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ABSTRACT

The hybrid steepest descent method (HSDM) [Yamada, ’01] was in-
troduced as a low-computational complexity tool for solving convex
variational-inequality problems over the fixed-point set of nonexpan-
sive mappings in Hilbert spaces. Motivated by results on decen-
tralized optimization, this study introduces an HSDM variant that
extends, for the first time, the applicability of HSDM to affinely con-
strained composite convex minimization tasks over Euclidean spaces;
the same class of problems solved by the popular alternating direc-
tion method of multipliers and primal-dual methods. The proposed
scheme shows desirable attributes for large-scale optimization tasks
that have not been met, partly or all-together, in any other member of
the HSDM family of algorithms: tunable computational complexity,
a step-size parameter which stays constant over recursions, promot-
ing thus acceleration of convergence, no boundedness constraints on
iterates and/or gradients, and the ability to deal with convex losses
which comprise a smooth and a non-smooth part, where the smooth
part is only required to have a Lipschitz-continuous derivative. Con-
vergence guarantees and rates are established. Numerical tests on
synthetic data and on colored-image inpainting underline the rich
potential of the proposed scheme for large-scale optimization tasks.

Index Terms— Composite optimization, convexity, nonexpan-
sive mappings, hybrid steepest descent method, variational-inequality
problem.

1. INTRODUCTION

Consider the set Γ0(X ) of all convex, proper, and lower semicontin-
uous functions [1], defined on X := RD (D belongs to the set of all
positive integers N) with values in R ∪ {+∞}, and loss functions
f, g ∈ Γ0(X ), where f is differentiable withL-Lipschitz-continuous
derivative ∇f : ‖∇f(x) − ∇f(x′)‖ ≤ L‖x − x′‖, ∀x,x′ ∈ X .
This paper introduces the accelerated hybrid steepest descent method
(AHSDM), a new member of the HSDM family [14,16,21,24–27], to
solve the following affinely constrained composite convex minimiza-
tion task:

minx∈X f(x) + g(x) subject to (s.to) Hx = c , (1)

for some H ∈ RK×D and c ∈ RK . The celebrated alternating
direction method of multipliers (ADMM) [3, 8, 9] solves the same
class of problems as in (1):

min(z,z′)∈Z2 F (z) +G(z′) s.to Fz + Gz′ = c , (2)

This work was supported in part by the NSF awards 1514056 and
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for some Euclidean space Z , losses F,G ∈ Γ0(Z), and matrices
F,G. Indeed, if F satisfies the requirements of (1), (1) and (2)
become equivalent, since one can set X := Z2, x := [z>, z′>]>,
H := [F,G], as well as f(x) := F (z) and g(x) := G(z′). Even if
F is not differentiable, AHSDM can still undertake the minimization
task, since f can be set equal to zero, and g := F + G [cf. (7)]. In
such a way, the ability of AHSDM to solve (2) underlines its rich
potential for all the application domains where ADMM has been
shown to be successful [3].

For a user-defined parameter ρ > 0, ADMM generates the se-
quence (zn, z

′
n,un)n∈N by running the following steps during its

nth iteration (n ∈ N):

(n.1) zn+1 := arg minz∈H F (z) + ρ
2
‖Fz + Gz′n − c + un‖2.

(n.2) z′n+1 := arg minz′∈HG(z′)+ ρ
2
‖Fzn+1 +Gz′−c+un‖2.

(n.3) un+1 := un + Fzn+1 + Gz′n+1 − c.

Steps (n.1) and (n.2) are convex-optimization programs themselves.
Even in cases where F , for example, is differentiable and takes a
simple form, such as the quadratic F (z) = z>Πz, for some positive
semidefinite matrix Π, step (n.1) requires the solution of a system of
linear equations with a possibly singular coefficient matrix. To sur-
mount such computational obstacles, at the expense of convergence
speed, the popular primal-dual (PD) methods, e.g., [7, 22], solve (1),
or (2), using low-complexity recursions, where solvers for updating
variables, as in the ADMM steps (n.1) and (n.2), are not necessary.

The hybrid steepest descent method (HSDM) was introduced in
[24] to solve minx∈FixT⊂X f(x), where X is a potentially infinite-
dimensional Hilbert space, f is a differentiable strongly convex func-
tion, and FixT denotes the fixed-point set of a nonexpansive map-
ping T : X → X (see Definitions 1 and 2). Conjugate-gradient-
based variants were introduced in [11–13], offering acceleration of
HSDM’s convergence. To secure (strong) convergence to an optimal
point in Hilbert spaces, step-size parameters are required to be dimin-
ishing across recursions in all of [14, 16, 21, 24–27], while bounded-
ness constraints are imposed on iterates and/or gradients [11–13].

Motivated by recent studies on decentralized optimization [18,
19], where a composite convex minimization task is solved by a large
number of computer nodes s.to a consensus constraint, and by the
similarities those methods share with HSDM, this paper presents
AHSDM to tackle (1). AHSDM’s step-size parameter stays con-
stant across recursions, promoting thus convergence acceleration, no
boundedness constraints are imposed on iterates and/or gradients,
and the smooth part f of the loss is only required to have a Lipschitz-
continuous derivative, without any strong-convexity requirements.

Along the lines of HSDM, (1) is revisited as a variational-
inequality problem over the fixed-point set FixT of an affine
nonexpansive mapping T . Propelled by the numerous ways that
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the nonexpansive-mappings theory offers to approach points within
FixT [1, 6], this study introduces AHSDM; a new member of
the HSDM family of algorithms which solves (1) with tunable
computational complexity. In its simpler form, AHSDM scores a
computational complexity similar to that of the PD methods [7, 22],
while AHSDM can be tuned to reach a complexity similar to that
of ADMM for accelerating convergence. In all its forms, AHSDM
iterates are guaranteed to converge to a solution of (1). Convergence
rate results are also demonstrated. Owing to its structural flexibility,
AHSDM is well-suited for large-scale convex optimization tasks.
To this end, numerical tests on synthetic data and on colored-image
interpolation, a.k.a. inpainting [15], are also presented.

2. AFFINE NONEXPANSIVE MAPPINGS AND THE
VARIATIONAL-INEQUALITY PROBLEM

Regarding notation, Id stands for the identity map inX , i.e., ∀x ∈ X ,
Id x = x, while I denotes the identity matrix. Given matrices
Q1,Q2, ‖Q1‖ and ‖Q1‖F stand for the spectral and Frobenius
norms of Q1, respectively, while Q1 � (�) Q2 iff Q1 − Q2 is
positive (semi)definite. Further, sp(Q) stands for all eigenvalues
λ(Q) of the symmetric Q. The null space of matrix Q is defined
as ker(Q) := {x ∈ X |Qx = 0}. Finally, given g ∈ Γ0(X ), the
subdifferential ∂g is the set-valued mapping defined as ∂g : x 7→
∂g(x) := {ξ ∈ X | ξ>(y − x) + g(x) ≤ g(y), ∀y ∈ X}. The
proofs of the following results can be found in [20].
Definition 1. The fixed-point set of a mapping T : X → X is
defined as the set FixT := {x ∈ X | Tx = x}.
Definition 2. Mapping T : X → X is called (i) nonexpansive
(NonExp) if ‖Tx1 − Tx2‖ ≤ ‖x1 − x2‖, ∀x1,x2 ∈ X , and
(ii) α-averaged if there exist an α ∈ (0, 1) and a NonExp map-
ping R : X → X such that (s.t.) T = αR + (1 − α) Id. It can be
verified that FixR = FixT . In the case where α = 1/2, T is also
called firmly NonExp.
Example 3. Several examples of α-averaged mappings follow.

(i) [1, Prop. 4.8] Given a non-empty closed convex set C ⊂
X , the (metric) projection mapping onto C, defined as PC :
X → C : x 7→ arg minz∈C‖x− z‖, is (1/2)-averaged, with
FixPC = C.

(ii) [1, Prop. 12.27] Given f ∈ Γ0(X ) and γ > 0, the prox-
imal mapping, defined as Proxγf : X → X : x 7→
arg minz∈X f(z) + ‖x − z‖2/(2γ), is (1/2)-averaged,
with Fix Proxγf = arg min f .

(iii) [6, Prop. 2.2] Let Let {Tj}Jj=1 be a finite family (J < ∞)
of NonExp mappings from X to X , and {ωj}Jj=1 be real
numbers in (0, 1] s.t.

∑J
j=1 ωj = 1. Then, T :=

∑J
j=1 ωjTj

is NonExp. Further, consider real numbers {αj}Jj=1 ⊂ (0, 1)

s.t. Tj is αj-averaged, ∀j. Define α :=
∑J
j=1 ωjαj . Then, T

is α-averaged. In all cases, if ∩Jj=1 FixTj 6= ∅, then FixT =

∩Jj=1 FixTj .
(iv) [6, Prop. 2.5], [14, Thm. 3(b)] Let {Tj}Jj=1 be a finite family

(J < ∞) of nonexpansive mappings from X to X . Then,
mapping T := T1T2 · · ·TJ is nonexpansive. Further, con-
sider real numbers {αj}Jj=1 ⊂ (0, 1) s.t. Tj is αj-averaged,
∀j. Define α := [1 + (

∑J
j=1 αj/(1 − αj))

−1]−1. Then,
T is α-averaged. In all cases, if ∩Jj=1 FixTj 6= ∅, then
FixT = ∩Jj=1 FixTj .

Definition 4. A mapping T : X → X is called affine if T [wx1 +
(1− w)x2] = wTx1 + (1− w)Tx2, ∀x1,x2 ∈ X and ∀w ∈ R.

The following assumption is the basic building block of the pro-
posed algorithm.
Assumption 5. Mapping T is defined as Tx := Qx + π, ∀x ∈ X ,
where Q> = Q, Q � 0, ‖Q‖ ≤ 1, and π ∈ X .

Mapping T of Assumption 5 is clearly affine, and according to
[1, Ex. 4.4], it is also NonExp (iff ‖Q‖ ≤ 1). More generally, and
as the following proposition shows, convex combinations as well as
compositions of NonExp affine mappings still satisfy Assumption 5.
Proposition 6. Consider any finite family of mappings {Tj}Jj=1

which satisfy Assumption 5. Then, (i) for any set of convex weights
{ωj}Jj=1, i.e., ωj ∈ [0, 1] with

∑J
j=1 ωj = 1, the convex com-

bination
∑
j ωjTj satisfies Assumption 5, and (ii) given also the

affine mapping T0x := Q0x + π0, ∀x ∈ X , with a symmetric
Q0 � 0, ‖Q0‖ ≤ 1, and π0 ∈ X , the composition mapping
TJTJ−1 · · ·T1T0T1 · · ·TJ−1TJ satisfies Assumption 5.
Proposition 7. For any mapping T that satisfies Assumption 5, its
fixed-point set is the following affine set FixT = ker(I−Q)+w∗ =
ker(U) + w∗, where w∗ is any fixed point of T , and U � 0 is
defined as the symmetric (U> = U) square root of I − Q, i.e.,
U2 = I−Q.

Several examples of mappings which satisfy Assumption 5 are
provided here. Let’s start with an elementary one: consider a non-
zero a ∈ X and a real number b to define the hyperplane P := {x ∈
X | a>x = b}. The associated (metric) projection mapping is

PP =
(
I− 1

‖a‖2 aa>
)

Id + b
‖a‖2 a , (3)

which clearly satisfies Assumption 5.
The prototypical affine set is the one obtained from the solution

of a least-squares (LS) problem. The following proposition provides
several characterizations of such an affine set.
Proposition 8 (Least-squares). Given the M × 1 vector b, and
the M × D matrix A, consider the following LS solution set:
A := arg minx∈X‖Ax − b‖2 = {x ∈ X | A>Ax = A>b}.
For the D × 1 vectors {am}Mm=1 defined by the rows of A, i.e.,
[a1,a2, . . . ,aM ] := A>, as well as the D × 1 vectors {gd}Dd=1:
[g1, . . . ,gD] := G, where G := A>A and c := A>b, let

Am := {x ∈ X | a>mx = bm} , (m = 1, . . . ,M) ,

Gd := {x ∈ X | g>d x = cd} , (d = 1, . . . , D) ,

with associated metric projection mappings PAm and PGd , respec-
tively [cf. (3)]. Then, A becomes the fixed-point set of the following
mappings which satisfy Assumption 5:

A = Fix
[(

I− µ

‖A‖2F
A>A

)
Id + µ

‖A‖2F
A>b

]
(

0 ≤ µ ≤ ‖A‖2F
‖A>A‖

)
= Fix

[
(I−A>A†>) Id +A†b

]
= Fix

[
(I−GG†) Id +G†A>b

]
= Fix

[
(I + γA>A)−1 Id +γ(I + γA>A)−1A>b

]
(γ > 0)

= Fix
[
(1− θ) Id +θ

∑D

d=1
ωdPGd

]
(

0 < θ ≤ 1, 0 < ωd < 1,
∑D

d=1
ωd = 1

)
,
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where † denotes the Moore-Penrose pseudoinverse operation [2].
The following definition and fact help revisit (1).

Definition 9 (Variational-inequality problem). For a NonExp map-
ping T : X → X , point x∗ ∈ FixT is said to solve the variational-
inequality problem VIP(∇f+∂g,FixT ) if there exists ξ∗ ∈ ∂g(x∗)
s.t. ∀y ∈ FixT , 〈y − x∗ | ∇f(x∗) + ξ∗〉 ≥ 0.
Fact 10 ([1, Prop. 26.5]). Point x∗ solves VIP(∇f + ∂g,FixT ) iff
x∗ ∈ arg minx∈FixT [f(x) + g(x)].

The previous fact suggests that any affine NonExp mapping, with
fixed-point set equal to the affine set in (1), can be used to revisit (1)
as a variational-inequality problem. Examples of such affine NonExp
mappings can be found in Proposition 8. This versatility of NonExp
mappings, manifested for example in Proposition 6, equips the pro-
posed algorithm of Sec. 3 with a modularity which is desirable in
nowadays large-scale convex minimization tasks. Based on Fact 10,
the following characterization of minimizers of (1) is made possible.
Proposition 11. Consider any mapping T which satisfies Assump-
tion 5 (see also Proposition 7). Then, point x∗ solves VIP(∇f +
∂g,FixT ) iff ∃ξ∗ ∈ ∂g(x∗) and ∀λ 6= 0, ∃v∗ ∈ X s.t. (x∗,v∗) ∈
O∗(ξ∗, λ) := {(x,v) ∈ FixT ×X | 0 = Uv + λ(∇f(x) + ξ∗)}.

An additional assumption is needed on the non-smooth part g of
(1) to establish the convergence guarantees of AHSDM.
Assumption 12. The graph gra ∂g := {(x, ξ) ∈ X 2 | ξ ∈ ∂g(x)}
of ∂g is closed.

As the following proposition demonstrates, Assumption 12 is
loose enough to cover a plethora of well-known non-smooth losses
(cf. Sec. 4).
Proposition 13. (i) Any g ∈ Γ0(X ) with values in R satisfies As-
sumption 12. A celebrated example of such a function is the `1-norm
g := ‖ · ‖1. (ii) For a nonempty closed convex set C ⊂ X , the indi-
cator function ιC ∈ Γ0(X ), defined as ιC(x) := 0, if x ∈ C, while
ιC(x) = +∞, if x /∈ C, satisfies Assumption 12.

3. ALGORITHM, CONVERGENCE GUARANTEES AND
RATES

Consider any mapping T which satisfies Assumption 5. Examples
are given in Proposition 8. Many more such mappings T can be
generated by combining the “elementary” ones of Proposition 8 in
the ways demonstrated by Proposition 6. Given α ∈ (0, 1), define
the α-averaged mapping

Tαx := (αT + (1− α) Id)x = Qαx + απ , (5)

where Qα := αQ + (1− α)I.
Algorithm 1 (AHSDM). Fix α ∈ (0, 1) and λ > 0. Then, for an
arbitrarily fixed x0 ∈ X , and for all n ∈ N, AHSDM is stated as
follows (xn+1/2 and xn+3/2 are auxiliary variables):

xn+ 1
2

:= Tαxn − λ∇f(xn) , (6a)

xn+1 := Proxλg(xn+ 1
2
) , (6b)

xn+ 3
2

:= Txn+1 − λ∇f(xn+1) , (6c)

xn+2 := Proxλg(xn+ 3
2
) . (6d)

In the case where f = 0, the previous recursions take the form

xn+ 1
2

:= Tαxn , xn+1:= Proxλg(xn+ 1
2
) , (7a)

xn+ 3
2

:= Txn+1 , xn+2:= Proxλg(xn+ 3
2
) . (7b)

Moreover, in the case where g := 0, (6) takes the special form

xn+1 := Tαxn − λ∇f(xn) , (8a)
xn+2 := Txn+1 − λ∇f(xn+1) . (8b)

The following theorem establishes convergence guarantees for
the most general form (6) of AHSDM.
Theorem 14. Consider any mapping T , with FixT 6= ∅, that satis-
fies Assumption 5. If α ∈ [0.5, 1) and λ ∈ (0, 2(1− α)/L), with L
being the Lipschitz constant of∇f , and if the graph gra ∂g satisfies
Assumption 12, then the sequence (xn)n∈N of (6) converges to an
x∗ which solves VIP(∇f + ∂g,FixT ).

The following theorems establish AHSDM’s rates of conver-
gence, which appear to be of the same order as that of ADMM [10].
Assumptions for deriving the following results, as well as x∗, are
adopted from Theorem 14.
Theorem 15. Considering (6), ∃(ξn,vn) ∈ ∂g(xn)×X , ∀n, s.t.

1
n+1

∑n

ν=0
(xν+1 − x∗)

>(I−Q)(xν+1 − x∗) = O( 1
n+1

) ,

1
n+1

∑n

ν=0
‖Uvν+1 + λ[∇f(xν) + ξν+1]‖2 = O( 1

n+1
) ,

1
n+1

∑n

ν=0
‖(Id−T )xν+1‖2 = O( 1

n+1
) ,

where an = O(bn), bn > 0, means that (|an|/bn)n∈N is bounded.
Theorem 16. Considering (7), ∃(ξn,vn) ∈ ∂g(xn)×X , ∀n, s.t.

〈xn+1 − x∗ | (I−Q)(xn+1 − x∗)〉 = O( 1
n+1

) ,

‖Uvn+1 + λξn+1‖2 = O( 1
n+1

) ,

‖(Id−T )xn+1‖2 = O( 1
n+1

) .

4. NUMERICAL TESTS

Tests were performed by running MATLAB on a 64-core server, with
Intel Xeon CPUs (64bits, 2.30GHz) and 256MB of memory.

4.1. Synthetic data

GivenH := Rd, with d := 1, 000, define the closed ball B[hc, r] :=
{h ∈ H | ‖h− hc‖ ≤ r}, for some hc ∈ H and r > 0. Motivated
by [12, Prob. 4.1], the following constrained quadratic program:

min
y∈B1∩B2

y>Πy = min
x:=(y,z,w)∈H3

1
2
y>Πy + ιB1(z) + ιB2(w)

s.to y = z = w , (9)

where x := (y, z,w) := [y>, z>,w>]>, and Π is a d × d di-
agonal matrix, with (unique) minimum entry [Π]11 := 1, maxi-
mum entry equal to 100, while all other diagonal entries are cho-
sen randomly from (1, 100). Moreover, if e1 denotes the first col-
umn of the d × d identity matrix I, then B1 := B[2e1, 1] and
B2 := B[0, 2], while ιB1 and ιB2 denote the associated indicator
functions [cf. Proposition 13(ii)]. By construction, y>Πy is strongly
convex s.t. x∗ := {e1}3 is the unique minimizer of (9).

Being a linear subspace of X := H3, all points A which satisfy
the constraint in (9) constitute an affine set. A nonexpansive mapping
T having A as its fixed-point set is the metric projection mapping
PA(y, z,w) = {(1/3)(y + z + w)}3, ∀y, z,w ∈ H. Form (6) of
AHSDM was applied to (9), with f(x) := (1/2)y>Πy, g(x) :=
ιB1(z)+ιB2(w), andα = 0.5. Notice that for any λ > 0, Proxλg =
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(Id,ProxλιB1
,ProxλιB2

) = (Id, PB1 , PB2), and that the Lipschitz-
continuity constant L of∇f equals the maximum entry of Π.

Since the majority of entries of Π were chosen randomly, 100
Monte-Carlo runs were performed, and the uniformly averaged re-
sults are demonstrated in Fig. 1. AHSDM is compared with ADMM,
PD [7], HSDM [24], as well as [13], [11], and [12], which are de-
noted by CG-HSDM-I, CG-HSDM-II, and CG-HSDM-III, respec-
tively. All methods were tuned for optimal results. As Fig. 1 shows,
ADMM, PD, and AHSDM exhibit similar convergence behavior.

Fig. 1. Deviation of the iterates from the unique minimizer (left),
as well as loss function values (right) are demonstrated in the case
where the condition number of Π [cf. (9)] equals 100.

The previous setting is repeated, but the minimum entry πmin :=
[Π]11 := 10−15, while πmax := 10, resulting into a condition
number πmax/πmin = 1016. Form (7) of AHSDM is applied to
(9), where f := 0 and g(x) := (1/2)y>Πy + ιB1(z) + ιB2(w).
Since f := 0, any L > 0 can be considered here for the Lipschitz-
continuity constant of f ; tuning yielded L = 10−2. All methods
were tested for 100 Monte-Carlo runs, and uniformly averaged re-
sults are depicted in Fig. 2. As expected, HSDM, and CG-HSDM-I,
-II, and -III face problems in converging to the unique minimizer of
(9), since their convergence guarantees are provided only for strongly
convex losses, while Π is chosen here to be “nearly” singular.

Fig. 2. The setting of this experiment follows that of Fig. 1, but the
condition number of the “nearly” singular Π is set equal to 1016.
Since the optimal loss value is very small, 0.5 · 10−15, the ADMM
curve appears to lie on the all-zero curve.

4.2. Colored-image inpainting

Given a noisy (vectorized) image ǐ ∈ Rď with missing entries, ob-
served after a d × d measurement matrix Φ (the noiselet trans-
form [5] was used here), noise n, and a ď × d sampling matrix
S, with ď < d, are applied to the original (normalized) image

i ∈ [0, 1]d ⊂ Rd =: H, as in ǐ = S(Φi + n), the goal is to re-
cover i by removing noise while estimating the missing entries of ǐ.
Following [15], the previous task is formulated as

min
y∈[0,1]d⊂H,
‖SΦy−ǐ‖≤ε

‖Dy‖1,2 = min
(y,z,w)∈H3

‖z‖1,2 + ιB[̌i,ε](Sw) + ι[0,1]d(y)

s.to [L,−I2d]
[

y
z
w

]
= 0 , (10)

where D : H → H2 stands for the discrete gradient operator, which
forms vertical and horizontal differences within an image, ‖ · ‖1,2 is
the mixed `1,2-norm [15], s.t. ‖Dw‖1,2 denotes the celebrated vec-
torial total variation (VTV) [4]. For a user-defined ε > 0, constraint
‖SΦy − ǐ‖ ≤ ε accommodates the data-fit requirement. Moreover,
L := [D>,Φ>]> introduces the affine constraint of (10) by splitting
variables in the loss function.

Form (7) of AHSDM was applied to (10), where f = 0,
while, under x := (y, z,w), g(x) := ‖z‖1,2 + ιB[̌i,ε](Sw) +

ι[0,1]d(y). The affine nonexpansive mapping T used in (7) is
(I + γ[L,−I2d]

>[L,−I2d])
−1 Id, whose fixed-point set, according

to Proposition 8, comprises all points A which satisfy the linear
constraint in (10). Parameter α was set equal to 0.5, λ := 1, and
γ := 0.02. As in Sec. 4.1, tests on the image of Fig. 3 reveal the rich
potential of the advocated AHSDM since it yields similar results to
those of ADMM.

Fig. 3. Original 256 × 256 colored image, i.e., i ∈ R256×256×3,
and its noisy rendition, observed after Gaussian noise of standard
deviation 0.1 was added to Φi, and 80% of the entries of the noisy Φi
were randomly removed. Recovered images by ADMM and AHSDM
are also shown.

PSNR (dB) CIEDE2000
ADMM 22.047 7.737
AHSDM 21.640 7.372

Table 1. Uniformly averaged results obtained after 100 Monte Carlo
runs on the observed image of Fig. 3. Larger values of peak signal-
to-noise ratio (PSNR) [23] and smaller values of the color-difference
metric CIEDE2000 [17] indicate “better-quality” reconstructed im-
ages.
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[22] B. C. Vũ, “A splitting algorithm for dual monotone inclusions involving
cocoercive operators,” Advances in Computational Math., vol. 38, no. 3,
pp. 667–681, 2013.

[23] Wikipedia, “Peak signal-to-noise ratio,” 2016. [Online]. Available:
https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio

[24] I. Yamada, “The hybrid steepest descent method for the variational
inequality problem over the intersection of fixed point sets of nonex-
pansive mappings,” in Inherently Parallel Algorithms for Feasibility
and Optimization and their Applications, D. Butnariu, Y. Cencor, and
S. Reich, Eds. Elsevier, 2001, pp. 473–504.

[25] I. Yamada, N. Ogura, and N. Shirakawa, “A numerically robust hy-
brid steepest descent method for the convexly constrained generalized
inverse problems,” Contemporary Math., vol. 313, pp. 269–305, 2002.

[26] I. Yamada, M. Yukawa, and M. Yamagishi, “Minimizing the Moreau
envelope of nonsmooth convex functions over the fixed point set of
certain quasi-nonexpansive mappings,” in Fixed-Point Algorithms for
Inverse Problems in Science and Engineering, 2011, pp. 345–390.

[27] M. Yamagishi and I. Yamada, “Nonexpansiveness of a linearized aug-
mented Lagrangian operator for hierarchical convex optimization,” In-
verse Problems, 2016, to appear.

4715


