ RN . We notice that y` is a downsampled version by a factor
L of the case of maximal overlapping (L = 1). Therefore, we
suggest upsampling y` to approximate the case of L = 1 based on

Algorithm 3 Least-squares initialization for L > 1

Input: The measurements Z[m, k] as given in (II.1) and a smooth
interpolation filter hL ∈ RN that approximates a low-pass filter
with bandwidth N/L.
Output: x0: estimation of x.

1) Compute Y [m, `], the 1D DFT with respect to the second
variable of Z[m, k] as given in (II.2).

2) (upsampling) For each ` ∈ [−(W − 1), . . . , (W − 1)]:

a) Let y`[m] := {Y [m, `]}
N
L
−1

m=0 for fixed `.
b) (expansion)

ỹ`[n] :=

{
y`[m], n = mL,

0, otherwise.
c) (interpolation)

ȳ` = ỹ` ∗ hL

3) Construct a matrix X0 such that

diag (X0, `) =

{
G†`ȳ` ` = − (W − 1) , · · · , (W − 1) ,

0 otherwise,

where G` ∈ RN×N are defined as in (II.5) for L = 1.
4) Let xp be the principle (unit-norm) eigenvector of X0. Then,

x0 =

√∑
n∈P

(
G†0y0

)
[n]xp,

where P :=
{
n :

(
G†0y0

)
[n] > 0

}
.

the averaging nature of the window g. When F(g ◦ (P−`g)) is an
ideal low-pass filter with band-width N/LBW , then no information
is lost by taking L = LBW . In this case, the upsampled (i.e. L = 1)
signal can be obtained by expansion and low-pass interpolation
(see Lemma 4.1 in [14]). In practice we do not use ideal low-pass
windows. In the spirit of standard DSP practice (see Section 4.6.1
of [32]) we approximate the low-pass interpolation by a simple
smooth interpolation. This gives us better numerical results and
reduces the computational complexity. Following the upsampling
stage, the algorithm proceeds as for L = 1 by extracting the
principle eigenvector (with proper normalization) of a designed
matrix. This initialization is summarized in Algorithm 3.

IV-C. Numerical Experiments
We present two numerical examples demonstrating the effec-

tiveness of the proposed GD algorithm. In the experiments, the
underlying signal is composed of additive white Gaussian entries
with variance one. The measurements were contaminated with noise
that was drawn from the same distribution with the appropriate
variance according to the desired signal to noise (SNR) ratio. Figure
1 shows a representative example for a recovery process. Figure 2
presents the normalized recovery error as a function of the SNR
level. We compared the algorithm’s performance with the Griffin-
Lim Algorithm (GLA) [18]. As can be seen, the GD algorithm
outperforms the GLA especially in high noise levels. For more
comprehensive numerical results, see [14].

V. THEORY
In this section we summarize our main theoretical results. Due

to paucity of space, we omit the proofs which can be found in
[14]. The success of gradient algorithms stands on two pillars:
the accuracy of the initialization and the geometry of the loss
function near the global minimum. The following result quantifies
the estimation error of the initialization presented in Algorithm 1
for bounded signals and L = 1. The error reduces to zero as W
approaches N+1

2
.

Theorem V.1. Suppose that L = 1, g is an admissible window
of length W ≥ 2 and that ‖x‖∞ ≤

√
B
N

for some 0 < B ≤
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(a) Recovery error with L = 2 (b) Recovery error with L = 4

Fig. 2: The average recovery error (over 20 experiments) of the GD and GLA algorithms in the presence of noise. The experiments were conducted on signal of length
N = 53 with a rectangular window of length W = 19, step size µ = 5 × 10−3 and L = 2, 4. The error is computed as d(x,x0)

‖x‖2
, where x0 is the estimated signal.

(a) Initialization by Algorithm 3

(b) Recovery by Algorithm 2

(c) The error and objective function value curves as a function of iterations

Fig. 1: Recovery of a signal of length N = 23 with a rectangular window of length
W = 7, L = 2, µ = 5 × 10−2 in a noisy environment of SNR= 25 db.

N
2(N−2W+1)

. Then, under the measurement model of (II.1), the
initialization point as given in Algorithm 1 satisfies

d2 (x0,x) ≤ ‖x‖22

(
1−

√
1− 2B

N − 2W + 1

N

)
.

The second result quantifies the basin of attraction of the loss
function (IV.1) for signals with unit module entries. In this area,
the gradient algorithm is guaranteed to converge to the global
minimum. Numerical experiments (not shown here) indicate that
in practice the basin of attraction is quite large and exists for a
broad family of signals.

Theorem V.2. Let L = 1, suppose that x[i] ∈ {± 1√
N
} for

all i and g is a rectangular window of length W . Additionally,
suppose that the initialization point x0 obeys d (x0,x) ≤ 1

8
√
NW2

and ‖x0‖∞ ≤
1√
N

. Then, under the measurement model (II.1),
Algorithm 2 with step size 0 < µ ≤ 2/β and B = 1

N
achieves the

following geometrical convergence

d2 (xk,x) ≤
(
1− 2µ

α

)k
d2 (xk−1,x) ,

where α ≥ 4N
W

and β ≥ 256N2W 3.

VI. DISCUSSION
This paper aims at suggesting a practical and efficient phase

retrieval algorithm with theoretical guarantees. The algorithm be-
gins by taking the DFT of the measurements (II.1). For sufficiently
long windows, we show that the principal eigenvector of a designed
matrix recovers the signal. This matrix is constructed as the solution
of a LS problem. For general settings, we employ a gradient
descent algorithm, initialized by the principle eigenvector of the
same designed matrix. While for L = 1 we derived an estimation
of the distance between the initialization and the global minimum,
the case of L > 1 raises some interesting questions. In this case, we
suggest to smoothly interpolate the missing entries. This practice
works quite well since the window acts as an averaging operator.
A main challenge for future research is analyzing this setting.

The analysis of the non-convex algorithm relies on the geometry
of the loss function (IV.1). Theorem V.2 states that for signals with
unit module entries, there exists a basin of attraction. Yet, numerical
experiments indicate that the actual basin of attraction is larger than
the theoretical bound and exists for a broader family of signals. The
gap between the actual basin of attraction and the theoretical result
is the bottleneck that prevents a full theoretical understanding of
the algorithm. Bridging that gap is an additional major goal of
a future work. Additionally, the theoretical guarantees for signal
with unit module entries implies a potential applicability to angular
synchronization [33], [34], [35].
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