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ABSTRACT

Parameter estimation has applications in many fields of signal pro-
cessing, such as spectral analysis or direction-of-arrival estimation.
Subspace-based methods like root-MUSIC and ESPRIT provide
high parameter resolution at low computational complexity by
exploiting specific sampling structure, namely uniform linear sam-
pling and shift-invariant sampling, respectively. On the other hand,
compressed sensing has been shown to outperform subspace-based
methods in difficult scenarios such as low number of measurement
vectors, high noise power or correlated signals. While it is well
known that uniform sampling admits gridless compressed sensing
methods, e.g., based on atomic norm minimization, no such ap-
proaches are known for shift-invariant sampling. In this paper we
present a novel approach for gridless compressed sensing under
shift-invariant sampling. We show by numerical experiments that
the proposed method outperforms ESPRIT in difficult scenarios.

Index Terms— Joint Sparsity, Shift-Invariant Sampling, Grid-
less Parameter Estimation, Partly Calibrated Array

1. INTRODUCTION

A large number of samples with a large aperture are desirable in
many signal processing applications to increase the number of iden-
tifiable parameters and to achieve a high parameter resolution [1].
In direction-of-arrival (DOA) estimation, for example, a large num-
ber of sensors allows to identify a large number of source signals
and a large array aperture admits a high angular resolution. On the
other hand, large sampling apertures become more difficult to cal-
ibrate. To overcome the difficulty of calibrating the entire sensor
array the concept of partly calibrated arrays (PCAs) has been intro-
duced, where the entire array is partitioned into subarrays which are
easy to calibrate, while the overall array response may be unknown.

Various DOA estimation methods have been proposed for PCAs,
such as the subspace-based methods RARE [2, 3] or ESPRIT [4, 5].
The RARE method [2] is applicable to arbitrary array topologies but
requires an expensive spectrum search. For the special case of linear
subarrays with common baseline the root-RARE method [3] admits
search-free parameter estimation and provides improved estimation
performance. The case of PCAs with identical subarrays has been
considered, e.g., in [6, 7], and falls in the more general class of ar-
rays with shift-invariances which admits application of the subspace-
based ESPRIT method [4,5]. Similar to the root-RARE method, the
ESPRIT method provides search-free DOA estimates and, addition-
ally, easy implementation in a decentralized fashion, as suggested,
e.g., in [8, 9]. While subspace-based methods have been shown to
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perform asymptotically optimal, these methods suffer from severe
performance degradation in the case of difficult scenarios such as
high noise power, low number of measurement vectors or correlated
source signals.

In recent years, compressed sensing (CS) techniques [10–13]
have been shown to provide an attractive alternative to subspace-
based methods, since CS exhibits good estimation performance even
in difficult scenarios [14–16]. Similar to subspace-based methods,
CS methods offer the superresolution property [17] at tractable com-
putational performance. Most research on CS for DOA estimation
has focused on fully calibrated arrays, e.g., [14–16], and is based on
spectrum search. More recently it has been shown that special sam-
pling structure admits search-free CS methods, e.g., uniform sam-
pling [16, 18–21]. A grid-based CS method for PCAs of arbitrary
topology has been presented in [22]. However, gridless Cs methods
in the fashion of root-RARE or ESPRIT are not available for PCAs.

In this work we present a gridless CS method to provide search-
free parameter estimates under shift-invariant sampling, with appli-
cation to DOA estimation in PCAs. Our method is based on the
recently proposed SPARROW formulation for joint sparse recon-
struction from multiple measurement vectors (MMVs). We show by
numerical experiments that our proposed shift-invariant SPARROW
formulation outperforms the ESPRIT method in difficult scenarios.

2. SIGNAL MODEL

Consider a linear array of M = PM0 omnidirectional, identical
sensors partitioned into P identical subarrays of M0 sensors, as
displayed in Figure 1. We assume that the relative sensor posi-
tions within each subarray are perfectly known, such that the sub-
array responses are available in analytic form. The displacements
between the different subarrays are assumed to be unknown such
that the overall array response is generally unknown and the array
is referred to as a partly calibrated array (PCA). It is well known
that PCAs composed of identical and identically oriented subarrays
exhibit multiple shift-invariances that can be exploited for param-
eter estimation [4–9]. For illustration of different kinds of shift-
invariances consider the array topology given in Figure 1 and the
corresponding shift-invariant sensor groups given in Figure 2. Let
rp,m ∈ R denote the global position of the mth sensor in the pth
subarray in half signal wavelength, for p = 1, . . . , P and m =
1, . . . ,M0, then the shift-invariance property is expressed as

rp,m = r1,m + ∆(1)
p , p = 2, . . . , P, m = 1, . . . ,M0 (1a)

rp,m = rp,1 + ∆(2)
m , p = 1, . . . , P, m = 2, . . . ,M0, (1b)

where the shifts ∆
(1)
p , p = 2, . . . , P denote the unknown inter-

subarray displacements while the shifts ∆
(2)
m , m = 2, . . . ,M0 de-

note the perfectly known relative sensor positions within the subar-
rays. We remark that other array topologies might exhibit additional
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Fig. 1. Example of a linear PCA composed of P = 4 identical
subarrays with M0 = 3 sensors per subarray, and L = 2 sources

shift-invariances that can be exploited, such as shift-invariances with
overlapping groups or centro-symmetry. For ease of presentation we
limit our discussion to the example in Figure 2.

Furthermore, considerL narrowband far-field sources in station-
ary angular directions θ1, . . . , θL, relative to the array axis, and de-
fine the spatial frequencies

µl = cos θl ∈ [−1, 1) (2)

for l = 1, . . . , L, summarized in µ = [µ1, . . . , µL].
The array output for N time instants is stored in the measure-

ment matrix Y ∈ CM×N , where [Y ]m,n is the output at sensor m
and time instant n. The measurement matrix is modeled as

Y = A(µ)Ψ +W , (3)

where Ψ ∈ CL×N denotes the source signal matrix, with [Ψ ]l,n de-
noting the signal transmitted by source l at time instant n. The ma-
trixW ∈ CM×N represents independent and identically distributed
circular and spatio-temporal white Gaussian noise with covariance
matrix E{WW H}/N = σ2IM , where IM denotes the M × M
identity matrix and σ2 the noise power. The M × L array steering
matrix

A(µ) = [a(µ1), . . . ,a(µL)], (4)

is composed of the normalized array steering vectors

a(µ)=
1√
M

[
ejπµr1,1, . . . , ejπµr1,M0, ejπµr2,1, . . . , ejπµrP,M0

]T
,

(5)

i.e., the steering vector contains the sensor responses arranged by
subarray and sensor index according to r1,1, . . ., r1,M0 , r2,1, . . .,
r2,M0 , r3,1, . . ., rP,M0 .

Let J (1)
m and J (2)

p , for m = 1, . . . ,M0 and p = 1, . . . , P ,
denote a set of selection matrices to assign the sensors to the various
shift-invariant groups, i.e.,

J (1)
p = eP,p ⊗ IM0 (6a)

J (2)
m = IP ⊗ eM0,m (6b)

where eP,p = [0, . . . , 0, 1, 0, . . . , 0]T denotes the P -dimensional
basis vector with a single one in the pth element and zero entries
elsewhere, and with⊗ denoting the Kronecker product. By the shift-
invariance property (1) the steering vector fulfills the identities

J (1)T
p a(µ) = ejπµ∆

(1)
p J

(1)T
1 a(µ) (7a)

J (2)T
m a(µ) = ejπµ∆

(2)
m J

(2)T
1 a(µ) (7b)
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Fig. 2. Example of groups which are identical under linear shifts

and correspondingly the steering matrix fulfills

J (1)T
p A(µ) = J

(1)T
1 A(µ) Φ∆

(1)
p (µ) (8a)

J (2)T
m A(µ) = J

(2)T
1 A(µ) Φ∆

(2)
m (µ) (8b)

where the L× L unitary diagonal matrix

Φ(µ) = diag(ejπµ1 , . . . , ejπµL) (9)

contains the phase shifts for frequencies µ on its main diagonal.

3. JOINT SPARSE COMPRESSED SENSING AND
EQUIVALENT SPARROW FORMULATION

Before devising an algorithm that exploits the shift-invariance prop-
erty for compressed sensing in partly calibrated arrays, in this section
we revise the standard approach of grid-based compressed sensing
for fully calibrated arrays.

Based on the signal model in (3) we introduce a sparse represen-
tation A(µ)Ψ = A(ν)X . In the sparse representation A(ν) is an
M × K overcomplete dictionary matrix obtained by sampling the
field-of-view in K � L spatial frequencies ν = [ν1, . . . , νK ]T.
The matrix X = [x1, . . . ,xK ]T ∈ CK×N is a sparse representa-
tion of the signal waveform matrix Ψ , which has non-zero rows
xk only if the corresponding sampled spatial frequencies νk are
contained in the spatial frequencies in µ. Using the sparse rep-
resentation A(ν)X , the DOA estimation problem can be formu-
lated as the well-known convex mixed-norm minimization problem
[15, 16, 23, 24]

min
X

1

2
‖A(ν) X − Y ‖2F + λ

√
N‖X‖2,1, (10)

where λ > 0 is the regularization parameter determining the spar-
sity, i.e., the number of non-zero rows in the minimizer X̂ , and

‖X‖2,1 =

K∑
k=1

‖xk‖2 (11)

denotes the `2,1 mixed-norm. The mixed-norm term (11) induces a
coupling among the elements in each row xk, k = 1, . . . ,K, of the
matrixX such that the `1 norm, i.e., the nonnegative summation, is
performed on the `2 norms of the rows inX .

Given a minimizer X̂ = [x̂1, . . . , x̂K ]T the DOA estimation
problem reduces to the identification of the union support set, i.e.,
the indices of the non-zero rows, and assigning the corresponding
frequency grid points to the set {µ̂} of estimated spatial frequencies

{µ̂} =
{
νk
∣∣ ∥∥x̂k∥∥2

6= 0; k = 1, . . . ,K
}
. (12)
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As stated by Theorem 1 of [16], the `2,1 mixed-norm minimiza-
tion problem (10) can equivalently be formulated as the SPARse
ROW-norm reconstruction (SPARROW) problem

min
S∈D+

Tr
((
A(ν)SAH(ν) + λIM

)−1
R̂
)

+ Tr
(
S
)
, (13)

with R̂ = Y Y H/N denoting the sample covariance matrix and D+

describing the set of nonnegative diagonal matrices. The equivalence
holds in the sense that minimizers X̂ and Ŝ for problems (10) and
(13), respectively, are related by

X̂ =Ŝ AH(ν)
(
A(ν) Ŝ AH(ν) + λIM

)−1
Y . (14)

In addition to (14), it holds that

ŝk =
1√
N
‖x̂k‖2, (15)

for k = 1, . . . ,K, i.e., the matrix Ŝ = diag(ŝ1, . . . , ŝK) contains
the row-norms of the row sparse signal matrix X̂ = [x̂1, . . . , x̂K ]T

on its main diagonal such that the union support of X̂ is equiva-
lently represented by the support of the sparse vector of row-norms
[ŝ1, . . . , ŝK ]. By the assumption of unit norm steering vectors as
defined in (5), it holds that

Tr(S) = Tr
(
A(ν)SAH(ν)

)
, (16)

such that we can further reformulate the SPARROW problem (13) as

min
S∈D+

Tr
(
(Q+ λIM )−1R̂

)
+ Tr(Q) (17a)

s.t. Q = A(ν)SAH(ν). (17b)

In the reformulation (17) the objective function (17a) only depends
on the matrix variable Q with the dictionary-specific structure de-
fined in the constraint (17b). An additional low rank structure in the
minimizer Q̂ is encouraged by the trace-term Tr(Q) in (17a), since
forQ � 0 it is equivalent to the nuclear norm ofQ [25].

4. EXPLOITING THE SHIFT-INVARIANT STRUCTURE

Let us investigate the constraint (17b) in more detail. The shift-
invariance of the steering matrix A(µ) as expressed in (8a) directly
applies also to the dictionary matrix A(ν), such that we have the
following identity

J (1)T
p QJ (1)

p = J (1)T
p A(ν)SAH(ν)J (1)

p

= J
(1)T
1 A(ν) Φ∆

(1)
p H(ν)SΦ∆

(1)
p (ν)AH(ν)J

(1)
1

= J
(1)T
1 A(ν)SAH(ν)J

(1)
1

= J
(1)T
1 QJ

(1)
1 , (18)

for p = 2, . . . , P , where the unitary diagonal matrix Φ(ν) is defined

in correspondence to (9), such that Φ∆
(1)
p H(ν)SΦ∆

(1)
p (ν) = S.

From (18) it can be observed that for any two shift-invariant sen-
sor groups the corresponding submatrices in Q are identical. The
same observation holds true for the other groups of shift-invariances
expressed in (8b), i.e.,

J (2)T
m QJ (2)

m = J
(2)T
1 QJ

(2)
1 , (19)

form = 2, . . . ,M0. As mentioned in Section 2, other types of struc-
ture, such as overlapping shift-invariant groups or centro-symmetry,

may be available in the array topology, which yield identical subma-
trices inQ in a similar way as (18) and (19).

We return to the SPARROW formulation (17) and replace the
grid-based constraintQ = A(ν)SAH(ν) in (17b) by the structural
constraints in (18) and (19), to formulate the gridless SPARROW
problem

min
Q�0

Tr
(
(Q+ λIM )−1R̂

)
+ Tr(Q) (20a)

s.t. J (1)T
p QJ (1)

p = J
(1)T
1 QJ

(1)
1 , p = 2, . . . , P (20b)

J (2)T
m QJ (2)

m = J
(2)T
1 QJ

(2)
1 , m = 2, . . . ,M0. (20c)

The program in (20) does not require knowledge of the overall array
response in form of the dictionary matrix A(ν). In fact it does not
even require knowledge of the shifts ∆

(1)
p , p = 2, . . . , P , and ∆

(2)
m ,

m = 2, . . . ,M0. The only information which is exploited is the
precise mutual shift-invariance that applies to each group. By using
semidefinite programmning the problem in (20) can be implemented
as [16]

min
Q,U�0

Tr
(
UR̂

)
+ Tr(Q) (21a)

s.t.

[
UN IM
IM Q+ λIM

]
� 0 (21b)

J (1)T
p QJ (1)

p = J
(1)T
1 QJ

(1)
1 , p = 2, . . . , P (21c)

J (2)T
m QJ (2)

m = J
(2)T
1 QJ

(2)
1 , m = 2, . . . ,M0. (21d)

Given a minimizer Q̂ to problem (20) the underlying spatial fre-
quencies can be recovered using different approaches, depending on
the amount of shift-invariances and the exact knowledge that is avail-
able on the shifts ∆

(1)
p , p = 2, . . . , P , and ∆

(2)
m , m = 2, . . . ,M0.

Assuming only a single shift structure, e.g. ∆
(2)
2 in the case of a PCA

composed of 2-element subarrays, the ESPRIT method [4] or the
matrix pencil method [26,27] can be applied to the matrix Q̂ to esti-
mate the spatial frequencies µ̂ in a search-free fashion. If knowledge
of multiple shifts ∆

(1)
p , p = 2, . . . , P , and ∆

(2)
m , m = 2, . . . ,M0

is available, more sophisticated methods such as Multiple Invariance
ESPRIT [5] can be applied on Q̂ to obtain improved frequency esti-
mates µ̂.

5. REGULARIZATION PARAMETER SELECTION

To achieve good estimation performance in practical applications the
SPARROW formulation requires an appropriate choice of the regu-
larization parameter λ. While approximations for the regularization
parameter have been derived, e.g., for uniform sampling with single
measurement vectors [20], we follow a different approach and con-
sider for the computation of the regularization parameter the asymp-
totic case of an infinite number of sensors M → ∞ such that the
dictionary matrix A(ν) = [a(ν1), . . . ,a(νK)] in (13) becomes
unitary, i.e. AH(ν)A(ν) = IK . In this case we can rewrite the
Lagrangian function of the SPARROW problem (13) in a decoupled
fashion as

f(s1, . . . , sk) =
∑
k

aH(νk)R̂a(νk)

sk + λ
+ (1− γk)sk (22)

where γ1, . . . , γK ≥ 0 are the Lagrangian multipliers accounting
for the nonnegativity constraint s1, . . . , sK ≥ 0. The minimum of
f(s1, . . . , sk) is attained for

aH(νk)R̂ a(νk) = (1− γk)(sk + λ)2. (23)

4737



Consider the case that no signal is present, i.e., the sample covariance
matrix only accounts for the noise according to R̂ = WW H/N .
Ideally, in this scenario the signal row-norms are estimated as sk =
0, for k = 1, . . . ,K, which requires that (23) is fulfilled in the form

‖W Ha(νk)‖22/N = λ2(1− γk) ≤ λ2, (24)

where the inequality stems from the nonnegativity of the Lagrange
multipliers γk ≥ 0, for k = 1, . . . ,K. From (24) it can be observed
that λmust provide an upper bound on the spectral noise distribution
according to,

max
k
‖W Ha(νk)‖2/

√
N ≤ λ. (25)

In terms of statistical expectation we can compute an upper bound
for the left-hand side of (25) as

E
{

max
k

‖W Ha(νk)‖2√
N

}
≤ E

{
max
k

‖W ‖2‖a(νk)‖2√
N

}
= max

k

‖a(νk)‖2√
N

E {‖W ‖2}

≤ σ 1√
N

(
√
M +

√
N) (26)

where ‖a(νk)‖2 = 1, for k = 1, . . . ,K, and the expectation of
the spectral norm ‖W ‖2 of the M × N complex Gaussian noise
matrix W is upper bounded as E{‖W ‖2} ≤ σ(

√
M +

√
N) for

sufficiently large M,N [28, Theorem 5.32], [29]. Using (25) and
(26) we compute the regularization parameter as

λ = σ
(√

M/N + 1
)
. (27)

Even though the regularization parameter in (27) has been derived
for the case of large number of sensorsM and MMVsN , it provides
satisfactory performance in the case of small numbers M and N .

6. SIMULATION RESULTS

For performance evaluation of our proposed SI-SPARROW method
we compare to the conventional ESPRIT method [4] and the Cramer-
Rao bound (CRB) for partly calibrated arrays [3]. Our simulation
scenario includes a linear array consisting of P = 4 subarrays
of M0 = 2 sensors, respectively, at positions (0, 1), (7.3, 8.3),
(18.7, 19.7) and (35.4, 36.4), where each pair (rp,1, rp,2) denotes
the sensor positions of one calibrated subarray such that only the
intra-subarray shift ∆

(2)
2 = 1 is known for frequency recovery. In

our proposed SI-SPARROW method, frequency recovery is per-
formed by application of the ESPRIT method on the reconstructed
matrix Q̂, in contrast to the conventional approach [4] where the
ESPRIT method is performed on the sample covariance matrix R̂.
For all experiments we consider L = 2 complex Gaussian source
signals which are correlated by a factor ρ, with spatial frequencies
µ = [0.4, 0.5]T, and perform a number of 500 Monte Carlo runs
to compute the root-mean-square error (RMSE) of the estimated
spatial frequencies RMSE(µ̂).

In the first scenario we fix the correlation coefficient as ρ =
0.99 · ejπ/3 and the number of MMVs asN = 10, while varying the
signal-to-noise ratio (SNR) defined as SNR = 1/σ2. Figure 3 de-
picts the RMSE as a function of the SNR. As can well be seen from
Figure 3, the SI-SPARROW is superior to the conventional ESPRIT
at low to medium SNR, since in this SNR regime the conventional
ESPRIT can not always resolve the closely spaced signals.

0 10 20 30 40
10−3

10−2

10−1

100

SNR in dB

R
M

SE
(µ̂

)

SI-SPARROW (20)
Conv. ESPRIT [4]
CRB [3]

Fig. 3. RMSE for L = 2 source signals with correlation coefficient
|ρ| = 0.99, spatial frequencies µ = [0.4, 0.5]T, and N = 5 MMVs

100 101 102 103
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100

Number of MMVs N

R
M

SE
(µ̂
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SI-SPARROW (20)
Conv. ESPRIT [4]
CRB [3]

Fig. 4. RMSE for L = 2 source signals with correlation coefficient
|ρ| = 0.9, spatial frequencies µ = [0.4, 0.5]T, and SNR = 10 dB

For the second scenario we reduce the correlation coefficient to
ρ = 0.9 · ejπ/3 and fix the SNR as SNR = 10 dB, while vary-
ing the number of MMVs N . As before, in Figure 4 one can see
that SI-SPARROW clearly outperforms the conventional ESPRIT for
low number of MMVs N . We remark that for coherent signals, i.e.,
|ρ| = 1, the conventional ESPRIT fails, since the signal- and noise
subspaces of the sample covariance matrix R̂ can not be properly
separated, while SI-SPARROW still shows satisfactory results.

7. CONCLUSION

In this paper we have extended the SPARROW approach for joint
sparse signal reconstruction, as introduced in [16], to shift-invariant
sampling, with application to direction-of-arrival estimation in partly
calibrated arrays. The proposed shift-invariant SPARROW (SI-
SPARROW) admits gridless estimation of the underlying frequen-
cies and thus avoids a computationally expensive spectrum-search.
To the best of our knowledge SI-SPARROW is the first method for
gridless compressed from non-uniform sampling structures with the
shift-invariance property. Additionally, the proposed SI-SPARROW
method only requires knowledge of the subarray responses which
facilitates application in large sampling scenarios where, otherwise,
perfect calibration would be required. We show by simulations
that our proposed SI-SPARROW method outperforms the compet-
ing conventional ESPRIT algorithm in difficult scenarios, e.g. high
noise power, low number of measurement vectors or correlated
source signals.
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