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ABSTRACT

We address the problem of determining the number of signals corre-
lated between two high-dimensional data sets with small sample sup-
port. In this setting, conventional techniques based on canonical cor-
relation analysis (CCA) cannot be directly applied since the canoni-
cal correlations are significantly overestimated when computed from
few samples. To overcome this problem, a principal component anal-
ysis (PCA) preprocessing step is usually performed to reduce the di-
mension of the data. However, PCA reduces the dimension of each
data set individually without taking the correlation between the data
sets into account. In this paper we propose a sparse CCA (SCCA)
algorithm as an alternative to the PCA-CCA approach. This algo-
rithm is based on `1-norm penalization, which optimizes the weight
of the `1-norm to keep a prescribed number of non-zero components.
The number of correlated components is then selected based on an
information-theoretic criterion.

Index Terms— model-order selection, small sample support,
sparse CCA, `1-norm.

1. INTRODUCTION

In many applications, we are interested in assessing the correlation
between two multivariate data sets. Let n and m be the dimension
of the data sets X and Y, respectively, and M the number of obser-
vations, so that X ∈ Rn×M and Y ∈ Rm×M . The typical way to
measure the correlation between X and Y is via canonical correla-
tion analysis (CCA) [1]. CCA obtains pairs of canonical variables
by means of linear projections of the original data, STX and TTY,
in such a way that the correlation between these pairs of canonical
variables is maximized while they are uncorrelated with each other.
A particularly important question is how many of the signal compo-
nents between X and Y are correlated. This is a model-order selec-
tion problem. When CCA is used to perform model-order selection,
different models with varying number of free parameters, i.e., cor-
related components, are usually compared by means of hypothesis
testing (HT) [2, 3] or information criteria (IC) [3, 4].

In many practical situations, the data sets are high-dimensional,
and only relatively few observations are available. When M <
n+m, there are at least n+m−M canonical correlations equal to
one independently of the underlying model, which means that CCA
cannot be directly applied to determine the number of correlated
components [5]. A typical approach to overcome this issue is to
perform a principal component analysis (PCA) preprocessing step
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before CCA [6]. By keeping only rx and ry components from X
and Y, respectively, where rx and ry have to be chosen wisely [6],
the problem of defective canonical correlations can be alleviated [7].
However, because the PCA components are determined without re-
gard to the correlation structure between the data sets, the extracted
components might not include all correlated components.

In this paper we propose an alternative approach based on sparse
CCA (SCCA). SCCA constrains the `0-norm of the projectors, i.e.,
they are constrained to have only few components different from
zero. This can be regarded as dimensionality reduction by means
of variable selection, therefore alleviating the effect of small sample
support. The difference compared to the PCA preprocessing is that
SCCA selects sets of variables that maximize correlation, i.e., the
dimensionality reduction is performed jointly with the extraction of
the canonical variables.

The main problem of SCCA is that the global optimal solution
cannot be efficiently found as in regular CCA. This is due to the ad-
ditional constraint on the `0-norm of the projectors, which makes
the problem intractable. A conventional workaround uses the `1-
norm instead [8–10] (or a variation thereof [11]), which is a convex
function and hence easy to handle. However, a constraint on the `1-
norm of the projectors does not permit a direct control of the sparsity
level, which makes it difficult to perform the model-order selection.
Other works propose suboptimal approaches directly based on the
`0-norm [12,13]. These methods use deflation to extract subsequent
canonical correlations. However, deflation does not guarantee or-
thogonality between the canonical variables, which in turn may lead
to an overestimation of the canonical correlations. This is especially
critical in the model-order selection problem for small sample sup-
port, since the model-order might then easily be overestimated.

In order to overcome the drawbacks of the aforementioned meth-
ods, here we propose an alternative SCCA algorithm based on the `1-
norm penalization, whose weight is dynamically optimized to keep a
given number of non-zero components. The difference of this SCCA
algorithm compared to other SCCA techniques is that it allows us to
optimize exactly rx nonzero components for each column of S and
ry nonzero components for each column of T, while satsifying the
orthogonality of the canonical variables. This leads to models with
different numbers of degrees of freedom, which can then be com-
pared using either HT or IC. In this paper, we do the latter. To the
best of our knowledge, SCCA has not been applied yet to model-
order selection for small sample support.

2. PROBLEM FORMULATION

We consider the two-channel model

x = Axsx + nx , (1)

y = Aysy + ny , (2)
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where x ∈ Rn×1 and y ∈ Rm×1 are the observations of the first
and second channel, respectively; Ax ∈ Rn×(d+fx) and Ay ∈
Rm×(d+fy) are deterministic but unknown mixing matrices; sx ∈
R(d+fx)×1 and sy ∈ R(d+fy)×1 are the sources in each channel, and
nx ∈ Rn×1 and ny ∈ Rm×1 are the independent additive noises,
whose covariance matrices are Ψx and Ψy , respectively. We as-
sume that the signals sx and sy have d correlated components with
variances σ2

x,j and σ2
y,j (j = 1, . . . , d), respectively, i.e., its cross-

covariance matrix can be expressed as

Rsxsy =

[
diag(ρ1σx,1σy,1, . . . , ρdσx,dσy,d) 0d×fy

0fx×d 0fx×fy

]
. (3)

The number of uncorrelated components between sx and sy is then
given by fx and fy , respectively. For this model, we address the
following problem.

Problem: Given M i.i.d. observations of the model described by
(1) and (2), with possibly M < m + n, determine the number d of
correlated components.

3. CANONICAL CORRELATION ANALYSIS

CCA is the typical approach to evaluate correlation between two data
sets. The ith pair of canonical variables can be found as the solution
of the following optimization problem:

Pi : maximize
si,ti

sTi Rxyti ,

subject to sTi Rxxsi = 1 ,

tTi Ryyti = 1 ,

sTi Rxxsj = 0 , j = 1, . . . , i− 1 ,

tTi Ryytj = 0 , j = 1, . . . , i− 1 ,

where Rxy is the cross-covariance matrix between x and y, Rxx

and Ryy are the covariance matrices of x and y, respectively, and
si and ti are the ith columns of S and T, respectively. The covari-
ance and cross-covariance matrices are usually unknown and must
be estimated using the available observations. Therefore, Rxy , Rxx

and Ryy are typically replaced by their sample counterparts, namely,
R̂xy = 1

M
XYT , R̂xx = 1

M
XXT and R̂yy = 1

M
YYT . In the

case of small sample support, the canonical correlations are signif-
icantly overestimated [6] and cannot be used to infer the number d
of correlated components. To this end, we consider SCCA as an
alternative approach, which is described in the next section.

4. SPARSE CANONICAL CORRELATION ANALYSIS

The SCCA problem, based on the `0-norm, can generally be stated
as the optimization problem

P`0i : maximize
si,ti

sTi R̂xyti ,

subject to sTi R̂xxsi = 1 ,

tTi R̂yyti = 1 ,

sTi R̂xxsj = 0 , j = 1, . . . , i− 1 ,

tTi R̂yytj = 0 , j = 1, . . . , i− 1 ,

||si||0 ≤ rx ,
||ti||0 ≤ ry ,

where || · ||0 is the `0-norm, i.e., the number of non-zero elements.
Hereafter we will assume rx = ry = r. The `0-norm is non-convex
and difficult to handle, and it is usually replaced by the convex `1-
norm, which is defined as the sum of the absolute value of the ele-
ments. However, the `1-norm does not provide a direct measure of
sparsity, and it is therefore difficult to control the number of degrees
of freedom to perform the model-order selection. In the following,
we propose an SCCA algorithm considering the `1-norm with an ad-
ditional step that optimizes the `1-norm constraint such that a given
number of non-zero components is retained. To this end, let us first
consider the initial problem

P`1i : maximize
si,ti

sTi R̂xyti − λx||si||1 − λy||ti||1 ,

subject to sTi R̂xxsi = 1 ,

tTi R̂yyti = 1 ,

sTi R̂xxsj = 0 , j = 1, . . . , i− 1 ,

tTi R̂yytj = 0 , j = 1, . . . , i− 1 ,

where λx and λy are the penalization terms for the `1-norm of si
and ti, respectively. Since the above problem is still non-convex,
we perform an alternating optimization procedure to subsequently
optimize si (with fixed ti) and ti (with fixed si). For a given ti = t′i,
the convex optimization problem for si is given by

P`1i (t′i) : maximize
si

sTi R̂xyt
′
i − λx||si||1 ,

subject to sTi R̂xxsi ≤ 1 ,

sTi R̂xxsj = 0 , j = 1, . . . , i− 1 .

The optimal solution of this problem is characterized in the follow-
ing lemma.

Lemma 1. Let the columns of Ns and Nxx span the null space of
R̂xx[s1, . . . , si−1] and NT

s R̂xxNs, respectively. The optimal solu-
tion of P`1i (t′i) is then given by

s?i =
s̃i√

s̃Ti R̂xxs̃i

,

s̃i =Ns

(
NT
s R̂xxNs

)† (
NT
s R̂xyt

′
i + NT

s µx

)
+ NsNxxφx , (4)

where (·)† is the pseudo-inverse and µx satisfies |µx| ≤ λx1, with
| · | and≤ applied element-wise, and NT

xxµx = 0. Furthermore, let
q = [q+;q−] be the vector containing the indexes of the non-zero
elements of s?i , where q+ and q− are the indexes of the positive and
negative elements of s?i , respectively. Then (µx)j = λx, where (·)j
denotes the jth element of its vector argument, for all elements of
µx with indexes in q−, (µx)j = −λx for all elements of µx with
indexes in q+, and |(µx)j | < λx otherwise.

Proof. P`1i (t′i) can equivalently be written as

P̃`1i (t′i) : maximize
si,u

sTi R̂xyt
′
i − λx1Tu ,

subject to sTi R̂xxsi ≤ 1 ,

sTi R̂xxsj = 0 , j = 1, . . . , i− 1 ,

u ≥ si , u ≥ −si .
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Choose the desired number r of non-zero elements, initialize the
empty matrices T and S.
for i = 1 to r do

Choose an starting point ti = t′i satisfying the corresponding
constraints in P`1i .
repeat
1. Initialize the vector of indexes q as an empty vector.

2. Solve P̃λx
i (t′i) to obtain the indexes of the non-zero

elements and denote them as q̃.
if the length of q̃ is smaller than r + 1 then

Take q = q̃ and repeat step 2
else

Continue to step 3
end if

3. Obtain s?i using (4) and repeat steps 1 and 2 solving
the analog problems for ti while keeping si = s?i
fixed.

until convergence criterion is met.
Update S = [S , s?i ] and T = [T , t?i ].

end for
Algorithm 1: Proposed SCCA algorithm.

Since this problem is convex and satisfies Slater’s condition, its
optimal solution fulfills the Karush-Kuhn-Tucker (KKT) condi-
tions [14], which yield (4). Through the KKT conditions we
also obtain that µx = µ−x − µ+

x , where µ−x and µ+
x are the

Lagrange multipliers of u ≥ −si and u ≥ si, respectively, and
µ−x + µ+

x = λx1. Furthermore, let q1 be an index such that
(s?i )q1 > 0. Then it is clear that u ≥ −si is not active, hence
(µ−x )q1 = 0, (µ+

x )q1 = λx and consequently (µx)q1 = −λx.
Similarly, let q2 be an index such that (s?i )q2 < 0. Then u ≥ si is
not active, yielding (µ+

x )q2 = 0, (µ−x )q2 = λx and (µx)q2 = λx.
Constraints u ≥ si and u ≥ −si are simultaneously active for the
index q3 satisfying (s?i )q3 = 0, which yields 0 < (µ+

x )q3 < λx,
(µ−x )q3 = λx − (µ+

x )q3 and thus |(µx)q3 | < λx, which concludes
the proof.

Lemma 1 permits determining the optimal λx by subsequently
identifying the elements of s̃i that must be non-zero. It is clear that,
by increasing λx, we decrease the number of non-zero elements.
Furthermore, if λx is too high, the optimal solution of P`1i (t′i) will
be an all-zero vector. The minimum value of λx such that s̃i = 0
can be obtained as the solution of

Pλx
i (t′i) :

minimize
λx,φx,µx

λx ,

subject to Ns

(
NT
s R̂xxNs

)† (
NT
s R̂xyt

′
i + NT

s µx

)
+ NsNxxφx = 0 ,

|µx| ≤ λx1 ,

NT
xxµx = 0 .

Let λ?x be the optimal solution of Pλx
i (t′i). Then λx = λ?x − ε,

with ε > 0, will yield a solution with at least one non-zero compo-
nent. These non-zero components can be identified using Lemma 1.

Table 1. Probability of detection for varying d. The correlation
coefficient of the second and third components is 0.85 and 0.75,
respectively.

Proposed SCCA Rank-1 SCCA PCA-CCA

d = 0 0.92 0.39 0.74
d = 1 0.91 0.41 0.76
d = 2 0.65 0.63 0.71
d = 3 0.30 0.60 0.66

Specifically, the indexes q of s̃i corresponding to the non-zero com-
ponents are those satisfying |(µx)q| = λx. This permits obtaining
the sparsest non-zero projection s̃i. If we want a higher number of
non-zero elements, we have to modify problem P`1i (t′i) to remove
the indexes q of the previously obtained non-zero elements and en-
force |(µx)q| = λx. In other words, Pλx

i (t′i) is modified as

P̃λx
i (t′i) :

minimize
λx,φx,µx

λx ,

subject to Ñs

(
NT
s R̂xxNs

)† (
NT
s R̂xyt

′
i + NT

s µx

)
+ ÑsNxxφx = 0 ,

|µx| ≤ λx ,
(µx)q+ = −λx , (µx)q− = λx ,

NT
xxµx = 0 ,

where Ñs is obtained by removing the rows of Ns with indexes in
q. The above problem can be shown to admit a closed-form solution,
which significantly reduces the computational complexity. Finally,
the proposed SCCA algorithm is summarized in Algorithm 1.

5. MODEL-ORDER SELECTION

We use IC to perform model-order selection based on the estimated
canonical correlations obtained with Algorithm 1. Therefore, the
number d of correlated components is estimated as

d̂ = argmax
d∈[0,...,r]

max
r∈[1,...,rmax]

IC(d, r) , (5)

where rmax is the maximum number of estimated canonical corre-
lations, which needs to be sufficiently smaller than the number of
samplesM . In practice, rmax < M/3 seems to be working well [6].
In the above expression, IC(d, r) is the IC score. Assuming that the
sources and noise are Gaussian distributed, the IC score is given by

IC(d, r) = −M
2

log

d∏
i=1

(
1− k̂2i (r)

)
− p(d, r) . (6)

The first term of the IC score corresponds to the log-likelihood of the
observations, where k̂i(r) is the ith estimated canonical correlation,
and the second term penalizes the complexity of the model. Follow-
ing the minimum description length (MDL) approach [15], we use
the penalization term

p(d, r) =
1

2
nf (d, r) logM , (7)
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Table 2. Average of the estimated canonical correlations for d = 3
by the proposed SCCA.

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 true

k̂1 0.77 0.88 0.92 0.95 0.96 0.97 0.95
k̂2 0 0.75 0.83 0.87 0.90 0.93 0.85
k̂3 0 0 0.65 0.75 0.75 0.86 0.75
k̂4 0 0 0 0.50 0.55 0.70 0
k̂5 0 0 0 0 0.39 0.56 0
k̂6 0 0 0 0 0 0.40 0

Table 3. Average of the estimated canonical correlations for d = 3
by the SCCA algorithm from [13].

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 true

k̂1 0.81 0.92 0.95 0.96 0.96 0.96 0.95
k̂2 0 0.79 0.90 0.92 0.93 0.93 0.85
k̂3 0 0 0.73 0.84 0.88 0.86 0.75
k̂4 0 0 0 0.62 0.75 0.80 0
k̂5 0 0 0 0 0.55 0.70 0
k̂6 0 0 0 0 0 0.47 0

Table 4. Probability of detection for d = 3 and varying M .

Proposed SCCA SCCA [13] PCA-CCA [6]

M = 20 0.30 0.60 0.66
M = 30 0.43 0.72 0.73
M = 40 0.71 0.84 0.92
M = 50 0.84 0.90 0.90

Table 5. Probability of detection for varying noise variance σ2.

Proposed SCCA SCCA [13] PCA-CCA [6]

σ2 = 1 0.92 0.41 0.76
σ2 = 5 0.84 0.09 0.78
σ2 = 10 0.76 0 0.73
σ2 = 20 0.62 0 0.72

where nf (d, r) is the number of free parameters of the model. In
our problem, this corresponds to the number of free adjusted param-
eters to model the covariance matrices Rxy , Rxx and Ryy . Fol-
lowing the lines of [4, 15], the number of free adjusted parameters
can be obtained as follows. As we project the observations onto an
r-dimensional subspace, each auto-covariance matrix has a total of
(r + 1)d parameters, but the normality and mutual orthogonality of
the eigenvectors impose 1

2
d(d+1) constraints. Similarly, the cross-

covariance matrix has (2r+1)d parameters with d(d+1) additional
constraints, thus the total number of free adjusted parameters is

nf (d, r) = (4r − 2d+ 1)d . (8)

6. NUMERICAL EXAMPLES

We generate our observations according to (1) and (2), where each
entry of the mixing matrices Ax and Ay is drawn independently

Table 6. Probability of detection for varying variance of uncorre-
lated components σ̃2.

Proposed SCCA SCCA [13] PCA-CCA [6]

σ̃2 = 3 0.92 0.41 0.76
σ̃2 = 20 0.45 0.40 0.72
σ̃2 = 100 0.28 0.38 0.74

from a Gaussian distribution with zero mean and unit variance, and
the noise covariance matrices are Ψx = Ψy = σ2I. Unless other-
wise stated, we consider the scenario: n = m = 50,M = 20, d = 1
with variance 10 and correlation coefficient 0.95, fx = fy = 4
with variance 3, and σ2 = 1. We compare the proposed SCCA ap-
proach with the following existing techniques: the joint PCA-CCA
technique for small sample support [6] (we use Detector 2 from [6])
and the SCCA algorithm proposed in [13], which directly constrains
the `0-norm of the projections and can thus also be used with the
proposed model-order selection. Table 1 shows the probability of
correct detection for d = {0, 1, 2, 3}. The proposed approach sig-
nificantly outperforms the benchmarks for d = 0 and d = 1, but
the detection rate substantially decreases for d = 2 and d = 3. On
the other hand, the existing SCCA approach exhibits an abnormal
behavior, as the probability of detection increases with d. This is
because it provides estimates of the canonical correlations that are
generally greater than those obtained by the proposed SCCA algo-
rithm (see Tables 2 and 3). Therefore, the SCCA algorithm in [13] is
more likely to overfit the data. Nevertheless, Table 4 shows that the
detection probability of the proposed SCCA algorithm for d = 3 sig-
nificantly increases with the number of observations and approaches
that of the benchmark techniques. In Table 5 we provide the re-
sults for increasing noise power. We observe that the existing SCCA
is much more sensitive to the noise level than the proposed SCCA,
whereas the performance of PCA-CCA is almost unaffected by the
noise. This is due to the PCA step, which eliminates most of the
noise. However, SCCA provides higher estimates of the canonical
correlations increasing the probability of overfitting. The opposite
behavior is observed when we increase the variance of the uncorre-
lated components, as shown in Table 6. The estimates of the canon-
ical correlations by SCCA decrease, increasing the probability of
underfitting.

7. CONCLUSIONS

In this paper we have applied SCCA for model-order selection with
small sample support. To this end, we have proposed a new algo-
rithm based on `1-norm penalization, which dynamically adjusts the
penalization weight to keep a given number of non-zero components.
We have shown that SCCA can be applied to determine the number
of signals correlated between two data sets when there are only few
samples available. Although we have focused on model-order se-
lection, the proposed SCCA algorithm can be used for other appli-
cations as an alternative to existing SCCA methods, e.g., to ease the
interpretation of the canonical variables or when the mixing matrices
are known to be sparse.
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