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ABSTRACT

We consider the problems of compressed sensing and opti-
mal denoising for signals x0 ∈ RN that are monotone, i.e.,
x0(i + 1) ≥ x0(i), and sparsely varying, i.e., x0(i + 1) >
x0(i) only for a small number k of indices i. We approach the
compressed sensing problem by minimizing the total varia-
tion norm restricted to the class of monotone signals subject to
equality constraints obtained from a number of measurements
Ax0. For random Gaussian sensing matrices A ∈ Rm×N
we derive a closed form expression for the number of mea-
surements m required for successful reconstruction with high
probability. We show that the probability undergoes a phase
transition as m varies, and depends not only on the number
of change points, but also on their location. For denoising we
regularize with the same norm and derive a formula for the
optimal regularizer weight that depends only mildly on x0.
We obtain our results using the statistical dimension tool.

Index Terms— Compressed sensing, optimal denoising,
phase transitions, statistical dimension

1. INTRODUCTION

We consider N -dimensional signals x0 that are sparse in a
certain basis. We are interested in the following problems

min
x
f(x), subject to Ax = Ax0, (CS)

and min
x

1

2
‖y − x‖2 + λf(x), (DN)

with y = x0 + ε and ε ∼ N (0, σ2IN ). Here f : RN 7→
R ∪ {∞} is a convex function that characterizes the struc-
ture of x0. For the compressed sensing problem (CS) we
are interested in deriving the minimum number of measure-
ments m such that the solution of (CS) coincides with x0

with high probability for standard normal i.i.d. sensing ma-
trices A ∈ Rm×N . For the denoising problem (DN) we are
interested in calculating the minimax risk, i.e., the optimal
value of (DN) minimized over λ for the worst case of noise
power σ2. The two quantities are closely related due to some
recent results reviewed briefly next.

∗Part of the work was performed while the author was with the Depart-
ment of Statistics, Columbia University, NewYork, NY 10027.

2. BASIC TOOLS

Definition 2.1 (Descent cones). The descent cone of a convex
function f : RN 7→ R at a point x ∈ RN is defined as the set
of all non-increasing directions, i.e.,

D(f,x) =
⋃
τ>0

{y ∈ RN : f(x+ τy) ≤ f(x)}.

Definition 2.2 (Statistical dimension [1]). The statistical di-
mension (SD) of a convex closed cone C ∈ RN is defined as

δ(C) = Eg∼N (0,IN )‖ΠC(g)‖2,

where g is a standard Gaussian vector, and ΠC is the projec-
tion onto C.

In a groundbreaking work, [1] shows that the SD of the de-
scent cone at the true point x0, coincides with the phase tran-
sition curve (PTC) of the CS problem.

Theorem 2.3 (Phase transitions [1]). For an i.i.d. standard
random Gaussian matrix A ∈ Rm×N the convex problem
(CS) succeeds with probability at least 1− exp(−t2/4) if

m ≥ δ(D(f,x0)) + t
√
N,

and fails with probability at least 1− exp(−t2/4) if

m ≤ δ(D(f,x0))− t
√
N.

Furthermore, [1] shows that the SD can also be expressed as
the expected distance from the subdifferential of f at x0:

δ(D(f,x0)) = Eg∼N (0,IN )[min
τ≥0

dist(g, τ∂f(x0))2] (1)

Theorem 2.4 (Minimax risk [2]). Let x∗(λ) the solution of
the denoising problem (DN) with regularizer weight λ and let

ηf (x0) = min
λ≥0

max
σ>0

E‖x∗(λ)− x0‖2

σ2
,

the minimax risk for x0 over all possible σ. Then:

ηf (x0) = min
τ≥0

Eg∼N (0,I)[dist(g, τ∂f(x0))2], (2)

where g is a standard normal vector. Moreover the risk is
maximized for σ → 0 and if τ∗ is the value that minimizes
(2), then λ∗ = τ∗σ is the optimal choice as σ → 0.

4740978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017



The similarity between (1) and (2) is striking and actually [1]
proves that the two quantities are indeed close:

δ(D(f,x0)) ≤ ηf (x0) ≤ δ(D(f,x0)) + 2

sup
w∈∂f(x0)

‖w‖

f(x0/‖x0‖)
.

3. PHASE TRANSITIONS FOR THE RECOVERY OF
SPARSELY VARYING MONOTONE SIGNALS

We consider signals x ∈ RN that are increasing, i.e., x(i +
1) ≥ x(i) and are sparsely varying, i.e, x(i + 1) > x(i) for
a number of k indexes. A convex function that promotes this
structure can be derived by restricting the total variation (TV)
norm to the space of monotone signals:

f(x) =

{
x(N)− x(1), x(i+ 1) ≥ x(i), i ∈ [N − 1]
∞, otherwise.

(3)
where [N ] = {1, 2, . . . , N}. Our results rely heavily on
the following calculation of the SDs of the cones induced by
monotone signals, proven in [1, App. C.4].

Fact 3.1. Let the cones

CN1 = {x ∈ RN : x(1) ≤ x(2) ≤ . . . ≤ x(N)}
CN2 = {x ∈ RN : 0 ≤ x(1) ≤ x(2) ≤ . . . ≤ x(N)}.

Then we have δ(CN1 ) = HN , and δ(CN2 ) = 1
2HN , where

HN =
∑N
i=1

1
i , denotes the N -th harmonic number.

3.1. Computation of the statistical dimension

According to Theorem 2.3 to compute the PTC for the CS
problem, we need to characterize D(f,x0).

Lemma 3.2. Let Ω = {i ∈ {2, . . . , N} : x0(i) > x0(i−1)}
and define i1 < i2 < . . . < ik the elements of Ω in increasing
order. The descent cone of the norm f of (3) at x0 is given by

D(f,x0) =
{
y ∈ RN :

y(i1) ≤ y(i1 + 1) ≤ . . . ≤ y(i2 − 1)
...

y(ik−1) ≤ y(ik−1 + 1) ≤ . . . ≤ y(ik − 1)
y(ik) ≤ . . . ≤ y(N) ≤ y(1) ≤ . . . ≤ y(i1 − 1)

 .
(4)

Proof. From Definition 2.1, y ∈ D(f,x0) if there exists τ >
0, such that x0 + τy is monotone, and f(x0 + τy) ≤ f(x0):

x0(N) + τy(N)− x0(1)− τy(1) ≤ x0(N)− x0(1)⇒
y(N) ≤ y(1).

For the monotonicity of x0 + τy, we consider two cases: If
i 6∈ Ω, then x0(i) = x0(i− 1), and

x0(i) + τy(i) ≥ x0(i− 1) + τy(i− 1)⇒ y(i) ≥ y(i− 1).

If i ∈ Ω, then x0(i) > x0(i − 1) and y(i) can be chosen
arbitrarily since there is always a small enough τ that will
preserve monotonicity. Combining everything we get (4).

Lemma 3.2 states that the descent cone D(f,x0) can be ex-
pressed as the product of k disjoint convex cones of mono-
tonically increasing signals. Using Fact 3.1, we derive the
following simple formula for δ(D(f,x0)) as the sum of the
SDs of the simpler disjoint cones.

Theorem 3.3. Let Ω = {i ∈ {2, . . . , N} : x0(i) > x0(i −
1)} and define i1 < i2 < . . . < ik the elements of Ω in
increasing order. The SD of the descent cone at x0 equals

δ(D(f,x0)) =

k∑
j=2

Hij−ij−1 +HN+i1−ik . (5)

3.2. Dependence on the change points location

The closed form of the SD allows for a characterization of the
worst case analysis for a given number of variations k. These
locations have to occur periodically every N/k steps, with
i1 ≈ N/2k. If rN,k = mod(N, k), then the SD becomes
(k − rN,k)H[N/k] + rN,kH[N/k]+1., where [·] here denotes
the integer part. For moderately large N/k this converges to
kHN/k → k(log(N/k) + γ), where γ ≈ 0.577 is the Euler-
Mascheroni constant.

Similarly, the best case occurs when all change points oc-
cur consecutively. In this case the SD becomes (k − 1) +
HN+1−k. What is perhaps of most interest is the average SD
under certain distribution assumptions of the k change points.
We can asymptotically compute this in the case where these
k points are distributed uniformly at random.

Theorem 3.4. Assume that the k change points are chosen
uniformly at random and let N, k → ∞ with k/N = ε, 0 <
ε < 1. Define δU (ε) the normalized (divided by the ambient
dimension) SD averaged over all possible choices of k = εN
“jump” points. Then we have

δU (ε) =
ε log(1/ε)

1− ε
. (6)

Proof. Let i1 < i2 < . . . < ik the change points selected
uniformly randomly and define the sequence of lengths lj =
ij+1 − ij for j ∈ [k − 1] and lk = N − ik + i1. When
N, k →∞ the distribution of each lj converges to a geomet-
ric distribution with parameter ε = k/N . Then we have

δU (ε) = lim
N→∞

1

N
E

 k∑
j=1

Hlj

 = εE
[
Hlj

]
= ε2

∞∑
n=1

Hn(1− ε)n−1 =
ε2

1− ε

∞∑
n=1

1

n

∞∑
m=n

(1− ε)m

=
ε2

1− ε

∞∑
n=1

1

n

(1− ε)n

ε
=
ε log(1/ε)

1− ε
.

4741



0 0.2 0.4 0.6 0.8 1

Level of sparsity: k/N

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a
li
z
e
d

 s
ta

ti
s
ti

c
a
l 
d

im
e
n

s
io

n
: 
δ
/N

best
average
worst

45
o
 line

Fig. 1. Behavior of the SD as a function of the degree sparsity
and location of change points. The best (blue, dash-dot), aver-
age (red, solid), and worst (yellow, dashed) cases are shown.
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Fig. 2. Comparison of the SD for monotone sparsely varying
signals and sparse non-negative signals. The SD for recon-
structing sparse non-negative signals (red, solid) as computed
in [3] compared to the asymptotic average limit of (6) (blue,
dashed). Somewhat surprisingly, the two curves almost coin-
cide with the positive l1 norm PTC being always larger than
the PTC of for the monotone signals for the same number of
variations. The difference is plot in the right panel.

Fig. 1 shows the three different cases for the SD, and illus-
trates its dependence on the location of the jump points.

In Fig. 2 we plot the SD as computed in (6) (blue),
compared to the PTC for the reconstruction of sparse non-
negative signals (red) as this is computed in [3], using the
l1 norm restricted to non-negative signals as the structure
inducing function f and solving (CS). The two curves are
very near, although the PTC curve for sparse non-negative
signals is slightly larger. The difference between the two
different curves (Fig. 2 right) attains a maximum of≈ 0.0096
for k/N ≈ 0.0731. We examined this difference in practice:
For the sparse non-negative signal we considered signals
x0 ∈ RN , N = 1000, with k = 73 non-zero entries. Then
random Gaussian matrices A ∈ Rm×N were constructed,
with m = 201, . . . , 220, and we tried to reconstruct x0 from
the samples Ax0 by solving (CS). We solved the same prob-
lem also for the case of sparsely varying increasing signals,
where now k = 73, refers to the number of change points,
chosen uniformly at random. For each m we performed 300

iterations, and the reconstruction x̂ was deemed successful
if ‖x̂ − x0‖/‖x0‖ ≤ 10−4. The results show that the prob-
ability of accurate reconstruction crosses 50% within one
measurement from the point predicted by the theoretical cal-
culation of the SD, and that the difference of measurements
required for 50% reconstruction probability is around 10
measurements, as predicted by the difference of the two SDs
(data not shown due to space constraints). These simulation
results validate the theoretical analysis.

3.3. The case of non-negative monotone signals

We also consider the case of increasing and sparsely varying
signals x ∈ RN , that are also non-negative, which we denote
without loss of generality as x(0) = 0, and consider the first
entry as a change point if x(1) > 0. In this case we consider
the following convex regularizer f(x) = x(N) for monoton-
ically increasing signals and f(x) = ∞ otherwise. Using a
similar procedure we can derive the descent cone D(f,x0)
and from Fact 3.1 get a similar formula for the SD:

Theorem 3.5. Let Ω = {i ∈ [N ] : x0(i) > x0(i − 1)} and
define i1 < i2 < . . . < ik the elements of Ω in increasing
order. Then the SD of the descent cone at x0 is given by

δ(D(f,x0)) =
1

2
Hi1−1 +

1

2
HN+1−ik +

k∑
j=2

Hij−ij−1
.

4. OPTIMAL DENOISING

For the case of monotone, sparsely varying, non-negative sig-
nals it is also possible to compute the minimax denoising risk,
by using Theorem 2.4. To consider the risk of the denoising
problem (DN), we first derive the subdifferential of f . Let G
be the N × N matrix with [G]ij = 1{i=j} − 1{i=j+1} and
define the function h : RN 7→ R ∪ {∞}, with

h(z) =

{
1>z, z(i) ≥ 0, i ∈ [N ]
∞, otherwise.

Then f(x) = h(Gx) and ∂f(x) = G>∂h(Gx) and

∂f(x) = G>w, with
{
w(i) = 1, x(i) > x(i− 1)
w(i) ≤ 1, x(i) = x(i− 1)

.

Therefore the distance of any vector g ∈ RN from ∂f(x0)
can be computed by solving the following quadratic program

minimize
w,τ

‖g −G>w‖2,

subject to: τ ≥ 0, {w(j) = τ, j ∈ Ω}, {w(j) ≤ τ, j ∈ Ωc}.
(QP)

Lemma 4.1. Consider the quadratic program (QP) and let ik
denote the last element of Ω. Then the optimal τ∗ is given by

τ∗ = max

 max
j=ik,...,N


N∑
n=j

g(n)

 , 0

 . (7)
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Proof. We consider the Lagrangian function

L(w, τ,λ, λτ ) =
1

2
‖g−G>w‖2−λττ+λ>(w−τ1>N ). (8)

The dual variable constraints and the first order optimality
conditions of (QP) can be written as

GG>w −Gg + λ = 0, (9)
1>λ+ λτ = 0, (10)

λ(j) ≥ 0, w(j) ≤ τ, j 6∈ Ω (11)
λ(j)(w(j)− τ) = 0, j 6∈ Ω (12)

w(j) = τ, j ∈ Ω (13)
λτ ≥ 0, λττ = 0. (14)

From (9) w = (GG>)−1G︸ ︷︷ ︸
E

g − (GG>)−1︸ ︷︷ ︸
F

λ, (15)

where the matrices E,F can be computed explicitly: [E]ij =
1{j≥i} and [F ]ij = N −max{i, j}+ 1, and using (10) gives

w(j) =

N∑
i=j

g(i) + (N − j + 1)λτ +

N∑
i=j+1

(i− j)λ(i), (16)

for j ∈ [N ]. Now suppose let ik the last change point and
suppose that M = maxj=ik,...,N

{∑N
n=j g(n)

}
. Consider

first the case where M < 0 and suppose that τ > 0. In this
case from (14) we have λτ = 0. Plugging this into (16) for
j = N we get w(N) = g(N) < 0 ⇒ w(N) − τ < 0

(12)⇒
λ(N) = 0. Decreasing j and proceeding similarly we get
λ(N) = λ(N − 1) = . . . = λ(ik + 1) = 0. Now for j = ik
we getw(ik) =

∑N
j=ik

g(j) < 0, and (13) cannot be satisfied
for τ > 0. Therefore τ = 0.

Now assume that M > 0, and that this maximum occurs
at the location N − l. Then by plugging j = N − l into
(16) and the nonnegativity of the dual variables we have that
w(N−l) ≥M ⇒ τ ≥M ⇒ λτ = 0. We proceed as before:
For j = N (16) gives w(N) < M ≤ τ ⇒ λ(N) = 0. And
similarly λ(N) = λ(N − 1) = . . . = λ(N − l + 1) = 0.
Plugging this into (16) for j = N − l we getw(N − l) = M .
Since w(N − l) ≤ τ we get that τ = M .
Lemma 4.1 allows us to estimate the regularizer that mini-
mizes (2) by estimating τavg that arises in (1), and conse-
quently set the regularizer λ = τavgσ. In general τavg =
M(N−ik+1) whereM(n) is the expected value of the max-
imum of a standard Gaussian random walk of n steps, trun-
cated at 0. M(1) = 1/

√
2π, and M(2) = (1 +

√
2)/(2

√
π).

In general M(n) cannot be computed explicitly, but can be
easily upper bounded: Let Xi ∼ N (0, 1), Sk =

∑k
i=1Xi,

and En = max1≤k≤n Sk. Using the Lévy inequality

P (En ≥ x) ≤ 2P(Sn ≥ x)⇒

M(n) =

∫ ∞
0

P (En ≥ x) dx ≤
∫ ∞
0

erfc

(
x√
2n

)
dx =

√
2n

π
.
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Fig. 3. Empirical calculation of reconstruction probability
for sparsely varying signals. 50-dimensional piecewise con-
stant signals were constructed with variable number of change
points k and locations chosen uniformly at random. For each
signal a random Gaussian sensing matrix was constructed
with variable number of rows (measurements) m. Recon-
struction was attempted by minimizing the TV norm subject
to the measurements, and for each pair (k,m), 50 iterations
were performed. The probability of success (color coded in
the background) undergoes a phase transition. The empiri-
cal 50% success line (yellow) lies very close to the PTC for
sparse signals (magenta) as is theoretically computed in [3].

5. DISCUSSION

The (DN) problem for monotone signals was first discussed
in [4] in the context of monotone regression without regu-
larization. There an upper bound was derived and the rela-
tion of the minimax error with the PTC for the (CS) prob-
lem was established. For the CS problem [5] examined, in
the context of sparse deconvolution, the case of signals where
x(i+ 1)− γx(i) is sparse and non-negative, with 0 < γ < 1
and close to 1, and identified the best, average, and worst
cases depending on the location of the change points, without
deriving a closed form expression. To the best of our knowl-
edge, this paper presents for the first time an non-asymptotic
closed form expression that captures the dependence on both
the number and the location of the change points, and also
characterizes the optimal regularizer. Future work includes
the case of non-monotone sparsely varying signals, with the
TV norm acting as the structure inducing function. The strik-
ing resemblance between the average SD (6) and the PTC for
the case of non-negative sparse signals [3], motivates a com-
parison between the average SD for this case and the PTC for
recovering sparse signals using the l1 norm. While a closed
form solution for the SD is not available, some upper bounds
appear in [6], simulations suggest a close match (Fig. 3).
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