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ABSTRACT

In this paper we propose a novel coalitional game theory based op-
timization method for minimizing the cost of the electricity con-
sumed from the power grid by a community of smart households.
A smart household may own both a renewable energy source and an
energy storage system (ESS), or only an ESS. We propose an opti-
mization model in which all the members of the community jointly
share their renewable resources and storage systems. We show that
the proposed coalitional optimization method reduces the consump-
tion costs both at community level and at the individual level when
compared to the case in which the households would individually
optimize their costs. The monetary revenues gained by the coalition
are divided among the members of the coalition according to the
Shapley value. Simulation examples show that the proposed coali-
tional optimization method may reduce the electricity costs for the
community by roughly 18%.

Index Terms— Smart grids, coalitional game theory, cost re-
duction, smart households, renewable resources

1. INTRODUCTION

The development of sustainable energy technologies has become a
major global priority. These technologies support the integration of
renewable energy resources and improve the energy consumption
efficiency within the power system. However, the currently exist-
ing power networks cannot sustain the integration of a large amount
of renewable resources. The development of new technologies that
support the efficient utilization of renewable energy is necessary.

Methods that study the cooperative approach between different
types of energy users have been studied before [1, 2, 3, 4, 5]. The au-
thors in [1] propose a noncooperative and also a cooperative demand
response model to schedule the charging/discharging of energy stor-
ages and the production of dispatchable energy sources owned by
a set of demand-side users. In [2] a game theory based model for
load balancing at community level using community energy storage
is proposed. In [3] a collaborative framework for modeling smart
grid households as an exchange economy market is proposed. The
users trade both the energy supplied by the utility company and the
stored energy. An energy management scheme in which multiple
microgrids cooperate and supply their energy surplus to a shared fa-
cility controller with the goal of gaining some income is proposed
in [4]. In [5] a direct load control method based on a cooperative
game model is proposed to minimize the cost of a union formed by
residential households and a retailer.

In this work we propose a novel coalitional game theoretic
model for energy exchange and management within a community
of smart households. A smart household refers to a household that
may own both a renewable energy source (RES) and an energy

storage system (ESS), or a household that owns an ESS only. For
the first case, an ESS is mandatory when a RES is owned, otherwise
the the production of renewable energy would be inefficient. The
smart households are also equipped with smart energy management
meters that can predict their energy demand profiles and the pro-
files of renewable energy to be produced during a finite time period
ahead. In case of insufficient renewable resources, the electricity
demands of the members of the community are fulfilled with elec-
tricity bought from the utility company. In order to minimize their
electricity costs, the households consume and store the renewable
energy produced within the community and the electricity supplied
from the main power grid according to the proposed game theoretic
optimization method. The method takes advantage of the dynamic
pricing option that utility companies offer to their customers. The
main contributions of this paper are stated below:

• We propose a novel coalitional game theory based optimization
method for energy exchange and management within the commu-
nity. The proposed optimization implies that all members of the
community may form a grand coalition and cooperate to jointly
use all their available renewable energy resources, the energy sup-
plied from the power grid and their energy storage spaces in order
to reduce the energy cost for the members of the coalition. The
proposed optimization consists of scheduling the energy exchange
among the members of the coalition and the charging/discharging
profiles of their ESSs during a finite time period.

• We formulate another optimization problem which can be used
by each member of the community to individually perform cost
optimization by using their own available energy resources and/or
ESSs. Both of the formulated optimization problems are convex
and are solved using linear programming method.

• We show that the proposed coalitional method may reduce the
electricity consumption costs at the community level and for each
residence participating in the game individually. The revenue of
the coalitional optimization is represented by the amount of money
saved by cooperating compared to the total electricity cost that the
residences would pay in the case when each residence would per-
form individual cost optimization and not interact with the other
households. The revenue obtained through the coalitional opti-
mization is divided among the members in a fair manner, accord-
ing to the amount of contribution that each member brings to the
resulting profit. A method based on Shapley value is used to cal-
culate the payoff earned by each member of the coalition.

Simulation examples show that all members of the community
may significantly reduce their electricity costs if they cooperate us-
ing the proposed method. The proposed coalitional optimization re-
duces the overall community’s electricity cost with about 18%.
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2. SYSTEM MODEL

We consider a community composed of a set N of households,
|N | = N . By |N | we represent the cardinality of the set. A subset
ofM residences of the set N ,M ⊆ N , produce renewable energy
and own an ESS as well. The rest of residences in the community,
N\M, own an ESS only. We denote by n the index of any house-
hold from the set N and by m the index of any household from
the set M. The energy exchange and optimization is performed
over a finite time horizon T which is divided into equally long time
slots indexed by t, t = 1, . . . , T . The market electricity prices,
ξ = {ξ(t)}Tt=1, are given ahead by the utility company for each
time slot within the period T. The set of electricity demands of each
residence in the community, un = {un(t)}Tt=1, n ∈ N , is con-
sidered known over the period T and cannot be changed. The set
of per-time-slot amounts of renewable energy, wn = {wn(t)}Tt=1,
produced by each household from the community over the period T
are also considered known. Note that wn = {0}Tt=1 for n ∈ N\M.

We denote by Cn be the maximum storing capacity associated
with each ESSn in the community. sn = {sn(t)}Tt=1 represents the
energy storage vector containing the total amount of energy stored
in ESSn at the end of a time slot. Let rn = {rn(t)}Tt=1 be the set
of amounts of energy charged or discharged from each storage unit
during each time slot. If rn(t) > 0 at a time slot t, it means that
energy is being charged to the ESSn during that time slot, while if
rn(t) < 0, then energy is being discharged from the ESSn. We de-
note by ρn the charging/discharging rate ofESSn, parameter which
indicates the maximum amount of energy that can be charged or dis-
charged from the storage during a time slot. We denote by ηn the
storage loss factor per time slot, i.e. the amount of energy that a stor-
age loses during a time unit. This parameter is specific to each indi-
vidual ESSn and it has values between 0 and 1 ( typically ηn � 1):
0 indicates that no energy leakage occurs, while 1 indicates that all
energy from storage is lost. The coalitional energy trade implies that
each member of the formed coalition may give or receive an amount
of electricity to or from the other members of the coalition. Hence,
we represent by an = {an(t)}Tt=1 the set of energy amounts that a
member of the coalition may give away or receive from the rest of
the coalition members during the period T. If an(t) > 0 during a
certain time slot t, it means that household n provides this amount
of energy to the rest of the members of the coalition. If an(t) < 0 it
shows that in time slot t household n receives this amount of energy
from the other members of the coalition. Finally, the set of energy
amounts that a household n will have to buy from the power grid
during period T is denoted by bn = {bn(t)}Tt=1.

3. COST REDUCTION OPTIMIZATION

In this section we formulate the proposed energy cost minimiza-
tion problems. We first present the coalitional optimization problem
which has the purpose of reducing the cost of the energy consumed
from the power grid by a group of households from the community
that form a coalition. In this paper, we consider that all the resi-
dences from the community decide to cooperate and form a grand
coalition. Then, we formulate the optimization problem for individ-
ual members of the community. In the latter case, each member of
the community would use their RES and ESS to optimize their indi-
vidual consumption and minimize only their own cost, without any
form of interaction with other households.

3.1. Coalitional optimization

The cost of electricity consumed by the community from the power
grid has the following expression:

℘N =

T∑
t=1

N∑
n=1

ξ(t)bn(t), (1)

where ℘N represents the community’s total consumption cost over
the period T , ξ(t) is the cost of electricity in time slot t and bn(t)
is the electricity purchased from the power grid by household n in
time slot t. The coalitional optimization problem may be expressed
as follows:

min℘N , (2)

such that the following constraints are fulfilled:

un(t)−bn(t)+an(t)−wn(t)+rn(t) ≤ 0, (2a)

bn(t) ≥ 0, (2b)

0 ≤ sn(t) ≤ Cn, (2c)

sn(t) = (1− ηn)sn(t− 1) + rn(t), (2d)

−ρn ≤ rn(t) ≤ ρn, (2e)
N∑

n=1

an(t) = 0, (2f)

T∑
t=1

N∑
n=1

bn(t) ≥
T∑

t=1

N∑
n=1

un(t)−
T∑

t=1

N∑
n=1

wn(t), (2g)

where (2a)-(2e) are computed for every individual household n =
1, . . . , N and for each time slot t = 1, . . . , T . The optimization
variables are: {bn, sn, rn,an}. Inequation (2a) states the per-time-
slot energy balance constraint: the energy bought from the grid dur-
ing a time slot should compensate for the energy demand, the amount
of energy charged or discharged from the storage, the energy pro-
vided or received to/from the other members of the coalition and the
renewable energy resources available in that time slot. The amount
of energy purchased from the power grid cannot have a negative
value (2b). The total amount of energy stored in the ESS must lie
between zero and the capacity, Cn, of the ESSn (2c). Equation
(2d) is expressing the dynamics of the ESS: the total storage level of
ESSn at the end of a time slot is equal to the storage level at the pre-
vious time slot, considering also the storage leakage factor, and the
added or subtracted amount of energy charged or discharged from
the storage in that time slot. The amount of energy charged or dis-
charged from the storage is limited by the ESSn’s charging rate, ρn,
in inequation (2e). Constraint (2f) states that the total amount of en-
ergy given away by some members of the community in a time slot
must be equal to the total amount of energy received by the rest of
the members of the community in that time slot. Finally, inequation
(2g) shows that the amount of energy purchased by the community
from the power grid during the whole period T should be at least
equal to the total remaining energy demand of the community which
cannot be satisfied by the amount of energy received from renewable
sources.

3.2. Individual optimization

The individual cost of electricity consumed by a single household
n from the power grid during the period T is denoted by ℘n and is
expressed as:

℘n =

T∑
t=1

ξ(t)bn(t). (3)
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The electricity cost minimization optimization for individual house-
holds may be formulated as:

min℘n, (4)

such that the following constraints are satisfied:
un(t)−bn(t)−wn(t) +rn(t) ≤ 0; (4a)

bn(t) ≥ 0; (4b)
0 ≤ sn(t) ≤ Cn; (4c)

sn(t) = (1− ηn)sn(t− 1) + rn(t); (4d)
−ρn ≤ rn(t) ≤ ρn. (4e)

The optimization variables are: {bn, sn, rn}. The constraints (4a)-
(4e) are computed for each time slot t = 1 . . . T . These constraints
are closely related to the constraints (2a)-(2e) from the coalitional
optimization problem. The difference between constraints consists
in absence of the variable that quantifies the amounts of energy ex-
changed by each household per-time-slot with the rest of the mem-
bers of the coalition, an(t).

It can be observed that the objective functions and the constraints
of the formulated optimization problems possess linear relationships
between the variables of the problems. Hence, both the optimiza-
tion problems are modeled as linear programs. The solutions of the
proposed optimization problems can be easily obtained through al-
gorithms such as the interior point algorithm [6].

4. COALITIONAL GAME MODEL FOR THE
COMMUNITY

A coalitional game [7] is uniquely defined by the pair (N , υ), where
N represents the set of players involved in the game and υ : 2N →
R is the characteristic function of the game which quantifies the
worth of a coalition. In the proposed optimization problem, the
players N of the coalitional game are the households of the smart
community. These households may form coalitional groups in order
to minimize their electricity costs. We denote by G, G ⊆ N , any
non-empty subset of households from the community that can form
a coalitional group. If the coalition is formed by all the residences
in the community, G = N , then the coalition is called a grand coali-
tion. The worth of a coalition, υ(G), is a real value representing the
total revenue received by the coalitional group for cooperating.

For the proposed cost minimization problem for the community,
the worth (revenue) of a coalition is defined as the monetary amount
saved by the coalitional group in the cooperative scenario in compar-
ison with the total electricity cost that the members of the coalition
would pay in the case of performing individual cost optimization.
The worth of the coalition is expressed as:

υ(G) =
∑
g∈G

℘g − ℘G , (5)

where ℘G and ℘g are calculated according to (1) and (3), respec-
tively, using the solutions of the two proposed optimization methods.

The worth of the coalition must be divided among its members
using a fair rule, according to the amount of contribution that each of
the players brought to the coalitional game and consequently to the
revenue. One straightforward way of distributing the revenue among
the members of the coalition in a collaborative scenario is using the
Shapley value [7]. For a coalitional game defined by (N , υ), the
Shapley value, Φ(υ), assigns to each player i ∈ N a payoff Φi(υ)
given by the following expression:

Φi(υ) =
∑

G⊆N\{i}

|G|!(N − |G| − 1)!

N !
[υ(G ∪ {i})− υ(G)], (6)

where the sum is computed over all possible subsets G of N not
containing player i. The payoff of a household taking part in a coali-
tion represents the fraction of the total revenue of that coalition that
is achieved through the participation of that household in the coali-
tional game.

5. SIMULATION EXAMPLES

In this section we present some simulation examples and quantita-
tive results that demonstrate the cost savings achieved by the pro-
posed method. For simulating and testing the performance of the
proposed method we considered a smart grid community composed
of N=5 households. Every household in the community owns an
ESS, while a number of |M|=3 residences own a RES as well. Here
|M| represents the cardinality of the setM. We considered the case
in which all households from the community participate in the coali-
tional game. For the simulation we considered the following ESSn

capacities: Cn = {5kWh, 5kWh, 5kWh, 10kWh, 10kWh}. We
also assumed the following charging/discharging rates for the stor-
age units: ρn = {1kWh, 1kWh, 1kWh, 2kWh, 2kWh}. The
storage loss factor is assumed to be the same for all ESSs: ηn =
0.001, n = 1, . . . , N . We perform simulations over a time horizon
T=24 hours divided into hourly time slots. The pricing data used in
the simulation are true pricing data taken from Finnish Nord Pool
Spot database [8] for May 2013. The load modeling framework pre-
sented in [9] was used to simulate the load demand of each residence.
The households were assumed to have the following number of in-
habitants: {3, 2, 5, 2, 4}. The renewable energy data values were
simulated using the mathematical model of wind turbines in [10] and
true weather data for May 2013 in Helsinki region [11]. For solving
the coalitional game and individual cost optimization problems we
used the CVX package for convex optimization [12].

Fig.1 shows the total daily electricity demand of the community
and the energy production of the residences owning an RES for each
day of the month. We can observe that only during few days of the
month the renewable electricity production within the community
was sufficient to fulfill the total demand of the day. The simulations
were performed considering that at beginning of day 1 the ESSs are
empty. If renewable energy was left in storages at the end of a day,
that amount was considered for optimizing the cost during the fol-
lowing day.

The bar plot in Fig.2 depicts the daily cost savings of the com-
munity for the case in which they cooperate by using the proposed
coalitional game model and optimization. The obtained cost savings
are compared to the case in which each residence of the commu-
nity would use their own renewable energy production and storage
system to individually optimize their cost without cooperating. The
daily rewards, i.e. cost savings, are divided among the members of
the community as shown by the blocks composing each bar. The
blocks indicate the amount of monetary payoffs distributed to each
household as calculated using the Shapley value:

∑
i∈N Φi(υ) =

υ(N ). It can be observed that only during three days of the month,
days 3,6 and 18, the coalitional game optimization doesn’t perform
better than the individual optimization. Otherwise, for the rest of the
days of the month each household in the community, no matter if
it owns a RES or an ESS only, receives some monetary revenue for
their participation in the coalitional optimization.

Fig.3 shows the daily cumulated electricity costs for the com-
munity in case of the coalitional game theoretic optimization versus
the total cumulated costs of the members of the community when
they perform individual cost optimization. If the households coop-
erate and share their resources the total cost of the community at
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Fig. 1: Community’s total electricity demand and renewable energy
production of each household owning a RES during each day of a
month.
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Fig. 2: The daily monetary revenues achieved by the coalition
through cooperation. The blocks composing a bar each show the
payoff of a household from the coalition as distributed by the Shap-
ley value method. The coalitional optimization method provides an
electricity cost reduction during majority of the days of the month.
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Fig. 3: Cumulated electricity costs of the two formulated problems.
The proposed coalitional game cost optimization method obtains an
electricity cost reduction of about 18% in comparison with the indi-
vidual cost optimization method.

the end of the month would be 20.9e, while if they don’t cooperate
and the households would perform individual cost optimization then
the total cost of the community at the end of the month would be
25.4e. The results indicate that a significant cost reduction may be
achieved. The proposed coalitional optimization may provide a cost
reduction of about 18% for the community.

6. CONCLUSIONS

In this paper we proposed a novel coalitional game theory based op-
timization method for minimizing the cost of electricity consumed
by a community of smart households from the power grid. The
coalitional optimization implies that the members of the commu-
nity form coalitions and freely share their renewable resources and
storage systems among themselves. We also formulate an optimiza-
tion model through which the individual households would use their
renewable energy resources and energy storage spaces to minimize
only their own electricity costs. The monetary revenue of the coali-
tion is represented by the amount of money that the coalition saves
compared to the individual cost optimization case. We showed that
the proposed optimization reduces the overall cost of electricity for
the formed coalition and also for each member of the coalition indi-
vidually. The daily monetary revenues obtained by cooperating were
divided among the members of the coalition using Shapley value
method. If all the households in the community participate in the
coalition, then the proposed coalitional optimization may reduce the
electricity consumption cost for the community with 18%.
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