
MULTIPROCESSOR APPROXIMATE MESSAGE PASSING
WITH COLUMN-WISE PARTITIONING

Yanting Ma,? Yue M. Lu,† and Dror Baron?

?Department of Electrical and Computer Engineering; NC State University; Raleigh, NC 27695
†Paulson School of Engineering and Applied Sciences; Harvard University; Cambridge, MA 02138

ABSTRACT

Solving a large-scale regularized linear inverse problem using mul-
tiple processors is important in various real-world applications due
to the limitations of individual processors and constraints on data
sharing policies. This paper focuses on the setting where the matrix
is partitioned column-wise. We extend the algorithmic framework
and the theoretical analysis of approximate message passing (AMP),
an iterative algorithm for solving linear inverse problems, whose
asymptotic dynamics are characterized by state evolution (SE). In
particular, we show that column-wise multiprocessor AMP (C-MP-
AMP) obeys an SE under the same assumptions when the SE for
AMP holds. The SE results imply that (i) the SE of C-MP-AMP con-
verges to a state that is no worse than that of AMP and (ii) the asymp-
totic dynamics of C-MP-AMP and AMP can be identical. Moreover,
for a setting that is not covered by SE, numerical results show that
damping can improve the convergence performance of C-MP-AMP.

Index Terms— approximate message passing, column-wise
partitioning, linear inverse problem, multiprocessor computing.

1. INTRODUCTION

Many scientific and engineering problems can be modeled as solving
a regularized linear inverse problem of the form

y = Ax + w, (1)

where the goal is to estimate the unknown x ∈ RN given the matrix
A ∈ Rn×N and statistical information about the signal x and the
noise w ∈ Rn.

In some scenarios, it might be desirable to partition the matrix
A either column-wise or row-wise and store the sub-matrices at
different processors. The partitioning style depends on data avail-
ability, computational considerations, and privacy concerns. For
example, in high-dimensional settings where N � n, or in sit-
uations where the columns of A, which represent features in fea-
ture selection problems [1], cannot be shared among processors for
privacy preservation, column-wise partitioning might be preferable.
In this paper, we consider multiprocessor computing for the (non-
overlapping) column-wise partitioned linear inverse problem:

y =

P∑
p=1

Apxp + w, (2)

Yanting Ma and Dror Baron were supported by the National Science
Foundation (NSF) under grant CCF-1217749. Yue M. Lu was supported in
part by the NSF under grant CCF-1319140 and in part by the U.S. Army
Research Office under grant W911NF-16-1-0265.

where P is the number of processors, Ap ∈ Rn×Np is the sub-
matrix that is stored in Processor p, and

∑P
p=1Np = N .

Many studies on solving the column-wise partitioned linear in-
verse problem (2) have been in the context of distributed feature se-
lection. Zhou et al. [2] modeled feature selection as a parallel group
testing problem. Wang et al. [3] proposed to de-correlate the data
matrix before partitioning, and each processor then works indepen-
dently using the de-correlated matrix without communication with
other processors. Peng et al. [4] studied problem (2) in the context
of optimization, where they proposed a greedy coordinate-block de-
scent algorithm and a parallel implementation of the fast iterative
shrinkage-thresholding algorithm (FISTA) [5].

Our work is based on the approximate message passing (AMP)
framework [6]. AMP is an efficient iterative algorithm for solving
linear inverse problems (1). In the large scale random setting, its
average asymptotic dynamics are characterized by a state evolution
(SE) formalism [7], which allows one to accurately predict the av-
erage estimation error at every iteration. Recently, a finite-sample
analysis of AMP [8, 9] showed that when the prior distribution of
the input signal x has independent and identically distributed (i.i.d.)
sub-Gaussian entries,1 the average performance of AMP concen-
trates to the SE prediction at an exponential rate in N . This con-
centration result has explained the good empirical performance of
AMP when the signal dimension is above a few thousands.

Our goal is to extend the AMP algorithmic framework and the
SE analysis in [9] to the column-wise partitioned linear inverse prob-
lem (2). We show that column-wise multiprocessor AMP (C-MP-
AMP) obeys a new SE under the same model assumptions where the
SE for AMP holds. With the new SE, we can predict the average
estimation error in each processor at every iteration. Moreover, the
comparison between the SE of AMP and that of C-MP-AMP implies
that (i) the estimation error of C-MP-AMP is no worse than that of
AMP and (ii) with a specific communication schedule between the
processors and the fusion center that coordinates the processors, the
asymptotic dynamics of C-MP-AMP are identical to that of AMP.
This result implies a speedup linear in the number of processors.

It is worth mentioning that row-wise multiprocessor AMP [10–
12] obeys the same SE as AMP, because it distributes the computa-
tion of matrix-vector multiplication among multiple processors and
aggregates the results before any other operations. Some existing
work on row-wise multiprocessor AMP [12–14] introduces lossy
compression to the communication between processors and the fu-
sion center, whereas we assume perfect communication and focus
on the theoretical analysis of C-MP-AMP.

The remainder of the paper is organized as follows. Section 2
first reviews AMP and its SE, and then introduces our C-MP-AMP

1A random variable X is sub-Gaussian if there exist positive constants c
and κ such that P (|X − EX| > ε) ≤ ce−κε2 , ∀ε > 0.

4765978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017

and the new SE, as well as the implications of the new SE, Section 3
provides the proof sketch of SE for C-MP-AMP, Section 4 demon-
strates the properties of C-MP-AMP via numerical results, and Sec-
tion 5 concludes the paper.

2. COLUMN-WISE MULTIPROCESSOR AMP

2.1. Review of AMP

Approximate message passing (AMP) [6] is a fast iterative algorithm
for solving linear inverse problems (1). Starting with an all-zero
vector x0 as its initial estimate, at the tth iteration, AMP proceeds
according to

zt = y −Axt +
zt−1

n

N∑
i=1

η′t−1([xt−1 + A∗zt−1]i), (3)

xt+1 = ηt(x
t + A∗zt), (4)

where vectors with negative iteration indices are all-zero vectors, A∗

denotes the transpose of a matrix A, ηt : R → R is a Lipschitz
continuous function with weak derivative η′t, for any u ∈ RN , [u]i
denotes its ith entry, and the vector (ηt(u1), ηt(u2), ..., ηt(uN)) is
denoted by ηt(u). Examples of ηt(·) are soft-thresholding denoisers
[6] and Bayes-optimal (posterior mean) denoisers [15].

Under the assumptions listed in [9, Section 1.1] for proving SE
for AMP, denoting by pX the distribution of the i.i.d. entries of the
signal x, the sequence of the estimates {xt} generated by AMP (3,4)
has the following property [7–9]:

lim
N→∞

1

N

N∑
i=1

φ(xt+1
i , xi)

a.s.
= E

[
φ(ηt(X + τ tZ), X)

]
, (5)

where φ : R2 → R is a pseudo-Lipschitz function of order 2
(PL(2)),2 X ∼ pX , Z is a standard normal random variable that
is independent of X , and τ t is defined via the following recursion
((σ0)2 = δ−1E[X2], δ = n/N):

(τ t)2 = σ2
W + (σt)2,

(σt+1)2 = δ−1E
[(
ηt(X + τ tZ)−X

)2]
. (6)

If we choose φ(x, y) = (x − y)2, then (5) characterizes the mean
square error (MSE) achieved by AMP at each iteration.

2.2. Column-wise multiprocessor AMP

In our proposed column-wise multiprocessor AMP (C-MP-AMP)
algorithm, the fusion center collects vectors that represent the es-
timations of the portion of the measurement vector y contributed by
the data from individual processors according to a pre-defined com-
munication schedule. The sum of these vectors is computed in the
fusion center and transmitted to all processors. Each processor per-
forms standard AMP iterations with a new equivalent measurement
vector, which is computed using the vector received from the fusion
center. The pseudocode for C-MP-AMP is presented in Algorithm 1.

2Recall the definition of PL(2) in [7]: A function f : Rm → R is said
to be PL(2) if there is L > 0 such that |f(x) − f(y)| ≤ L(1 + ‖x‖ +
‖y‖)‖x− y‖, ∀x, y ∈ Rm, where ‖ · ‖ denotes the Euclidean norm.

Algorithm 1 C-MP-AMP

Inputs to Processor p: y, Ap, {t̂s}s=0,...,ŝ (maximum number of
inner iterations at each outer iteration).
Initialization: x0,t̂0

p = 0, z0,t̂0−1
p = 0, r0,t̂0p = 0, ∀p.

for s = 1 : ŝ do (loop over outer iterations)

At the fusion center: gs =
∑P
u=1 r

s−1,t̂s−1
u

At Processor p:
xs,0p = x

s−1,t̂s−1
p , rs,0p = r

s−1,t̂s−1
p

for t = 0 : t̂s − 1 do (loop over inner iterations)
zs,tp = y − gs −

(
rs,tp − rs,0p

)
xs,t+1
p = ηs,t(x

s,t
p + A∗pz

s,t
p)

rs,t+1
p = Apx

s,t+1 − zs,tp

n

∑Np

i=1 η
′
s,t([x

s,t
p + A∗pz

s,t
p]i).

Output from Processor p: xŝ,t̂ŝp .

2.3. State evolution

Similar to AMP, the dynamics of the C-MP-AMP algorithm can be
characterized by an SE formula. Let (σ0,t̂

p)2 = δ−1
p E[X2], where

δp = n/Np, ∀p = 1, ..., P . For outer iterations 1 ≤ s ≤ ŝ and
inner iterations 0 ≤ t ≤ t̂s, we define the sequences {(σs,tp)2} and
{(τs,tp)2} as

(σs,0p)2 = (σs−1,t̂
p)2, (7)

(τs,tp)2 = σ2
W +

P∑
u=1

(σs,0u)2 +
(
(σs,tp)2 − (σs,0p)2

)
, (8)

(σs,t+1
p)2 = δ−1

p E
[(
ηs,t(X + τs,tp Z)−X

)2]
, (9)

where Z is standard normal and independent of X . With these defi-
nitions, we have the following theorem for C-MP-AMP.

Theorem 1. Under the assumptions listed in [9, Section 1.1], for
p = 1, ..., P , let n/Np → δp ∈ (0,∞) be a constant. Define
N =

∑P
p=1Np. Then for any PL(2) function φ : R2 → R, we have

lim
N→∞

1

Np

Np∑
i=1

φ(xs,t+1
p,i , xp,i)

a.s.
= E

[
φ(ηs,t(X + τs,tp Z), X)

]
, ∀p,

where xs,t+1
p is generated by the C-MP-AMP algorithm, τs,tp is de-

fined in (7–9), X ∼ pX , and Z is a standard normal random vari-
able that is independent of X .

Remark 1: C-MP-AMP converges to a fixed point that is no
worse than that of AMP. This statement can be demonstrated as fol-
lows. When C-MP-AMP converges, the quantities in (7–9) do not
keep changing, hence we can drop all the iteration indices for fixed
point analysis. Notice that the last term on the right hand side (RHS)
of (8) vanishes, which leaves the RHS independent of p. That is,
(τs,tp)2 are equal for all p, hence we can further drop the processor
index for (τs,tp)2. Denote (τs,tp)2 by τ2 for all s, t, p, and plug (9)
into (8), then

τ2 = σ2
W +

P∑
p=1

δ−1
p E

[
(η(X + τZ)−X)2

]
(a)
= σ2

W + δ−1E
[
(η(X + τZ)−X)2

]
,

which is identical to the fixed point equation obtained from (6). In
the above, step (a) holds because

∑P
p=1 δ

−1
p =

∑P
p=1

Np

n
= N

n
.

4766

Because AMP always converges to the worst fixed point of (6) [16],
the average asymptotic performance of C-MP-AMP is identical to
AMP when there is only one solution to the fixed point equation,
and at least as good as AMP in case of multiple fixed points.

Remark 2: The asymptotic dynamics of C-MP-AMP can be iden-
tical to AMP with a specific communication schedule. This can be
achieved by letting t̂s = 1, ∀s. In this case, the quantity (τs,tp) is in-
volved only for t = 0. Because the last term in (8) is 0 when t = 0,
the computation of (τs,0p)2 is independent of p. Therefore, τs,0p are
again equal for all p. Dropping the processor index for (τs,tp)2, the
recursion in (7–9) can be simplified as

(τs,0)2 = σ2
W +

P∑
p=1

δ−1
p E

[(
ηs,0(X + τs,0Z)−X

)2]
= σ2

W + δ−1E
[(
ηs−1,0(X + τs−1,0Z)−X

)2]
where the iteration evolves over s, which is identical to (6) evolving
over t.

3. PROOF SKETCH OF THEOREM 1

We now provide the sketch of our proof for Theorem 1. Without loss
of generality, we assume the sequence {t̂s}s in Algorithm 1 that
determines the communication schedule to be a constant t̂. Using
similar notations as in the SE proof for AMP [7, 9], we write the
recursion in Algorithm 1 in a different form:

bkp = Apq
k
p − λkpmk−1

p , qkp = fk(hkp,xp),

hk+1
p = A∗pm

k
p − qkp, mk

p = bkp −w +

P∑
u=1,u6=p

bθ(k)u , (10)

where
fk(hkp,xp) = ηk−1(xp − hkp)− xp, λkp =

1

n

Np∑
i=1

f ′k(hkp,i, xp,i).

The derivative f ′k(·) of fk(·) is taken with respect to the first
argument. The equivalence of the above recursion and Algo-
rithm 1 can be seen by letting k = st̂ + t, θ(k) = bk/t̂ct̂,
mk
p = −zs,tp , qkp = xs,tp − xp, bkp = rs,tp − Apxp, and

hk+1
p = xp −

(
xs,tp + A∗pz

s,t
p

)
. We notice that the difference

between (10) and the recursion for AMP [9] is the update for mk
p ,

where (10) has an extra term
∑P
u=1,u6=p b

θ(k)
u , which represents the

interference from other processors.
To prove Theorem 1, we need to show that for any PL(2) func-

tion φ : R2 → R, we have

lim
Np→∞

1

Np

Np∑
i=1

φ
(
ηk(xp,i − hk+1

p,i), xp,i
)

a.s.
= E

[
φ(ηk(X + τkpZ), X)

]
. (11)

That is, the equivalent noise vector hk+1
p is approximately i.i.d.

Gaussian with mean zero and variance (τkp)2 at every iteration.
Moreover, as a necessary step in proving Theorem 1, the proof will
show that ‖mk

p‖22/n also concentrates around (τkp)2. Notice that
mk
p = −zs,tp , hence (τs,tp)2 can be approximated by ‖zs,tp ‖22/n,

which can be used as side-information for ηs,t when implementing
C-MP-AMP. Recall that mk

p contains interference
∑P
u=1,u6=p b

θ(k)
u

from other processors, hence the main challenge in our proof is to
characterize the concentration of |(brp)∗bkq |/n, ∀p 6= q, 0 ≤ r ≤ k.

Following the SE proof for AMP [7, 9], we need to character-
ize the distribution of hk+1

p conditioned on the sigma algebra gen-
erated by the quantities that have already been computed when up-
dating hk+1

p , which is the sigma algebra generated by b0
p, ...,b

k
p ,

m0
p, ...,m

k
p , q0

p, ...,q
k
p , h1

p, ...,h
k
p , ∀p, as well as x and w. We

first compute the conditional distribution of Ap, and then use the
updating equation to compute the conditional distribution of hk+1

p .
Similar to the situation in [7, 9], conditioning on the sigma algebra
is equivalent to conditioning on the linear observations

Yk+1
p = ApQ

k+1
p , Xk

p = A∗pM
k
p.

In the above, only Ap, p = 1, ..., P , are treated as random and

Yk+1
p = [b0

p|b1
p + λ1

pm
0
p|...|bkp + λkpm

k−1
p], Qk+1

p = [q0
p|...|qkp],

Xk
p = [h1

p + q0
p|...|hkp + qk−1

p], Mk
p = [m0

p|...|mk−1
p].

Let P‖
Qk+1

p
= (Qk+1

p)
(
(Qk+1

p)∗(Qk+1
p)

)−1
(Qk+1

p)∗, P⊥
Qk+1

p
=

I − P
‖
Qk+1

p
, P‖

Mk
p

= (Mk
p)
(
(Mk

p)∗(Mk
p)
)−1

(Mk
p)∗, and P⊥Mk

p
=

I− P
‖
Mk

p
. The conditional distribution of Ap is

Ap|Gk+1,k d
= Ek+1,k + P⊥Mk

p
ÃpP

⊥
Qk+1

P
, where

Ek+1,k
p = Yt1

p ((Qt1
p)∗Qt1

p)−1(Qt1
p)∗ + Mt

p((M
t
p)
∗Mt

p)
−1(Xt

p)
∗

−Mt
p((M

t
p)
∗Mt

p)
−1(Mt

p)
∗Yt1

p ((Qt1
p)∗Qt1

p)−1(Qt1
p)∗.

In the above, Ãp (an independent copy of Ap) is independent of
Gk+1,k and Ãp is independent of Ãq for p 6= q. The independence
can be demonstrated by considering Ap = P

‖
Qk+1

p
Ap +P⊥

Qk+1
p

Ap.

Notice that the conditioning involves P
‖
Qk+1

p
Ap, which is uncorre-

lated with (hence independent due to being Gaussian) P⊥
Qk+1

p
Ap.

Similarly, P‖
Mk

p
Ap is independent of P⊥Mk

p
Ap. Together with the

fact that Ap is independent of Aq , we can show that Ãp is indepen-
dent of the conditioning, and Ãp is independent of Ãq .

To prove (11), we follow the strategy of Rush and Venkatara-
manan [9]. That is, we prove the concentration results listed in
[9, Lemma 5] by induction for the recursion defined in (10). As
mentioned earlier, the difference between (10) and the recursion for
AMP [9] is the update for mk

p , where (10) has an extra term coming
from other processors. Hence, in addition to [9, Lemma 5], we need
to include the following concentration inequalities that involve inter-
actions among processors. We need to show that for all 0 < ε < 1,
there is Kk, κk > 0 such that

P

(
|(∆k,k

p)∗∆k,k
q |

n
≥ ε

)
≤ Kke

−κknε
2

, ∀p 6= q, (12)

P

(∣∣∣∣∣ (brp)∗bkqn

∣∣∣∣∣ ≥ ε
)
≤ Kke

−κknε
2

, ∀p 6= q, 0 ≤ r ≤ k, (13)

where the expression for ∆k,k
p resembles those of (34) and (36) in

[9, Lemma 4]. The proof of (12) can be completed by applying the
Cauchy-Schwarz inequality |(∆k,k

p)∗∆k,k
q | ≤ ‖∆k,k

p ‖‖∆k,k
q ‖ and

part (a) of [9, Lemma 5]. The proof of (13) uses induction in k and
relies on the fact that Ãp is independent of Ãq for p 6= q.

4767

0 1 2 3 4 5 6 7
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Iteration

M
S

E

SE #inner−iteration=1

SE #inner−iteration=2

SE #inner−iteration=4

simulation

Fig. 1. Verification of SE for C-MP-
AMP with various communication schedules.
(P=3, N=30000, n=9000, SNR=15dB.)

0.2 0.3 0.4 0.5 0.6 0.7
0

0.01

0.02

0.03

0.04

0.05

0.06

Measurement rate δ

M
S

E

MMSE 10dB

MMSE 15dB

simulation

Fig. 2. Verification that C-MP-AMP achieves
the MMSE at various measurement rates δ =
n/N and SNR levels. (P=3, N=30000.)

0 10 20 30 40 50

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Iteration

M
S

E

AMP α=0.1

AMP α=0.2

AMP α=0.3

C−MP−AMP α=0.1 #inner−iteration=1

C−MP−AMP α=0.1 #inner−iteration=2

Fig. 3. Numerical example of C-MP-AMP
with damping [17] for non-Gaussian matri-
ces. (P=3, N=30855, n=9257, SNR=15dB.)

4. NUMERICAL RESULTS

In this section, we provide numerical results for C-MP-AMP for
both the Gaussian matrix setting and non-Gaussian matrix setting.
In the Gaussian matrix setting, where SE is justified rigorously in
Section 3, we numerically verify SE and the properties implied by
SE. In the non-Gaussian matrix setting, where SE is not justified for
AMP or C-MP-AMP, we show numerical evidence that C-MP-AMP
converges when damping [17], which is commonly used in AMP
for non-Gaussian matrices to improve the convergence performance,
is applied. In all simulations, entries of the unknown vector x are
independent realizations of a Bernoulli-Gaussian random variable
X , which has density function fX(x) = 0.9δ(x) + 0.1 1√

2π
e−

1
2
x2 ,

where δ(·) is the Dirac delta function. The measurement noise vector
w has i.i.d. GaussianN (0, σ2

W) entries, where σ2
W depends on SNR

as SNR := 10 log10

(
(NE[X2])(nσ2

W)
)
. The estimation function

ηs,t is defined as ηs,t(u) = E[X|X + τs,tp Z = u], where Z is a
standard normal random variable that is independent of X and τs,tp
is estimated by ‖zs,tp ‖/

√
n, which is implied by SE. All numerical

results are averaged over 50 trials.

4.1. Gaussian matrix setting

We first show that the MSE of C-MP-AMP is accurately predicted
by SE when the matrix A has i.i.d. Gaussian entries with Ai,j ∼
N (0, 1/n). It can be seen from Figure 1 that the MSE achieved by
C-MP-AMP from simulations (red crosses) matches the MSE pre-
dicted by SE (black curves) at every outer iteration s and inner itera-
tion t for various choices of numbers of inner iterations (the number
of red crosses within a grid).

As we have discussed in Remark 1, the average estimation error
of C-MP-AMP is no worse than that of AMP, which implies that C-
MP-AMP can achieve the minimum mean square error (MMSE) of
large random linear systems [18] whenever AMP achieves it.3 This
point is verified in Figure 2.

4.2. Non-Gaussian matrix setting

The non-Gaussian matrices used in our simulation model the 3rd
order Taylor expansion of a function g : RJ → R. The first J

3AMP can achieve the MMSE in the limit of large linear systems when
the model parameters (n/N , signal to noise ratio, sparsity of the unknown
x) are within a region [16].

columns contain i.i.d. Gaussian entries, and the rest of the columns
are obtained by taking element-wise products of each pair of the J
columns (2nd order terms) and each three of the J columns (3rd
order terms). Hence, the unknown vector x contains the coefficients
in the Taylor expansion. The matrix is normalized to have column
norm equal to 1. In our simulations, both AMP (3,4) and C-MP-
AMP (Algorithm 1) have diverged with this type of matrix.

Damping [17] is a simple and effective technique that improves
the convergence performance of AMP by taking a convex combina-
tion of the estimates from the last iteration and the current iteration
to slow down the evolution of the algorithm. In other words, the
update for xt+1 in (4) becomes

xt+1 = αηt(x
t + A∗zt) + (1− α)xt,

whereα ∈ (0, 1] is a parameter that controls the damping strength. It
is possible to make α adaptive [19], but it is not the focus of this pa-
per; we keep α constant for both AMP and C-MP-AMP in our simu-
lation. Damping for C-MP-AMP is done at every processor. That is,
the update for xs,t+1

p changes to xs,t+1
p = αηs,t(x

s,t
p + A∗pz

s,t
p) +

(1− α)xs,tp , ∀p, in Algorithm 1. Figure 3 shows that with the same
damping parameter α, C-MP-AMP with one inner iteration per outer
iteration has the same average dynamics as AMP, and that increas-
ing the number of inner iterations can reduce the number of outer
iterations, which reduces the communication frequency between the
fusion center and the processors while achieving the same error.

5. CONCLUSION

In this paper, we extended the algorithmic framework and the state
evolution (SE) analysis of approximate message passing (AMP) [6]
to the column-wise partitioned linear inverse problem (2). We
showed that the column-wise multiprocessor AMP (C-MP-AMP)
algorithm obeys an SE under the same model assumptions when the
SE for AMP holds. We concluded from the SE that there is no in-
crease in estimation error in the settings when SE holds and that with
a specific communication schedule between the fusion center and
the processors, C-MP-AMP enjoys a speedup linear in the number
of processors. Moreover, we provided numerical results for a setting
that is not covered by SE. The results showed that damping [17] can
improve the convergence performance of C-MP-AMP.

4768

6. REFERENCES

[1] T. Hastie, R. Tibshirani, and J. H. Friedman, The Elements of
Statistical Learning, Springer, Aug. 2001.

[2] Y. Zhou, U. Porwal, C. Zhang, H. Ngo, L. Nguyen, C. Ré, and
V. Govindaraju, “Parallel feature selection inspired by group
testing,” in Neural Inf. Process. Syst. (NIPS), Dec. 2014, pp.
3554–3562.

[3] X. Wang, D. Dunson, and C. Leng, “DECOrrelated feature
space partitioning for distributed sparse regression,” Arxiv
preprint arXiv:1602.02575, Feb. 2016.

[4] Z. Peng, M. Yan, and W. Yin, “Parallel and distributed sparse
optimization,” in Proc. IEEE 47th Asilomar Conf. Signals,
Syst., and Comput., Nov. 2013, pp. 659–646.

[5] A. Beck and M. Teboulle, “A fast iterative shrinkage-
thresholding algorithm for linear inverse problems,” SIAM J.
Imag. Sci., vol. 2, no. 1, pp. 183–202, Mar. 2009.

[6] D. L. Donoho, A. Maleki, and A. Montanari, “Message passing
algorithms for compressed sensing,” Proc. Nat. Academy Sci.,
vol. 106, no. 45, pp. 18914–18919, Nov. 2009.

[7] M. Bayati and A. Montanari, “The dynamics of message pass-
ing on dense graphs, with applications to compressed sensing,”
IEEE Trans. Inf. Theory, vol. 57, no. 2, pp. 764–785, Feb. 2011.

[8] C. Rush and R. Venkataramanan, “Finite-sample analysis of
approximate message passing,” Proc. Int. Symp. Inf. Theory
(ISIT), June 2016.

[9] C. Rush and R. Venkataramanan, “Finite-sample anal-
ysis of approximate message passing,” Arxiv preprint
arXiv:1606.01800, June 2016.

[10] P. Han, R. Niu, M. Ren, and Y. C. Eldar, “Distributed approx-
imate message passing for sparse signal recovery,” in Proc.
IEEE Global Conf. Signal Inf. Process., Atlanta, GA, Dec.
2014, pp. 497–501.

[11] P. Han, R. Niu, and Y. C. Eldar, “Modified distributed itera-
tive hard thresholding,” in IEEE Int. Conf. Acoustics, Speech,
Signal Process. (ICASSP), Brisbane, Australia, Apr. 2015, pp.
3766–3770.

[12] P. Han, J. Zhu, R. Niu, and D. Baron, “Multi-processor approx-
imate message passing using lossy compression,” in IEEE Int.
Conf. Acoustics, Speech, Signal Process. (ICASSP), Shanghai,
China, Mar. 2016.

[13] J. Zhu, A. Beirami, and D. Baron, “Performance trade-offs in
multi-processor approximate message passing,” in Proc. IEEE
Int. Symp. Inf. Theory (ISIT), Barcelona, Spain, July 2016.

[14] J. Zhu, D. Baron, and A. Beirami, “Optimal trade-offs in
multi-processor approximate message passing,” Arxiv preprint
arXiv:1601.03790v2, Nov. 2016.

[15] D. L. Donoho, A. Maleki, and A. Montanari, “Message pass-
ing algorithms for compressed sensing: I. Motivation and con-
struction,” in IEEE Inf. Theory Workshop, Jan. 2010.

[16] F. Krzakala, M. Mézard, F. Sausset, Y. Sun, and L. Zdeborová,
“Probabilistic reconstruction in compressed sensing: Algo-
rithms, phase diagrams, and threshold achieving matrices,” J.
Stat. Mech. - Theory E., vol. 2012, no. 08, pp. P08009, Aug.
2012.

[17] S. Rangan, P. Schniter, and A. Fletcher, “On the convergence
of approximate message passing with arbitrary matrices,” in
Proc. IEEE Int. Symp. Inf. Theory (ISIT), July 2014, pp. 236–
240.

[18] D. Guo and S. Verdú, “Randomly spread CDMA: Asymptotics
via statistical physics,” IEEE Trans. Inf. Theory, vol. 51, no. 6,
pp. 1983–2010, June 2005.

[19] J. Vila, P. Schniter, S. Rangan, F. Krzakala, and L. Zdeborová,
“Adaptive damping and mean removal for the generalized ap-
proximate message passing algorithm,” in IEEE Int. Conf.
Acoustics, Speech, Signal Process. (ICASSP), Apr. 2015, pp.
2021–2025.

4769

