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ABSTRACT

In this paper, we propose new gradient-based methods for im-
age reconstruction from partial Fourier measurements, which
are commonly used in magnetic resonance imaging (MRI)
or synthetic aperture radar. Compared to classical gradient
recovery methods, a key improvement is obtained by formu-
lating the gradient recovery problem as a compressed sensing
problem with the additional constraint that the curl of the gra-
dient field must be zero. Moreover, we formulate the image
recovery problem as an inverse problem on graphs. Iteratively
reweighted `1 recovery methods are proposed to recover these
relative differences and the structure of the similarity graph.
Finally, the image is recovered from the compressed Fourier
measurements using least squares estimation. Numerical
experiments demonstrate that the proposed approach outper-
forms the state-of-the-art image recovery methods.

Index Terms— Compressed sensing, Fourier transform,
Sparse recovery, Spectral graph theory, Total variation.

1. INTRODUCTION

The recovery of an image from Fourier measurements plays a
very important role in several scanning technologies, such as
magnetic resonance imaging (MRI, [1]) and synthetic aper-
ture radar [2]. In this context, one would like to reduce the
scan time and acquire the smallest number of measurements
allowing recovery with the highest quality.

Compressed sensing [3] has emerged in the last few years
as a valuable approach to reduce the amount of spectral data
needed for reconstruction. Indeed, CS has been shown to ef-
fectively recover images from a limited number of samples by
taking advantage of the sparse nature of the gradient minimiz-
ing total variation (TV, [4]). Among the solvers for TV min-
imization, RecPF [5] achieves the best CS recovery results.
Although TV minimization allows a significant reduction in
the number of measurements to be acquired, reconstructed
images often suffer from undesirable artifacts and image de-
tails tend to be over-smoothed [6].
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In [6] a new algorithm for image reconstruction, labelled
as GradientRec–Diff, has been proposed. In a nutshell, given
the set of spectral data, the horizontal and vertical differences
are estimated from compressed measurements; the image is
then recovered using an integration method. When the num-
ber of measurements is very small, RecPF achieves better re-
construction error. However, GradientRec–Diff shows better
performance than RecPF, at the price of higher complexity,
for low undersampling regimes.

To overcome these drawbacks, in this paper we propose
new gradient based methods for image recovery. Inspired by
the emerging field of signal processing on graphs, the im-
age recovery problem is formulated as an inverse problem
on graphs. More precisely, a graph is defined on the data
units of the image: each unit is associated to a graph node
and an edge is drawn with a weight depending on the similar-
ity between the image values. We cast the gradient recovery
problem as a compressed sensing problem enforcing both the
sparsity and the directional continuity in the image gradient
domain. Indeed, given incomplete information or presence of
noise, the reconstructed gradient field by GradientRec–Diff
might be not conservative and, consequently, non-integrable.
In the proposed method we enforce that the integral along any
closed curve should be equal to zero, as this allows to obtain
a more accurate estimation of the image gradient and, con-
sequently, a better image reconstruction quality. Moreover,
iteratively reweighted `1 recovery methods are proposed to
recover the relative differences and to infer the structure of
the similarity graph. Once the gradient field is estimated, the
image is recovered using least squares estimation.

Numerical experiments show that the proposed approach
outperforms the state-of-the-art image recovery methods in
terms of relative error for several sampling patterns. More
precisely, the proposed CCGE algorithms achieve perfect re-
construction with the lowest number of measurements.

2. IMAGE RECOVERY FROM SPECTRAL DATA

2.1. Problem formulation

Let F ∈ Rm×n be an image and denote N = mn and [n] =
{1, . . . , n}. Each pixel of the image can be identified by a pair
of indexes (ux, uy) ∈ [m]× [n] corresponding to the row and
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to the column. Let F : Rm×n → Cm×n be the bidimensional
DFT of F :

[F(F )]ω =
1√
N

∑
ux∈[m]

∑
uy∈[n]

F (ux, uy)e−2πj(ωx uxn +ωy
uy
m ).

Defined a set of M � N frequencies Ω = {ω(k) =

(ω
(k)
x , ω

(k)
y ) : k ∈ {1, . . . ,M}}, our aim is to recover the

image F from partial frequency information y = [F(F )]Ω.
Let ∇F = (∇xF,∇yF ) ∈ Rm×n×2 be the discrete gra-
dient operator: (∇xF )i,` = Fi,` − Fi−1,`, (∇yF )i,` =
Fi,`−Fi,`−1. Given a vector field (F1, F2) the curl is defined
as curl(F1, F2) = ∇yF1 −∇xF2.

2.2. Gradient-based image recovery

Using the properties of the Fourier transform, it can be shown
that the Fourier measurements of image gradient can be ob-
tained by a diagonal transformation of the Fourier transform
of the original image. More specifically,

yx = Λxy = FΩ(∇xF ) yy = Λyy = FΩ(∇yF ) (1)

where Λ∗ = diag(1 − e−2πjω∗/N ). Classical gradient-based
recovery algorithms, as GradientRec-Diff [6], estimate the
gradients via Basis Pursuit (BP)

min ‖∇xF‖1, s.t. FΩ(∇xF ) = yx

min ‖∇yF‖1, s.t. FΩ(∇yF ) = yy
(2)

Once the gradients have been estimated, the image is recon-
structed using an integration method imposing that integral
along any closed curve should be zero.

As will be clear next, when the number of measure-
ments is very small, the gradient estimation obtained via BP
is affected by errors. Consequently, the estimated gradient
field is necessarily not conservative and these errors are not
spread uniformly throughout the gradient field but concen-
trated around the edges of the image. As a consequence, these
errors affect also the image recovery.

3. PROPOSED ALGORITHM

3.1. Graph analogy

We now formulate the image recovery problem using graph
theory. Each pixel of the image F is labeled with a vertex
u ∈ V and can be identified by a pair of indexes (ux, uy) ∈
[m] × [n] corresponding to the row and to the column. We
consider the signal f , defined on the set of vertices f : V → R
with the vector f ∈ RN , where the u-th entry represents the
image value at the vertex fu = F (ux, uy).

The gradients are represented as the edges E ⊆ V × V of
an oriented graph G = (V, E). Each node u belonging to the
interior of the image (i.e., not on its boundary) has four edges,

connecting it to nodes in north, south, east, and west direc-
tions. Therefore, the resulting graph is a grid. The orientation
of the edge e connecting nodes u and v is conventionally as-
sumed (u, v) with u < v. The graph topology is encoded in
the incidence matrix A ∈ {0,±1}E×V defined by

Aew =


+1 if e enters vertex w
−1 if e leaves vertex w
0 if w is not a vertex of e

(3)

for every e ∈ E and w ∈ V . We denote

g =

[
gx
gy

]
=

[
Ax
Ay

]
f = Af

whereAx andAy are the incidence matrices corresponding to
the horizontal and vertical directions, respectively, and gx =
vec(∇xF ) and gy = vec(∇yF ). It should be noticed that
with these notations curl(∇xF,∇yF ) = Aygx −Axgy .

3.2. Gradient estimation

3.2.1. Curl-constrained `1 minimization

In the proposed algorithm, we impose the curl of the recon-
structed gradient field to be equal to zero. This yields the
solution of the following optimization problem:

arg min
gx,gy∈Rmn

‖gx‖1 + ‖gy‖1

s.t.

 yx = FΩ(gx)
yy = FΩ(gy)

Aygx −Axgy = 0
. (4)

Different CS recovery algorithms can be used for edge recon-
struction, such as OMP [7], CoSaMP [8], `p-minimization
methods with p < 1 [9], iteratively reweighted `1-minimization
algorithms [10].

3.2.2. Iteratively reweighted `1-CCGE with Gaussian weights

In order to obtain high quality CS reconstruction, we modify
the CCGE problem using both local smoothness and nonlo-
cal self-similarity. More precisely, we consider the following
weighted `1-problem

arg min
gx,gy∈RV

∑
i∈V

w ([gx]i) |[gx]i|+ w ([gy]i) |[gy]i|

s.t.

 yx = FΩ(gx)
yy = FΩ(gy)

Aygx −Axgy = 0
, (5)

where w(x) = e−
x2

2θ2 is the Gaussian kernel weighting func-
tion. It should be noted that this non-convex optimization

4746



problem is quite difficult to solve directly due to the non-
differentiability and non-linearity. In this section, the itera-
tively reweighted `1-CCGE algorithm is developed to solve
(5). We initialize g(0)

x = g
(0)
y = 0, then at each iteration

t ∈ N we compute

w(t)
x = e−

(g(t)x )
2

2θ2 , w(t)
y = e−

(g(t)y )
2

2θ2

g(t+1) = arg min
gx,gy∈RV

∑
i∈V

w(t)
x |[gx]i|+ w(t)

y |[gy]i|

s.t.

 yx = FΩ(gx)
yy = FΩ(gy)

Aygx −Axgy = 0
.

3.3. From gradient to image

Let ĝ ∈ RE be the vector collecting the estimated gradient
field. We have ĝ = Af + ξ, where ξ is the error obtained
on the gradient estimation. Modeling the error ξ as Gaussian
noise, we take a least-squares approach for estimating the sig-
nal f starting from measurements ĝ:

min
x∈RN

1

2
‖Ax− ĝ‖22. (6)

It should be noticed that, being A1 = 0, the solution is not
unique. The set of solutions of (6) is described in the follow-
ing well-known lemma [11].

Lemma 1 (LS estimator). Let the graph G be connected and
let L := A>A denote the Laplacian of the graph. The follow-
ing facts hold:

(a) x is a solution to (6) if and only if A>Ax = A>ĝ;
(b) there exists a unique minimizer of (6) x̂ls with

minimum ‖x̂ls‖2;
(c) f̂ ls = L†A>ĝ;
(d) E[f̂ ls] =

(
I − 1

N 11
>)f.

It should be noted that determining the signal f̃ from rela-
tive measurements is only possible up to an additive constant.
This ambiguity can be avoided by taking f̃ = f̂ ls+11>f/N .
It should be remarked that if 0 ∈ Ω the second term is equal
to y(0)/

√
N leading to f̃ = f̂ ls + y(0)1/

√
N. These pre-

liminary results yield the following theorem, whose proof is
omitted for brevity.

Theorem 1. Let ĝ ∈ RE be the estimated gradient field and
assume that 0 ∈ Ω, U eigenvectors of the Laplacian of the
square grid, and D the diagonal matrix of corresponding
eigenvalues. Then f̃ = UD†U>A>ĝ + y(0)√

N
.

The N = mn eigenvalues of the Laplacian of the square
grid graph (contained in the diagonal of D) and the corre-
sponding eigenvectors (collected as columns of U ) can be
evaluated analytically and it can be shown that the eigenvec-
tors of this matrix are exactly the DCT Type II basis vectors

(see [12]). Hence, the procedure to recover the image from
the estimated gradient field can be efficiently implemented
via the bidimensional DCT: given ĝ, first A>ĝ is resized to
match the size of the image; then the direct and inverse DCT
are performed as stated in the following theorem.

Theorem 2. Let ĝ ∈ RE be the estimated gradient field and
assume that 0 ∈ Ω, Λ the eigenvalues of the Laplacian of the
square grid. Then

f̃ = IDCT2

[
(Λ+)�DCT2

[
vec−1(A>ĝ)

]]
+
y(0)√
N

, (7)

where Λs,` = 4 sin2
(
πs
2m

)
+ 4 sin2

(
πl
2n

)
, with s ∈ [m] and

` ∈ [n] and � denoted the elementwise product.

4. NUMERICAL RESULTS

In this section we test the following algorithms: (a) `1-
CCGE–LS (i.e., the algorithm recovering the gradient of the
image as in Section 3.2.2 (with three iterations) and recon-
structing the image using (7)); (b) CoSaMP-CCGE–LS (i.e.,
the algorithm recovering the gradient of the image solving
(4) using CoSaMP and reconstructing the image using (7));
(c) GradientRec–Diff [6], which first separately estimates the
gradient on rows and the gradient on columns using (2) , then
reconstructs the image from its gradient using an integration
method based on diffusion tensors [13]; (d) RecPF [5] for TV
minimization. We report, as benchmark, the reconstruction
results of an Oracle device, which solves (5) in a single step
using w(vec(∇F )i) = exp(− vec(∇F )2i

2θ2 ). In this sense, the
performance of the Oracle provides the best performance
achievable by `1-CCGE–LS.

We use as test image the 64× 64 Shepp–Logan phantom,
for different values of the compression ratio L = M/N ∈
[0.01, 0.4]. Three different undersampling patterns are used,
namely, a radial sampling pattern, a uniformly-distributed
sampling pattern and a variable-density sampling pattern (see
[3, 14]). The performance of the algorithms have been evalu-
ated in term of relative error Err := ‖f − f̃‖2/‖f‖2 , where
f̃ is the estimated image and f is the true image.

For the algorithms requiring the `1 norm minimiza-
tion, i.e., the proposed `1-CCGE–LS and GradientRec–Diff,
SPGL1 [15, 16] is used to solve the Basis Pursuit problem.
Finally, it has to be remarked that a failure in the reconstruc-
tion, i.e., a solver giving a Not-a-Number (NaN) as output,
is treated as the algorithm returned a totally black image (all
0s), corresponding to a relative error of 1.

In Figure 1 the radial sampling pattern is used to collect
measurements. It can be noticed that the proposed CCGE–LS
algorithms are the ones showing the best performance, with
almost perfect reconstruction for L ≥ 0.17. RecPF reaches
its optimum performance for L ≥ 0.2 while GradientRec–
Diff performs better than RecPF for L > 0.27, confirming the
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Fig. 1. Phantom 64 × 64: Relative reconstruction error vs.
Compression Ratio for radial sampling patterns.

behavior obtained in [6]. There is a performance gap between
the Oracle and the CCGE–LS.

Figure 2 visually shows the reconstruction error for L =
0.17. It can be noticed that the reconstruction obtained by
the proposed CCGE–LS algorithms are almost perfect, with
a relative error of 10−7. RecPF shows an acceptable recon-
struction quality (10−2), even if some edge-related artifacts
can be noticed. On the other hand, the reconstruction quality
of GradientRec–Diff is significantly worse for L = 0.17.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Reconstruction error of image of Phantom 64 × 64
image obtained via gradient-based recovery methods. (a) Ra-
dial sampling pattern with compression Ratio L = 0.17. (b)
GradientRec–Diff: Err = 3.02. (c) RecPF: Err = 3.75 ·10−2.
(d) `1-CCGE–LS: Err = 2.89 · 10−7. (e) Oracle: Err =
2.89 · 10−7. (f) CoSaMP-CCGE–LS: Err = 6.24 · 10−7.

For uniformly distributed sampling pattern the results are
shown in Figure 3. The results correspond to the average of
50 tests with different realizations of the sampling pattern.
Here, it can be noticed that the `1-CCGE–LS algorithm is
the one performing best, with almost-perfect reconstruction
for L ≥ 0.14 and reduced performance gap with respect to
the Oracle. The CoSaMP-CCGE–LS performs slightly worse,

with perfect reconstruction forL ≥ 0.19, while GradientRec–
Diff performs as in the radial sampling case, achieving its best
result for L ≥ 0.28. On the contrary, RecPF seems to suffer
the uniformly distributed sampling pattern and could not re-
construct the signal.
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Fig. 3. Phantom 64 × 64: Relative reconstruction error vs.
Compression Ratio. Random uniform sampling.
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Fig. 4. Phantom 64 × 64: Relative reconstruction error vs.
Compression Ratio. Variable density sampling.

Finally, we show in Figure 4 the results for the vari-
able density sampling pattern. The results correspond to the
average of 50 tests with different realizations of the sam-
pling pattern. Again, the proposed CCGE–LS algorithms
are the ones performing best, showing perfect reconstruction
for L ≥ 0.15, even if for L ≥ 0.29 GradientRec–Diff per-
forms slightly better than CoSaMP-CCGE–LS, while RecPF
reaches its best performance for L ≥ 0.17 even if with a
higher error floor.

5. CONCLUDING REMARKS
In this paper, we have proposed new gradient based image re-
covery algorithms which combine constrained CS algorithms
using curl information of gradient field with spectral graph fil-
tering. Through extensive simulation, we have shown that the
proposed algorithms outperform the state of the art also for
small sampling ratio. Moreover, they are the least sensitive to
the sampling pattern.
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