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ABSTRACT

We present an equivalent, compact reformulation of the `2,1 mixed-
norm minimization problem for joint sparse signal reconstruction
from multiple measurement vectors (MMVs). The reformulation
builds upon a compact parameterization, which models the row-
norms of the sparse signal representation as parameters of interest,
resulting in a significant reduction of the MMV problem size. Given
the sparse vector of row-norms, the joint sparse signal can be com-
puted from the MMVs in closed form. For the special case of uni-
form linear sampling, we present an extension of the compact for-
mulation for gridless parameter estimation by means of semidefinite
programming. Furthermore, we derive in this case from our compact
problem formulation the exact equivalence between the `2,1 mixed-
norm minimization and the atomic-norm minimization.

Index Terms— Multiple Measurement Vectors, Joint Sparsity,
Mixed-Norm Minimization, Gridless Parameter Estimation

1. INTRODUCTION

Sparse Signal Reconstruction (SSR) techniques have attracted con-
siderable research interest over the last decades [1–4] and have been
applied to various fields of signal processing, such as spectral analy-
sis, Direction-Of-Arrival (DOA) estimation, image processing, geo-
physics, tomography, or machine learning.

Given a Single Measurement Vector (SMV), SSR considers the
problem of reconstructing a sparse signal vector from an underde-
termined linear system. Ideally, this problem is addressed using an
`0 minimization approach, which, however, is an NP-hard problem.
For this reason, several techniques have been proposed to approx-
imately solve the SSR problem. Most prominent techniques are
based on convex relaxation in terms of `1 norm minimization [1–4]
or greedy methods, such as OMP [5, 6], where the latter category
usually has lower computational complexity at the cost of reduced
recovery guarantees. In [7–10] the SSR problem has been extended
to an infinite-dimensional vector space by means of total variation
norm and atomic norm minimization, leading to gridless parameter
estimation methods.

Besides the SMV scenario, many practical applications deal
with the problem of reconstructing a joint sparse signal representa-
tion from Multiple Measurement Vectors (MMVs). Similar to the
SMV case, techniques for the MMV-based SSR problem include
convex relaxation by means of mixed-norm minimization [11–15],
and greedy methods [16, 17]. Recovery guarantees for the MMV
case have been established in [18–20]. An extension to the infinite-
dimensional vector space for MMV-based SSR, using atomic norm
minimization, has been proposed in [21–23]. In contrast to the
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aforementioned sparsity enforcing methods, the SPICE method for
joint sparse reconstruction from MMVs, as proposed in [24, 25],
is based on weighted covariance matching and constitutes a sparse
estimation problem which does not require the application of a spar-
sity prior. Links between SPICE and SSR formulations have been
established in [23–27], which show that SPICE can be reformulated
as an `2,1 mixed-norm minimization problem.

In this paper we consider joint sparse signal reconstruction from
MMVs by means of the classical `2,1 mixed-norm minimization
problem, with application to DOA estimation. A general shortcom-
ing of the classical `2,1 formulation is that its problem size grows
with the number of measurements and the resolution requirement,
respectively, and various heuristic approaches to deal with these dif-
ficulties have been proposed, e.g., in [15]. Here, we derive an equiv-
alent reformulation of the `2,1 mixed-norm minimization problem
based on a compact parameterization in which the optimization pa-
rameters represent the row-norms of the signal representation, rather
than the signal matrix itself which generally contains significantly
more parameters. We refer to this formulation as the SPARse ROW-
norm reconstruction (SPARROW) problem. Given the sparse signal
row-norms, the joint sparse signal matrix is reconstructed from the
MMVs in closed-form. We point out that support recovery is deter-
mined by the sparse vector of row-norms and only relies on the sam-
ple covariance matrix instead of the MMVs themselves. In this sense
we achieve a concentration of the optimization variables as well as
the measurements, leading to a significantly reduced problem size in
the case of a large number of MMVs.

We present an implementation of the SPARROW formulation
based on semidefinite programming (SDP) and provide an extension
of the SDP implementation for gridless parameter estimation. Fur-
thermore, we compare our new problem formulation to atomic norm
minimization and establish from our gridless, compact reformulation
the exact equivalence between the classical `2,1 mixed-norm mini-
mization problem [11–15] and the recently proposed atomic norm
minimization formulation for MMV scenarios [21–23]. In an ex-
tended version of this paper [28] we provide additional proofs, a
low-complexity implementation of the SPARROW formulation by
means of the coordinate descent method, a comparison to the SPICE
method as well extensive simulation results.

2. SIGNAL MODEL

Consider a linear array of M omnidirectional sensors, as depicted in
Figure 1. Further, assume a set of L narrowband far-field sources in
angular directions θ1, . . . , θL, relative to the array axis. The spatial
frequencies are defined as

µl = cos θl ∈ [−1, 1), (1)
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Fig. 1. Exemplary setup for a linear array of M = 6 sensors and
L = 3 source signals

for l = 1, . . . , L, and comprise the vector µ = [µ1, . . . , µL]T. The
array output provides measurement vectors which are recorded over
N time instants where we assume that the sources transmit time-
varying signals while the frequencies in µ remain constant within
the entire observation time. The measurement vectors are collected
in the multiple measurement vector (MMV) matrix Y ∈ CM×N ,
where [Y ]m,n denotes the output at sensor m in time instant n. The
MMV matrix is modeled as

Y = A(µ)Ψ +N , (2)

whereΨ ∈ CL×N is the source signal waveform matrix, with [Ψ ]l,n
denoting the signal transmitted by source l in time instant n, and
N ∈ CM×N represents circular and spatio-temporal white Gaussian
sensor noise with covariance matrix E{NNH}/N = σ2IM , where
IM and σ2 denote the M ×M identity matrix and the noise power,
respectively. The M × L array steering matrixA(µ) in (2) is given
by

A(µ) = [a(µ1), . . . ,a(µL)], (3)

where
a(µ) = [1, e−jπµρ2 , . . . , e−jπµρM ]T (4)

is the array manifold vector with ρm ∈ R, for m = 1, . . . ,M ,
denoting the position of the mth sensor in half signal wavelength,
relative to the first sensor in the array, hence ρ1 = 0.

3. JOINT SPARSE SIGNAL RECONSTRUCTION AND
EQUIVALENT SPARROW FORMULATION

Based on the signal model in (2) we introduce a sparse representa-
tion A(µ)Ψ = A(ν)X as illustrated in Figure 2. In the sparse
representation A(ν) is an M × K overcomplete dictionary matrix
obtained by sampling the field-of-view in K � L spatial frequen-
cies ν = [ν1, . . . , νK ]T, defined in correspondence with (3). For
ease of presentation we will use the short-hand notation A = A(ν)
in the remainder of the paper to refer to the dicitionary matrix. The
matrix X = [x1, . . . ,xK ]T ∈ CK×N is a sparse representation of
the signal waveform matrix Ψ , which has non-zero rows xk only if
the corresponding sampled spatial frequency νk is contained in the
spatial frequencies in µ.

Using the sparse representationAX , the DOA estimation prob-
lem can be formulated as the well-known convex optimization prob-
lem [11–15]

min
X

1

2
‖AX − Y ‖2F + λ‖X‖p,1 (5)

where λ > 0 is the regularization parameter determining the spar-
sity, i.e., the number of non-zero rows inX ∈ CK×N , and

‖X‖p,1 =

K∑
k=1

‖xk‖p (6)

= ×

Y =A(µ) Ψ

⇒ = ×

Y = A(ν) X

Fig. 2. Signal model and sparse representation (neglecting additive
noise and basis mismatch)

denotes the `p,1 mixed-norm, where p = 2 and p = ∞ are the
most prominent choices. The mixed-norm formulation (6) induces a
coupling among the elements in each row xk, k = 1, . . . ,K, of the
matrix X such that the `1-norm, i.e., the summation, is performed
on the `2-norms of the rows inX .

Given a minimizer X̂ = [x̂1, . . . , x̂K ]T the DOA estimation
problem reduces to the identification of the union support set, i.e.,
the indices of the non-zero rows, and assigning the corresponding
frequency grid points to the set {µ̂} of estimated spatial frequencies

{µ̂} =
{
νk
∣∣ ∥∥x̂k∥∥2 6= 0; k = 1, . . . ,K

}
. (7)

In practice, the strong sparsity assumption in (7) is relaxed and the
DOA estimates are approximated by the positions of the local max-
ima of the row-norms in X̂ .

As discussed above, the MMV-based `2,1 mixed-norm mini-
mization problem is one of the most prominent approaches for joint
sparse recovery and can be considered as a generalization of the
more prominent `1 norm minimization problem for SMVs [1–4]. In
this context, one of our main results is given by the following theo-
rem:

Theorem 1. The row-sparsity inducing `2,1 mixed-norm minimiza-
tion problem

min
X

1

2
‖AX − Y ‖2F + λ

√
N ‖X‖2,1 (8)

is equivalent to the convex problem

min
S∈D+

Tr
(
(ASAH + λIM )−1R̂

)
+ Tr(S), (9)

with R̂ = Y Y H/N denoting the sample covariance matrix and D+

describing the set of nonnegative diagonal matrices, in the sense
that minimizers X̂ and Ŝ for problems (8) and (9), respectively, are
related by

X̂ =ŜAH(AŜAH + λIM )−1Y . (10)

Proofs for the equivalence of (8) and (9), and the convexity of
(9) are provided in [28].

In addition to (10), we observe that the minimizer Ŝ =
diag(ŝ1, . . . , ŝK) contains the row-norms of the sparse signal ma-
trix X̂ = [x̂1, . . . , x̂K ]T on its diagonal according to

ŝk =
1√
N
‖x̂k‖2, (11)

for k = 1, . . . ,K, such that the union support of X̂ is equiva-
lently represented by the support of the sparse vector of row-norms
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[ŝ1, . . . , ŝK ]. We will refer to (9) as the SPARse ROW-norm re-
construction (SPARROW) formulation. In this regard, we empha-
size that Ŝ should not be mistaken for a sparse representation of
the source covariance matrix, i.e., Ŝ 6= E{X̂X̂H}/N . While the
mixed-norm minimization problem in (8) involvesNK complex op-
timization variables in X , the SPARROW problem in (9) provides
a reduction to only K nonnegative optimization variables in the di-
agonal matrix S. Moreover, the SPARROW problem in (9) only
relies on the sample covariance matrix R̂ instead of the MMVs in
Y themselves, leading to a reduction in problem size, especially in
the case of large number of MMVs N . Interestingly, this indicates
that the union support of the signal matrix X̂ is fully encoded in the
sample covariance R̂, rather than the instantaneous MMVs in Y , as
may be concluded from the `2,1 formulation in (8). As seen from
(10), the instantaneous MMVs in Y are only required for the signal
reconstruction, which, in the context of array signal processing, can
be interpreted as a form of beamforming [29], where the row-sparse
structure in X̂ is induced by premultiplication with the sparse diag-
onal matrix Ŝ.

4. IMPLEMENTATION OF THE SPARROW
FORMULATION

To show convexity of the SPARROW formulation (9) and for im-
plementation with standard convex solvers, such as SeDuMi [30],
consider the following corollary:

Corollary 1. The SPARROW problem in (9) is equivalent to the
semidefinite programs (SDPs)

min
S,UN

1

N
Tr(UN ) + Tr(S) (12a)

s.t.

[
UN Y H

Y ASAH + λIM

]
� 0 (12b)

S ∈ D+ (12c)

where UN is a Hermitian matrix of size N ×N , and

min
S,UM

Tr(UMR̂) + Tr(S) (13a)

s.t.

[
UM IM
IM ASAH + λIM

]
� 0 (13b)

S ∈ D+ (13c)

where UM is a Hermitian matrix of size M ×M .

Proof: see [28].
In contrast to the constraint (12b), the dimension of the semidef-

inite constraint (13b) is independent of the number of MMVs N . It
follows that either problem formulation (12) or (13) can be selected
to solve the SPARROW problem in (9), depending on the number of
MMVsN and the resulting dimension of the semidefinite constraint,
i.e., (12) is preferable for N ≤M and (13) is preferable otherwise.

While the above SDP implementations are applicable to arbi-
trary array geometries, we consider next the special case of a uni-
form linear array (ULA) with sensor positions ρm = m − 1, for
m = 1, . . . ,M , such that A = [a(ν1), . . . ,a(νK)] is a Vander-
monde matrix of size M × K. Under the given assumptions, the
matrix productASAH exhibits a Toeplitz structure according to

Toep(u) = ASAH =

K∑
k=1

ska(νk)aH(νk), (14)

where Toep(u) denotes a Hermitian Toeplitz matrix with u as its
first column. As discussed in [9], by the Caratheodory theorem
any Toeplitz matrix Toep(u) can be represented by a Vander-
monde decomposition according to (14) for any distinct frequencies
ν1, . . . , νK and corresponding magnitudes s1, . . . , sK > 0, with
rank(Toep(u)) = K ≤ M . Given a Toeplitz matrix Toep(u),
the Vandermonde decomposition according to (14) can be obtained
by first recovering the frequencies νk, e.g., using the matrix pencil
approach [31] or the linear prediction method [32], where the fre-
quency recovery is performed in a gridless fashion. The correspond-
ing signal magnitudes in s = [s1, . . . , sK ]T can be reconstructed by
solving the linear system

As = u, (15)

i.e., by exploiting that [a(ν)]1 = 1, for all ν ∈ [−1, 1), and consid-
ering the first column in the representation (14). Based on the Van-
dermonde decomposition in (14), we extend Corollary 1 to a gridless
version:

Corollary 2. For uniform sampling the gridless SPARROW (GL-
SPARROW) is given by the equivalent SDPs

min
u,UN

1

N
Tr
(
UN

)
+

1

M
Tr
(
Toep(u)

)
(16a)

s.t.

[
UN Y H

Y Toep(u) + λIM

]
� 0 (16b)

Toep(u) � 0, (16c)

where UM is an N ×N Hermitian matrix, and

min
u,UM

Tr
(
UMR̂

)
+

1

M
Tr
(
Toep(u)

)
(17a)

s.t.

[
UM IM
IM Toep(u) + λIM

]
� 0 (17b)

Toep(u) � 0 (17c)

where UN is an M × M Hermitian matrix, with frequency re-
construction provided by the Vandermonde decomposition (14) of
Toep(u).

In Corollary 2 we additionally make use of the identity

Tr(S) =
1

M
Tr(ASAH) =

1

M
Tr
(
Toep(u)

)
, (18)

with the factor 1/M resulting from the fact that ‖a(ν)‖22 = M , for
all ν ∈ [−1, 1).

Given a minimizer û of problem (16) or (17), the number of
sources, i.e., the model order, can be directly estimated as

L̂ = rank
(
Toep(û)

)
, (19)

while the frequencies {µ̂l}L̂l and corresponding magnitudes {ŝl}L̂l
can be estimated by Vandermonde decomposition according to (14),
as discussed above. With the frequencies in {µ̂l}L̂l and signal mag-
nitudes in {ŝl}L̂l , the corresponding signal matrix X̂ can be recon-
structed by application of (10).

In the case of large sensor arrays the aforementioned SDP for-
mulations might become computationally prohibitive. For these
scenarios we have derived a low complexity implementation of the
SPARROW formulation, based on the coordinate descent method,
in [28].
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5. RELATION TO PRIOR WORK

In recent years, numerous publications have considered SSR from
MMVs. In this section we provide a comparison of the `2,1 mixed-
norm minimization problem, and our compact reformulations, with
the atomic norm minimization approach [21–23], which shows par-
ticular similarities to our proposed SPARROW formulation. An ad-
ditional comparison to the SPICE method [24, 25] is provided in
[28].

In [9, 10] Atomic Norm Minimization (ANM) was introduced
for gridless line spectral estimation from SMVs in ULAs. The ex-
tension of ANM to MMVs under this setup was studied in [21–
23], which will be revised in the following. Consider the noise-
free MMV matrix Y 0 =

∑L
l=1 a(µl)ψ

T
l , obtained at the output

of a ULA for L impinging source signals with spatial frequencies
µ1, . . . , µL, where the lth source signal is contained in the N × 1
vector ψl. In the ANM framework [21–23], the MMV matrix Y 0

is considered as a weighted superposition of atoms a(ν)bH with
ν ∈ [−1, 1), b ∈ CN and ‖b‖2 = 1. The atomic norm of Y 0

is defined as

‖Y 0‖A = inf
{ck,bk,νk}

{∑
k

ck : Y 0 =
∑
k

cka(νk)bH
k , ck ≥ 0

}
,

(20)

and computed by the SDP [9, 10, 21–23]

‖Y 0‖A = inf
v,V N

1

2
Tr
(
V N

)
+

1

2M
Tr
(
Toep(v)

)
(21a)

s.t.
[
V N Y H

0

Y 0 Toep(v)

]
� 0 (21b)

Toep(v) � 0 (21c)

where the Toeplitz matrix representation in the constraint (21b) re-
lies on the assumption of a ULA, following similar arguments as
for the gridless GL-SPARROW implementation discussed in Section
4. Correspondingly, the frequency estimates µ̂ can be recovered by
Vandermonde decomposition (14). As proposed in [21–23], given a
noise-corrupted MMV matrixY as defined in (2), joint sparse recov-
ery from MMVs can be performed by employing the atomic norm in
(20) as

min
Y 0

1

2
‖Y − Y 0‖2F + λ

√
N‖Y 0‖A (22)

or, equivalently, by using the SDP formulation in (21), as

min
v,V N ,
Y 0

1

2
‖Y − Y 0‖2F +

λ
√
N

2

(
Tr
(
V N

)
+

1

M
Tr
(
Toep(v)

))
(23a)

s.t.
[
V N Y H

0

Y 0 Toep(v)

]
� 0 (23b)

Toep(v) � 0. (23c)

Problem (23) and the GL-SPARROW formulation (16) exhibit a sim-
ilar structure in the objective functions and semidefinite constraints.
In fact, both problems are equivalent in the sense that minimizers are
related by

û = v̂/
√
N. (24)

The spatial frequencies of interest ν are encoded in the vectors û
and v̂, as found by Vandermonde decomposition (14), such that the
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Fig. 3. Average computation time; M = 6 sensors, ∆µ = 0.15,
SNR = 10 dB and K = 1000 frequency grid points

GL-SPARROW problem in (12) and the ANM problem in (23) both
provide the same frequency estimates. A proof of the equivalence is
given in [28].

Compared to the GL-SPARROW problem in (16), the ANM
problem in (23) has MN additional optimization variables in the
matrix Y 0, which need to be matched to the MMV matrix Y by an
additional quadratic term in the objective function. Moreover, the
size of the ANM problem (23) scales with the number of MMVs N .
In contrast to this, the GL-SPARROW problem (16) can be equiv-
alently formulated as (17), which is independent of the number of
MMVsN . In this context the GL-SPARROW formulations (16) and
(17) admit significantly reduced computational complexity as com-
pared to the ANM formulation (23).

For illustration of the computational complexity, Figure 3 shows
the average computation time of the different SPARROW formula-
tions (12), (13), (16), (17) as well as the `2,1 mixed-norm minimiza-
tion problem (8) and the ANM problem (23). The simulations were
performed in Matlab using the SeDuMi solver [30] with the CVX in-
terface [33] for a scenario with two independent complex Gaussian
sources with static spatial frequencies µ1 = 0.35 and µ2 = 0.5 and
a ULA with M = 6 sensors. The signal-to-noise ratio is fixed at
10 dB while the number of MMVs N is varied. It can well be seen
from Figure 3 that the SPARROW formulations outperform the com-
peting method, which becomes most apparent for the covariance-
based implementations (13) and (17) at large number of MMVs N .

6. CONCLUSION

We have considered the classical `2,1 mixed-norm minimization
problem for joint sparse signal reconstruction from multiple mea-
surement vectors and derived an equivalent, compact reformulation
with significantly reduced problem dimension. The variables in our
compact reformulation, which we refer to as SPARROW (SPARse
ROW norm reconstruction), represent the row-norms of the joint
sparse signal representation. Our SPARROW reformulation shows
that the signal support is fully encoded in the sample covariance
matrix, instead of the instantaneous measurement vectors as might
be expected from classical sparse reconstruction formulations. We
furthermore presented a gridless SPARROW implementation for the
special case of uniform linear sampling and established exact equiv-
alence between the gridless SPARROW formulation and the recently
proposed atomic norm minimization problem for multiple measure-
ment vectors. However, in contrast to atomic norm minimization,
our gridless SPARROW implementation shows reduced problem
size, resulting in significantly reduced computational complexity.
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