
MISMATCHED SPARSE DENOISER REQUIRES OVERESTIMATING THE SUPPORT LENGTH

Giulio Coluccia?, Aline Roumy†, Enrico Magli?

? Politecnico di Torino, Italy † INRIA, France

ABSTRACT
A well-known result [1, Lemma 3.4] states that, without
noise, it is better to overestimate the support of a sparse signal,
since, if the estimated support includes the true support, the
reconstruction is perfect. In this paper, we investigate whether
this result holds also in the presence of noise. First, we derive
the covariance matrix of the signal estimate when the obser-
vation matrix is Gaussian, generalizing existing results. Then,
we show that, even in the noisy case, overestimating the sup-
port length is the preferred solution, as the error incurred by
missing some signal components dominates the overall error
variance. Finally, an upper bound of the estimated support
length is provided to avoid excessive noise amplification.

Index Terms— Compressive sensing, sparse approxima-
tion, support recovery.

1. INTRODUCTION
We consider the problem of denoising a signal x ∈ RN ,
where the signal is observed through an encoder Φ ∈ RM×N
and the observation is corrupted by noise z ∈ RM , leading to
the observation model y = Φx + z. This task is indeed cen-
tral in signal processing and it has been shown [2] that having
a sparse prior on the signal model can help improve the recon-
struction of the signal x. In this paper, we focus on a kind of
sparse estimator, where first the support in which the sparse
signal lives is estimated, and then an orthogonal projection is
performed on the subspace. This assumption is not too restric-
tive as in each type of sparse estimator (optimization, greedy
or thresholding based methods [1, Chap. 3]), there exists at
least one estimator that can be seen as this two-step process.
For instance, orthogonal matching pursuit, basic thresholding
and the projected-LARS [2, Sec. 5.3.4], all perform a final
orthogonal projection on a previously estimated subspace.

Analyses exist in the case the support is perfectly known
[3, 4, 5]. However, support recovery is not always success-
ful [2, Fig. 5.13], [6, 7] and evaluating the effect of an error
in the support estimate is of great importance to evaluate the
`2-norm error variance on the signal. This is, for instance,
useful to derive the rate–distortion performance [4]. Regard-
ing support mismatch, an interesting result [1, Lemma 3.4]
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states that, if the estimated support includes the true support
then reconstruction is perfect. This result holds without noise
and we conclude that it is therefore better to overestimate the
support length and therefore have a chance to retrieve at least
all the true support.

The goal of this paper is to analyze the tradeoff between
the accuracy of the support estimate and the impact of noise
on the reconstruction error and, in a way, to generalize [1,
Lemma 3.4] to the presence of noise. We assume that the en-
coder matrix performs dimensionality reduction (M � N )
and that the matrix entries are independent and identically
distributed (i.i.d.) Gaussian variables, as for instance, in the
compressive sensing (CS) context [8, 9]. The obtained result
is that, in the presence of noise, even if there is a tradeoff be-
tween model accuracy and noise in the system, it is generally
better to overestimate the support and not miss any compo-
nent of the signal. Nevertheless, the overestimation should
avoid the regime where the estimated length gets close to the
number of observations.

In the rest of the paper, we use, when possible, the fol-
lowing notation: a random vector x is denoted using boldface
lowercase and a random matrix M is denoted using boldface
uppercase. Mi refers to the ith column of M and MS is
the submatrix extracted from M while keeping the columns
indexed by the elements in th set S. Covariance matrices are
denoted using the boldface uppercase greek letter Σ, the iden-
tity matrix of dimension K is denoted IK , and the all zero
N ×K matrix is denoted 0N×K .

2. SYSTEM MODEL
CS [8, 9] aims at recovering a signal x ∈ RN , having a
K–sparse representation in some basis Ψ ∈ RN×N , i.e.:
x = Ψθ, ‖θ‖0 = K, K � N , by a smaller vector
of noisy linear measurements y = Φx + z, y ∈ RM and
K < M < N . Φ ∈ RM×N is the sensing matrix and
z ∈ RM is the vector representing additive noise. If each sub-
matrix consisting of K columns of ΦΨ is (almost) distance
preserving [10, Def. 1.3] [1, Def. 6.1], then reconstruction is
possible. The latter condition is the Restricted Isometry Prop-
erty (RIP). Formally, the matrix ΦΨ satisfies the RIP of order
K if ∃δK ∈ (0, 1] such that, for any θ with ‖θ‖0 ≤ K:

(1− δK) ‖θ‖22 ≤ ‖ΦΨθ‖22 ≤ (1 + δK) ‖θ‖22 , (1)
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where δK is the RIP constant of order K. First, the value of
this constant that guarantees reconstruction depends on the al-
gorithm used [1, Sec. 6.2 to 6.4]. Second, it has been shown
in [11] that when Φ is an i.i.d. random matrix drawn from any
subgaussian distribution and Ψ is an orthogonal matrix, ΦΨ
satisfies the RIP with overwhelming probability provided that
M = O(K log(N/K)). RIP is therefore a nice property that
ensures success of CS algorithms. However, the quality of
success is given by (1), which is unfortunately not tight. In [4]
the exact performance of CS algorithms based on orthogonal
projection were derived, under the condition that the support
of the sparse component were perfectly known. In this pa-
per, we generalize this result without any restriction on the
estimated support.

We consider the measurement vector as

y =
1√
M

Φx + z . (2)

where z is a centered random vector with covariance matrix
Σz and vec {Φ} ∼ N

(
0, σ2

φIMN

)
. (2) complies with the

usual form y = Φx+z where the variance σ2
φ of the elements

of Φ depends on M . Here, we want to keep σ2
φ independent

of system parameters.
We further assume that x is directly sparse. This holds

without loss of generality since the distribution of the Gaus-
sian matrix Φ is invariant under orthogonal transformation.
Referring to the true sparsity support of the signal as Λ, with
|Λ| = K, we can rewrite the above equation as

y =
1√
M

ΦΛxΛ + z ,

where xΛc = 0, xΛ is a centered random vector with covari-
ance matrix σ2

xIK and xΛ, Φ and z are independent from each
other.

3. MISMATCHED DENOISER PERFORMANCE
Let us assume that a receiver is willing to estimate the signal
x from its CS measurements y. It is provided with an estima-
tion Ω of the true sparsity support Λ, with |Ω| = L < M .
The estimated support Ω may for example derive from a run
of a greedy algorithm estimating the sparsity support, first,
then estimating the signal by pseudo-inverting the sensing
matrix, like OMP [12], CoSaMP [13] or Subspace Pursuit
[14]. Hence, given Ω, the signal estimation is given by{

x̂Ω =
√
MΦ†Ωy

x̂Ωc = 0
(3)

Theorem 1. Let the random sparse signal x ∈ RN be ob-
served through the noisy linear model (2), with y, z ∈ RM .
Let Λ be the true support of x and Ω the estimated support,
such that |Λ| = K, |Ω| = L and k = |Λ ∩ Ω| is the number
of positions in the support that are correctly estimated. Let

x

x̂

Λ Λ
c

K N−K

k K−k

Λ∩Ω Λ∩Ω
c

Ω Ω
c

L−k

Fig. 1. Relationships between index sets Λ and Ω. Note that Λc

contains only zeroes.

x̂ be the orthogonal projection of y on the subspace spanned
by the estimated support (3). Let xΛ, z be centered random
vectors with covariance matrices σ2

xIK and σ2
zQQT respec-

tively, where Q is an arbitrary orthogonal matrix, and let the
entries of the matrix Φ be i.i.d Gaussian centered with vari-
ance σ2

φ. Then the covariance matrix of the signal estimate
is

E[x̂x̂T]=σ2
x

(
Ik 0
0 0

)
+σ2

x

K − k
M − L− 1

IL+
σ2
z

σ2
φ

M

M − L− 1
IL

More generally, for a centered noise z with covariance matrix
Σz , the norm of the estimation error e = x̂− x is

E
[
‖e‖2

]
= σ2

x(K−k)
M − 1

M − L− 1
+

L

M − L− 1

Tr (Σz)

σ2
φ

,

Proof. Let us now assume without loss of generality that the
nonzeros of x are concentrated at the beginning of the vector,
i.e., Λ = {1, 2, . . . ,K} and that Ω is split into two continuous
subsets, one corresponding to the beginning of Λ, the other
corresponding to the beginning of Λc (see Fig. 1). We can
then distinguish between the k detected components, where
k = |Λ ∩ Ω| and the K − k undetected components, where
K − k = |Λ ∩ Ωc| .

First note that E [x̂] = 0 due to the independence of x, Φ,
z and the fact that E [x] = 0 and E [z] = 0 .

As for the covariance matrix E
[
x̂x̂T

]
, we develop (3) in

the following way:

x̂Ω =
√
MΦ†Ω

(
1√
M

ΦΛxΛ + z

)
= Φ†Ω

(
ΦΛ∩ΩxΛ∩Ω + ΦΛ∩ΩcxΛ∩Ωc +

√
Mz

)
= Φ†Ω (ΦΛ∩ΩxΛ∩Ω + ΦΛc∩ΩxΛc∩Ω

+ΦΛ∩ΩcxΛ∩Ωc +
√
Mz

)
= Φ†Ω

(
ΦΩxΩ + ΦΛ∩ΩcxΛ∩Ωc +

√
Mz

)
= xΩ + Φ†Ω

(
ΦΛ∩ΩcxΛ∩Ωc +

√
Mz

)
(4)

In (4), we can notice the presence of three terms. The first
represents the effectively estimated true signal components.
The second is an error term accounting for undetected terms.
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Finally, the third represents the noise. Each term is uncorre-
lated from each other, hence the covariance E

[
x̂Ωx̂T

Ω

]
will be

the summation of the covariances of those three components.
The first term is given by

E
[
xΩxT

Ω

]
=

(
σ2
xIk 0
0 0(L−k)×(L−k)

)
. (5)

The second term can be derived as

E
[
Φ†ΩΦΛ∩Ωc xΛ∩Ωcx

T
Λ∩Ωc︸ ︷︷ ︸

σ2
xI(K−k)

ΦT
Λ∩Ωc(Φ

†
Ω)T
]

= σ2
xE
[ (

ΦT
ΩΦΩ

)−1

ΦT
Ω ΦΛ∩ΩcΦ

T
Λ∩Ωc︸ ︷︷ ︸

σ2
φ(K−k)IM

ΦΩ

(
ΦT

ΩΦΩ

)−1 ]

= σ2
xσ

2
φ(K − k)E

[ (
ΦT

ΩΦΩ

)−1

︸ ︷︷ ︸
1

σ2
φ
(M−L−1)

IL

]
= σ2

x

K − k
M − L− 1

IL .

(6)

The second equality follows from the fact that ΦΛ∩ΩcΦ
T
Λ∩Ωc

is Wishart distributed with moments given in [15, Sec 3.2.2]

and the third equality follows from the fact that
(
ΦT

ΩΦΩ

)−1

is the inverse of a Wishart matrix, which moment is given in
[16]. For what concerns the noise term, we have

E
[ (

ΦT
ΩΦΩ

)−1

ΦT
Ω zMzT︸ ︷︷ ︸

MΣz

ΦΩ

(
ΦT

ΩΦΩ

)−1 ]
, (7)

which can be evaluated in closed-form when Σz has all equal
eigenvalues, i.e., in the case where the noise distribution is
spherically symmetric. In this case, there exists an orthogonal
matrix Q such that QΣzQ

T = σ2
zIM and it follows that

E
[ (

ΦT
ΩΦΩ

)−1

ΦT
Ω zMzT︸ ︷︷ ︸

MΣz

ΦΩ

(
ΦT

ΩΦΩ

)−1 ]
= Mσ2

zE
[(

ΦT
ΩΦΩ

)−1

ΦT
ΩQTQΦΩ

(
ΦT

ΩΦΩ

)−1
]

=
M

M − L− 1

σ2
z

σ2
φ

IL .

(8)

Summing the terms of (5), (6) and (8) the final covariance
matrix can be obtained. It has to be remarked that (6) and (8)
hold for M > L+ 1 .

The error norm can be evaluated as follows

E
[
‖e‖2

]
= E

[
(x̂− x)

T
(x̂− x)

]
= E

[
(x̂Ω − xΩ)

T
(x̂Ω − xΩ)

]
+ E

[
xT

Λ∩ΩcxΛ∩Ωc
] (9)

and it can be derived for a generic Σz since the trace of (7)

can be expressed in closed form. It follows that

E
[
‖e‖2

]
= (K − k)σ2

x+

+ Tr

(
σ2
x

K − k
M − L− 1

IL

)
+ Tr

(
1

σ2
φ

M − 1

M − L− 1
Σz

)

= σ2
x(K − k)

M − 1

M − L− 1
+

L

M − L− 1

Tr (Σz)

σ2
φ

,

(10)

from which the contributions of the mismatched components
and of the noise can be easily distinguished. Of course, when
there is no mismatch (k = L = K) the first term disappears
and (10) reduces to (45) in [4, Appendix B] . Moreover, in
absence of noise (σ2

φ = 0), (10) specializes to (28) in [17]. It
can be noticed that the error norm only depends on the vari-
ance of the elements of z and not on its covariance matrix.
Therefore, our result holds even if the noise is correlated (for
instance if vector quantization is used). As a consequence, we
can apply our result to any quantization algorithm or to noise
not resulting from quantization. Note that, if the elements of
z have the same variance, (10) reduces to

E
[
‖e‖2

]
= σ2

x(K−k)
M − 1

M − L− 1
+
σ2
z

σ2
φ

LM

M − L− 1
. (11)

Corollary 2. In the presence of observation noise, the mis-
matched sparse denoiser performs better in case of overesti-
mation of the support length.

Proof. (11) shows that by increasing the size of the estimated
support L will increase the impact of noise in the reconstruc-
tion error. However, for the usual range of signal-to-noise
ratios, the signal variance σ2

x is much greater than the obser-
vation noise variance. Since in the first term of (11) σ2

x is
multiplied by K − k, i.e., the number of missed non-zero co-
efficients in the estimated support Ω, this term dominates the
second term. Thus, to avoid penalizing too much the esti-
mate noise variance, one should avoid missing some signifi-
cant terms in the support. This can be easier achieved if one is
allowed to estimate a bigger support than the true one Λ.

Corollary 3. If the estimated support length goes to M , the
noise variance of the estimate goes to infinity. Moreover, to
avoid amplification of the noise variance by a factor α > 1,
the length of the support should be smaller than M α−1

α .

Proof. The noise variance (11) on the signal estimate contains
a factor ≈ M/(M − L − 1) that goes to ∞ as L → M .
Moreover,M/(M−L−1) < α⇔ L+1 < M(α−1)/α.

4. NUMERICAL RESULTS
In this section, we show the validity of the results of Section 3
by comparing the equations to the results of simulations. Here
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(a) Sparsity underestimation case (L ≤ K, k < K).
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(b) Sparsity overestimation case (L ≥ K, k = K).

Fig. 2. Mismatched reconstruction error. Simulations vs. (1). N =
512, K = 32, M = 128. White noise: Σz = σ2

zIM .

and in the following sections, signal length is N = 512 with
sparsity K = 32. M = 128 measurements are taken. The
nonzero elements of the signal are distributed asN (0, 1). The
sensing matrix is composed by i.i.d. elements distributed as
zero–mean Gaussian with variance σ2

φ = 1. The noise vec-
tor is Gaussian with zero mean, while the covariance matrix
depends on the specific test and will be discussed later. The
reconstructed signal x̂ is obtained using the mismatched esti-
mator of (3). A different realization of the signal, noise and
sensing matrix is drawn for each trial, and the reconstruction
error, evaluated as E

[
‖e‖22

]
, is averaged over 10,000 trials.

4.1. White noise
In this first experiment, the measurement vector y is corrupted
with white Gaussian noise, i.e., z ∼ Np(0, σ2

zIM ). The first
set of experiments shows the comparison between the sim-
ulated reconstruction error and (11) in two cases. Fig. 2(a)
shows the case in which the decoder underestimates the spar-
sity of the signal missing only 1 component of the true nonze-
ros (k = 31 and L = 31, 32). On the other hand, Fig. 2(b)
shows the case in which the decoder overestimates the spar-
sity support of the signal (Λ ⊆ Ω with L = 32, 64). In both

10 -8 10 -6 10 -4 10 -2 10 0

10 -6

10 -4

10 -2

10 0

10 2

Simulated L=64 - k=32, =0.9
Simulated L=64 - k=32, =0.999
Theorem 1 L=64 - k=32
Simulated L=32 - k=31, =0.9
Simulated L=32 - k=31, =0.999
Theorem 1 L=32 - k=31

Fig. 3. Same as Figure 2 but with correlated noise: (Σz)i,j =
σ2
zρ
|i−j| and ρ = 0.9, 0.999.

cases, it can be easily noticed that the match between simu-
lated and theoretical curve is perfect. In the former case, it can
be noticed that missing only one component of the true signal
from the estimated support strongly affects the performance,
making the noise contribution to the error almost negligible
for high SNRs. Instead, in the latter case the first term of
(11) goes to 0 with the performance affected only by L . This
means that even when the measurements are noisy it is better
to overestimate the sparsity support of the signal to increase
the likelihood to include all the true signal components in the
estimated support.

4.2. Correlated noise
We also report in Fig. 3 the results obtained reconstructing the
signal from the measurements corrupted by correlated noise.
In particular, the i, j-th element of the noise covariance matrix
will be given by (Σz)i,j = σ2

zρ
|i−j|. The correlation coeffi-

cient takes the values of ρ = 0.9 and 0.999. We compare the
simulations with (1). It can be noticed from Fig. 3 that sim-
ulations confirm the result that the performance of the oracle
does not depend on noise covariance but only on its variance.
This is shown by the fact that simulations for ρ = 0.9 over-
lap the ones for ρ = 0.999, and both match (1) even in the
correlated noise scenario.

5. CONCLUSIONS
In this paper, we analytically derived the closed form expres-
sions of the covariance matrix of the estimation of a sparse
signal from noisy linear measurements with mismatch in the
estimated sparsity support, as well as the closed form of the
estimation error norm. The results hold also for correlated
noise. They confirm that for these kind of decoders it is a bet-
ter choice to increase the probability of picking all the signal
nonzeros by overestimating the sparsity support, because the
penalty due to the miss of a signal nonzero in the estimation
is far greater than the additional noise caused by the overesti-
mation of the signal support.
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