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ABSTRACT

We present an algorithm, referred to as Branch and Bound
Least-Squares (BBLS), for the recovery of sparse signals
from a few linear combinations of their entries. Sparse sig-
nal reconstruction is readily cast as the problem of finding a
sparse solution to an underdetermined system of linear equa-
tions. To solve it, BBLS employs an efficient search strategy
of traversing a tree whose nodes represent the columns of the
coefficient matrix and selects a subset of those columns by
relying on Orthogonal Least-Squares (OLS) procedure. We
state sufficient conditions under which in noise-free settings
BBLS with high probability constructs a tree path which cor-
responds to the true support of the unknown sparse signal.
Moreover, we empirically demonstrate that BBLS provides
performance superior to that of existing algorithms in terms
of accuracy, running time, or both. In the scenarios where the
columns of the coefficient matrix are characterized by high
correlation, BBLS is particularly beneficial and significantly
outperforms existing methods.

Index Terms— compressed sensing, sparse signal re-
covery, branch-and-bound algorithm, accelerated orthogonal
least-squares

1. INTRODUCTION

Reconstruction of a sparse signal from a relatively small num-
ber of its linear measurements is typically formalized as the
problem of finding a sparse solution to an underdetermined
system of linear equations. Such problems arise in a number
of practical scenarios including estimation of sparse channels
in communication systems [1], sparse subspace clustering [2],
compressive DNA microarrays [3], and a number of other
applications in signal processing [4–6]. Consider the linear
measurement model

y = Ax+ ν, (1)

where y ∈ Rn denotes the vector of observations, A ∈ Rn×m
is the coefficient matrix assumed to be full rank, ν ∈ Rn is the
additive measurement noise vector, and x ∈ Rm is a k-sparse
unknown vector, i.e., a vector with at most k non-zero com-
ponents. Formally, the search for a sparse approximation to

x leads to the so-called cardinality-constrained least-squares
problem

minimize
x

‖y −Ax‖22 subject to ‖x‖0 ≤ k (2)

which is known to be NP-hard; here ‖x‖0 denotes the `0-
norm of x, i.e., the number of non-zero components of x. The
fact that optimization problem (2) is computationally chal-
lenging has motivated search for efficient heuristics which ex-
plore trade-off between accuracy and speed. To enable com-
putationally efficient search for sparse x approximating (2),
techniques such as Basis Pursuit (BP) [7, 8] replace the non-
convex l0-norm-constrained optimization (2) by a sparsity-
promoting l1-norm optimization. Another approach has been
taken by iterative heuristics including orthogonal matching
pursuit (OMP) [9] and orthogonal least-squares [10] algo-
rithms which attempt to solve (2) greedily; specifically, those
methods rely on locally optimal decisions to identify columns
of A which correspond to non-zero components of x. The
performance of greedy heuristics has been studied in vari-
ous settings for both OMP [11–15] and OLS [16–24]. In
recent years, heuristics that exploit low complexity of OMP
and rely on it to traverse a search tree along paths that rep-
resent promising candidates for the support of x have been
proposed. The Tree-search Based OMP (TB-OMP) [25], re-
visited as Multipath Matching Pursuit (MMP) and analyzed
in [26], combines the so-called breadth-first and depth-first
search strategies with OMP to conduct a suboptimal search
through the tree of all possible subsets (paths) where each
node is required to have a fixed and limited number of chil-
dren. A similar breath-first search method is proposed in [27]
with application to MIMO radar where multiple measurement
vectors are available. A∗OMP [28] performs A∗ search to
look for the best solution among all possible subsets (paths).
Although these algorithms improve the performance of OMP,
their complexity is prohibitive for large k. In addition, when
the columns of A are correlated – which often arises in appli-
cations such as [1, 2] – their performance significantly dete-
riorates. Therefore, improving on the performance of greedy
algorithms while retaining practical feasibility and exhibiting
robustness in various scenarios remains a challenge.

In this paper, we exploit a recursive relation between
the components of the optimal solution to (2) and propose
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a branch-and-bound search algorithm, referred to as Branch
and Bound Least-Squares (BBLS), to recover the true support
of x. Unlike the existing greedy-search methods, we utilize
a scheduling procedure to limit the number of nodes in each
level of the search tree. This strategy is motivated by the
observation that indices selected in the levels close to the top
of the tree are more likely to be in the true support of the sig-
nal. Therefore, BBLS examines more promising paths first,
while its complexity can be strictly controlled by limiting the
maximum number of visited paths. We state sufficient condi-
tions under which in the noiseless setting BBLS successfully
recovers support of x with high probability, and empirically
demonstrate its superior performance in several scenarios.

Before describing the algorithm, we briefly discuss the
notation used in the paper. The uppercase letters denote ma-
trices and bold lowercase letters represent vectors. We as-
sume the coefficient matrix A ∈ Rn×m has full column rank,
i.e., m > n; we denote the (i, j) entry of A by Aij , and
the jth column of A is denoted by aj . Let I = {1, . . . ,m}
be the set of indices of the entries of x (or, equivalently,
columns of A), and Strue, be the set of true indices, i.e.,
indices of the nonzero elements of x. For the set T ⊂ I,
AT is a submatrix of A including columns indexed by T .
P⊥T = I − ATA

†
T is projection operator onto the orthogo-

nal complement of subspace spanned by the columns of AT
where A†T =

(
A>TAT

)−1
A>T is the Moore-Penrose pseudo-

inverse of AT , and I is an n×n identity matrix. For a matrix
A, A ∼ B( 12 ,±

1√
n
) means the entries of A are drawn inde-

pendently from a Bernoulli distribution and take values 1√
n

and −1√
n

with equal probability. Similar definition holds for
A ∼ N

(
0, 1

n

)
.

It will be useful for the derivation of BBLS to briefly re-
view the selection procedure of the OLS algorithm. Define

MOLS(Si−1, j) =

∣∣∣∣∣∣r>Si−1

P⊥Si−1
aj∥∥∥P⊥Si−1
aj

∥∥∥
2

∣∣∣∣∣∣ (3)

where Si is the subset of indices chosen in the first i iteration
of OLS, and rSi−1

= P⊥Si−1
y is the residual vector in the ith

iteration. OLS chooses a new index js in the ith iteration by
finding js = argmaxj∈I\Si−1

MOLS(Si−1, j) and adds it to
Si−1 to obtain Si. Projection matrix needed for the (i+1)st it-
eration is related to the current projection matrix according to
P⊥Si = P⊥Si−1

−ãjs ã>js where ãjs = P⊥Si−1
ajs/‖P⊥Si−1

ajs‖2.

2. BRANCH AND BOUND LEAST-SQUARES

BBLS relies on a branch-and-bound search procedure to
traverse in a depth-first manner a tree whose nodes repre-
sent columns of A. We use a schedule L = [L1, . . . , Lk]
to control the size of the search space explored by the al-
gorithm; in particular, for each node visited by BBLS at

Fig. 1: An illustration of the BBLS tree search in the noiseless scenario with
k = 3 and Strue = {4, 6, 1}. The parameters of BBLS are L = [3, 1, 1]
and Np = 4. The first examined path, p13 = {6, 1, 3}, is identical to the
output of OLS but has non-zero residual norm. Hence BBLS proceeds and
finds that for the second path, p23 = {4, 6, 1}, ‖rp23‖2 = 0 (i.e., p23 is the
optimal solution).

the ith level of the tree, Li+1 denotes the number of its de-
scendants at the (i + 1)st level that are also visited. Let
p`i = {s`1, . . . , s`i} denote the set of indices chosen as the first
i steps of the `th path constructed by BBLS. The algorithm
then selects {js1 , . . . , jsLi+1

} that result in Li+1 largest val-
ues of MOLS(p

`
i , j) in (3) for j ∈ I\p`i (bounding step).

Next, we update p`i+1 = p`i ∪ {js1} (branching step). BBLS
performs these steps until it reaches the kth level (bottom of
the search tree) thus completing the current path, and com-
putes the corresponding value of the objective ‖rp`k‖2, i.e.,
the Euclidean norm of the residual vector associated with the
`th path. If ‖rp`k‖2 is smaller than a predetermined thresh-
old ε, BBLS stops and returns p`k as the estimated support.1

Otherwise, BBLS keeps traversing up and down the tree until
it either finds a path with sufficiently small objective value,
or it visits Np paths, or it reaches the top level and visits
all
∏k
i=1 Li possible paths (if Np >

∏k
i=1 Li). A simple

illustration of the BBLS search is shown in Fig. 1.
The scheduling procedure employed by BBLS is moti-

vated by the simple observation that the indices selected at
the top levels of the search tree are more likely to be from
Strue. Therefore, it is meaningful for {Li}ki=1 to be a non-
increasing sequence of positive integers. The simulation re-
sults in Section 3 verify that BBLS with scheduling is an
efficient scheme for sparse recovery. Note that for an effi-
cient implementation of (3) in BBLS, we employ the accel-
erated OLS recursions originally introduced in [22]. Specif-
ically, the selection procedure of OLS can be rephrased as
js = argmaxj∈I\Si ‖qj‖2, where qj =

(
a>j ri/a

>
j t
)
t and

t = aj−
∑i
l=1

a>j ul

‖ul‖22
ul. Furthermore, the residual vector rSi

1In the noise-free scenario, ε = 0. In the noisy measurements case, ε2 is
a scaled variance of the measurement noise, i.e., ε2 ∝ kσ2

ν .
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required for the next iteration is formed as rSi = rSi−1−ui+1

where ui+1 = qjs . The BBLS algorithm is formalized as Al-
gorithm 1.

Remark: Note that BBLS employs ε at the bottom of the
tree. We can generalize the idea of discarding paths that vi-
olate a predetermined threshold and build a framework that
uses a schedule E = [ε1, . . . , εk] to reduce the search space
by pruning less promising paths at all levels of the tree. The
schedule E can be determined based on the statistical proper-
ties of A, ν, and the non-zero entries of x. Further discussion
on statistically scheduled pruning is left to future work.

2.1. Exact recovery conditions for BBLS

When A is drawn at random from either N (0, 1/n) or
B( 12 ,±

1√
n
), singular values of A are with high probabil-

ity concentrated around 1, which can be used to establish
probabilistic performance guarantees for BBLS. In particular,
in combination with a simple inductive argument, Theorem
2.1 below implies that for such matrices and in the noise-free
setting, BBLS with Np =

∏k
i=1 Li construct a path which

corresponds to the true support of x. The proof of Theorem
2.1 is omitted for brevity.

Theorem 2.1. Let ε and δ be arbitrary constants such that
0 < ε < 1 and 0 < δ < 1. Assume that x ∈ Rm is a k-sparse
arbitrary vector, A ∼ N (0, 1/n) or A ∼ B( 12 ,±

1√
n
), and

that noiseless measurements y = Ax are given. Suppose that
for the `th path, p`k, BBLS has chosen indices from Strue in the
first i levels (i.e., p`i = {s`1, . . . , s`i} ⊂ Strue). Then, at least
one among Li+1 children of s`i is in Strue with probability
exceeding(

1− 2e−(n−i)c0(ε)
)2(

1− 2(
12

δ
)ke−nc0(

δ
2 )

)
(
1− 2e−

n
k−i

1−ε
1+ε (1−δ)

2
)m−k−Li+1+1

, (4)

where c0(ε) = ε2

6 (1− ε).

2.2. Computational complexity

The worst case complexity of the BBLS algorithm is analyzed
next. In step 2 of Algorithm 1, t requires O(nk) operations,
qj costs O(n), and they need to be computed for at most m
columns. Therefore, the aggregate complexity of step 2 is
O(mnk). Step 3 requires additional O(n) operations. Com-
puting the `2 norm of the residual vector in step 6 requires
O(n). Since each path includes k indices, the total cost to find
a path isO(mnk2). Since there are at most Np of such paths,
the worst case complexity of Algorithm 1 is O(Npmnk2).

3. SIMULATION RESULTS

To evaluate performance of the BBLS algorithm, we com-
pare it to that of five other sparse recovery schemes for var-

Algorithm 1 Branch and Bound Least-Squares (BBLS)

Input: y, A, sparsity level k, threshold ε, schedule L,
max number of paths Np

Output: recovered support Ŝ, estimated signal x̂

1. (Initialize) S = ∅, rp`0 = y, r`2 = ‖y‖2, i = 1, ` = 1.
2. (Bounding) Let Si = [ ] and li = 0,
for j ∈ I\S do
t = aj −

∑i−1
l=1

a>j ul

‖ul‖22
ul, qj =

a>j ri−1

a>j t
t

end for
Select Si = [js1 , . . . , jsLi ] corresponding to Li largest
terms ‖qj‖2
3. (Branching) li = li + 1. If li > Li go to 4, else S =
S ∪ {Si (li)}, ui = qjsli

, rp`i = rp`i−1
− ui, go to 5.

4. (Decrease i) If i = 1 go to 7, else S = S\{Si (li)},
i = i− 1, and go to 2.
5. (Increase i) If i = k go to 6, else i = i+ 1 and go to 2.
6. (Solution found) Save the `th path p`k = S and its objec-

tive value
∥∥∥rp`k∥∥∥2. If

∥∥∥rp`k∥∥∥2 < r`2 update r`2 =
∥∥∥rp`k∥∥∥2.

` = `+ 1, if ` > Np or r`2 < ε go to 7, else go to 3.
7. Terminate the algorithm. Return the path p`∗k with mini-
mum residual norm as Ŝ, and the estimate x̂ = A†

Ŝ
y.

ious sparsity levels k; we limit the study to noise-free set-
tings. In particular, we considered OMP [9], Accelerated OLS
(AOLS) [22], MMP with breadth-first (MMP-BF) and depth-
first (MMP-DF) implementations2, and BP with the so-called
LASSO formulation for a fast implementation with regular-
ization parameter λ = 0.0001. The stopping threshold for
BBLS, MMP-DF, OMP, AOLS, and LASSO was set to 10−13

(MMP-BF, a breadth-first algorithm, does not use a stopping
threshold). For BBLS, MMP-BF, and MMP-DF we set the
maximum number of paths to Np = 50. The schedule used
for BBLS is L = [6, 6, 3, 1, . . . , 1]. We set n = 64 and
m = 128; k changes from 3 to 39. The non-zero elements of
x – whose locations are chosen uniformly – are independent
and identically distributed normal random variables. In or-
der to construct A, we consider the so-called hybrid scenario
[16] to simulate both correlated and uncorrelated dictionaries.
Specifically, we set Aj =

bj+tj1
‖bj+tj1‖2 where bj ∼ N (0, 1

n ),
tj ∼ U(0, T ) with T ≥ 0, and 1 ∈ Rn is the all-one vector.
In addition, {bj}mj=1 and {tj}mj=1 are statistically indepen-
dent. Notice that as T increases, the so-called mutual coher-
ence parameter of A increases, resulting in a more correlated
coefficient matrix; T = 0 corresponds to an incoherent A.

Performance of each algorithm is characterized by two
metrics: (i) Exact Recovery Rate (ERR), defined as the per-
centage of instances where the support of x is recovered ex-
actly, and (ii) the running time of the algorithms in seconds.

2For MMP-BF and MMP-DF, we used the code provided by the authors
of [26].
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Fig. 2: Exact recovery rate comparison of BBLS, MMP-BF, MMP-DF, AOLS, OMP, and LASSO for n = 64, m = 128, A with hybrid columns, and the k
non-zero components of x drawn from N (0, 1).
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Fig. 3: Running time (seconds) comparison of BBLS, MMP-BF, MMP-DF, AOLS, OMP, and LASSO for n = 64, m = 128, A with hybrid columns, and the
k non-zero components of x drawn from N (0, 1).

Each experiment is repeated 1000 times. Fig. 2 illustrates the
ERR comparison. For the case of T = 0, it can be observed
from Fig. 2 (a) that all algorithms perform similarly, with
MMP-DF taking the lead for smaller values of k and MMP-
BF for larger values of k. Next, consider the more practical
case of T = 10 shown in Fig. 2 (b) where the columns of
A are correlated. Performance of MMP-DF, MMP-BP, OMP,
and LASSO deteriorates severely, and these algorithms fail to
recover support of x when k ≥ 6. However, BBLS main-
tains its competitive performance with just a small decay in
the exact recovery rate. Fig. 2 (c) demonstrates that when
T = 100, BBLS maintains its performance while the exact
recovery rate of remaining algorithms other than AOLS dete-
riorates even further (This setting can be used to model arbi-
trary close data points in the sparse subspace clustering prob-
lem [2]). Running time of the algorithms is compared in Fig.
3. We observe that BBLS is fairly computationally efficient,
especially when compared with MMP-BF. Moreover, it is ev-
ident that the speeds of AOLS, OMP, LASSO, and MMP-BF
do not change significantly as T increases. Running time of
BBLS increases marginally for smaller values of k for T > 0.
Finally, running time of MMP-DF noticeably increases when
T > 0, especially for small k. The presented results sug-

gest that BBLS offers a desirable trade-off between speed and
accuracy. Moreover, unlike the other schemes, BBLS main-
tains highly accurate performance in the situations where the
columns (atoms) of the coefficient matrix are correlated.

4. CONCLUSION

We presented the Branch and Bound Least-Squares (BBLS)
algorithm, a new scheme for sparse recovery that constructs
and traverses a search tree by selecting multiple signal sup-
port indices at each level using Orthogonal Least-Squares.
Since the indices at the top tree levels are more likely to be
in the true support, we employed a schedule to visit multiple
promising paths while maintaining low computational com-
plexity. Moreover, we provided sufficient conditions for the
exact sparse recovery with BBLS in noise-free settings. Sim-
ulation studies demonstrated efficacy of BBLS as compared
to popular sparse reconstruction algorithms. In particular,
while the performance of almost all other algorithms suffer
when the dictionaries are correlated, BBLS remains capable
of highly accurate recovery. As part of the future work, it
would be of interest to analytically study the observed robust
performance of BBLS for correlated coefficient matrices.
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