
ASYNCHRONOUS PARALLEL NONCONVEX LARGE-SCALE OPTIMIZATION

L. Cannelli,? F. Facchinei,† V. Kungurtsev,‡ and G. Scutari?

ABSTRACT
We propose a novel parallel asynchronous algorithmic framework
for the minimization of the sum of a smooth (nonconvex) function
and a convex (nonsmooth) regularizer. The framework hinges on
Successive Convex Approximation (SCA) techniques and on a novel
probabilistic model which describes in a unified way a variety of
asynchronous settings in a more faithful and exhaustive way with
respect to state-of-the-art models. Key features of our framework
are: i) it accommodates inconsistent read, meaning that components
of the variables may be written by some cores while being simulta-
neously read by others; ii) it covers in a unified way several exist-
ing methods; and iii) it accommodates a variety of parallel comput-
ing architectures. Almost sure convergence to stationary solutions
is proved for the general case, and iteration complexity analysis is
given for a specific version of our model. Numerical results show
that our scheme outperforms existing asynchronous ones.

Index Terms— Asynchronous algorithms; big-data; inconsis-
tent read; nonconvex constrained optimization.

1. INTRODUCTION
We consider the constrained minimization problem:

min
x∈X

F (x) , f(x) +G(x) (1)

where f is smooth (not necessarily convex), G is convex (not neces-
sarily smooth), and X , X1 × · · · XN ⊆ Rn is a closed set with a
Cartesian product structure. Problem (1) arises in many fields of en-
gineering, including compressed sensing, sensor networks, imaging,
machine learning, and genomics. Usually the nonsmooth term G is
used to promote some extra structure in the solution, like sparsity.

Many of the aforementioned applications give rise to extremely
large problems so that recent years have witnessed a flurry of re-
search activity aimed at developing parallel solution methods; some
recent works include [1–6]. However, these methods are synchronous
and therefore do not fully exploit the potential of parallel architec-
tures. Asynchronous parallel methods reduce the idle times of cores,
mitigate communication and memory-access congestion, make al-
gorithms more fault-tolerant and have been empirically found, in
certain cases, to accelerate convergence with respect to their syn-
chronous counterparts. Studies on asynchronous methods have mainly
dealt with convex minimization, see for example [7–18], and non-
expansive fixed-point problems [19–21]. In [22] nonconvex mini-
mization problems are considered, but in the nonconvex setting only
smooth problems with convex constraints are analyzed. More re-
cently, [9] and [14] study unconstrained and constrained nonconvex
optimization problems, respectively. However, these two papers pro-
pose algorithms that require, at each iteration, the global solution of
nonconvex subproblems that could be extremely hard to solve and
potentially as difficult as the original one.

Asynchronous algorithms produce a sequence xk and, at each
iteration, a core updates a component xi, independently from other
cores. To perform its update, core c uses a “local estimate”, say

The authors are listed in alphabetical order.
?School of Industrial Engineering, Purdue University, USA; emails:
<lcannell,gscutari>@purdue.edu. The work of Cannelli and
Scutari was supported by the USA National Science Foundation under Grants
CIF 1564044, CAREER Award 1555850, and ONR N00014-16-1-2244.
†Dept. of Computer, Control, and Management Engineering, University of
Rome “La Sapienza”, Italy; email: facchinei@dis.uniroma1.it.
‡Agent Technology Center, Czech Technical University in Prague, Czech
Republic; email: vyacheslav.kungurtsev@fel.cvut.cz.

x̃k
c , of xk. In these asynchronous updates, two features are par-

ticularly meaningful, namely: 1) how the component xi is chosen
at each iteration; and 2) how x̃k

c is formed. The selection of the
component to update can be done at random (random selection) or
according to schemes that give some kind of guarantees (a case we
term pseudo-deterministic selection, see Sec. 2.2). Referring to 2),
if x̃k

c = xk−dk , for some positive integer dk, the algorithm is asyn-
chronous and it is said to use a “consistent read”; if (x̃k

c)i = (xk−dki)i,
i = 1, . . . , N , where dki are positive integers that may be different
for different i (blocks) and c (cores), the algorithm is asynchronous
and it is said to use an “inconsistent read” (or to be “lock-free”). The
sources of inconsistent read are many and arise from the computa-
tional architectures (shared memory multicore architecture, message-
passing system, etc.). It is widely accepted that lock-free asyn-
chronous methods with random selection are more efficient and suit-
able for applications in complex computational architectures.

The main contribution of this paper is a novel parallel asyn-
chronous algorithmic framework for the class of problems (1) that
i) uses random (or pseudo-deterministic) selection and inconsistent
read; ii) is based on the SCA paradigm: each core updates a block-
variable by solving a strongly convex “approximation” of the origi-
nal (nonconvex) problem; the method is therefore easily implementa-
ble and can be tailored to the specific structure of Problem (1) (cf. Sec.
2); iii) can be equipped with global convergence iteration bounds
when using fixed stepsizes (diminishing stepsizes can also be used,
and asymptotic convergence is proved); and iv) is numerically very
efficient and, in our tests, outperforms current asynchronous schemes
(cf. Sec. 3). We remark that the proposed scheme is also able to deal
with nonconvex constraints, see [23]; however, for the sake of sim-
plicity here we consider only convex constraints.

The study of parallel asynchronous algorithms using inconsis-
tent read in conjunction with block random selection rules is com-
plex and has been initiated only very recently, [9, 13, 14, 21]. Our
probabilistic model is different from and more complex than the
one used in the aforementioned papers; we believe that this addi-
tional complexity is essential to capture the intricacies of these asyn-
chronous methods and that the analyses in [9, 13, 14, 21], in spite of
their pioneering merits, are lacking. Indeed, [9, 13, 14, 21] seem to
assume that either x̃k

c is deterministic or (explicitly or implicitly) x̃k
c

is independent of the story of the algorithm up to iteration k. Since
both these assumptions are far from being satisfied in real comput-
ing environments, in our view the results in [9, 13, 14, 21] are in
jeopardy. We also remark that, to the best of our knowledge, our
proposal is the first method for nonconvex problems that can readily
be implemented since it requires only the solution of strongly convex
subproblems (as opposed to [9, 14]). The only other method sharing
this key feature is described in [22, Ch. 7], where gradient projection
is used. However gradient projection can be very inefficient in hard
problems, can not be generalized in any way to deal with nonconvex
constraints and, finally, the method in [22] only deals with smooth
problems and uses pseudo-deterministic selection.

2. MODEL AND ALGORITHM
Consider Problem (1) under the following blanket assumptions.
Assumption A.
(A1) Each Xi is nonempty, closed, and convex (and we partition

x ∈ Rn accordingly: x = (x1, . . . ,xN), with xi ∈ Rni);
(A2) f is C1 on an open set containing X ;
(A3) ∇xif is Lf -Lipschitz continuous on Xi;

4706978-1-5090-4117-6/17/$31.00 ©2017 IEEE ICASSP 2017

(A4) G is separable (G(x) ,
∑

i gi(xi)), continuous, convex (pos-
sibly nondifferentiable), and Lipschitz continuous on X ;

(A5) Problem (1) admits a solution.
The above assumptions are standard and are satisfied by many prac-
tical problems. For instance, A3 holds trivially if X is bounded.
Our goal is to design a parallel, asynchronous, lock-free algorithm
for Problem (1). Our proposal leverages FLEXA [4], a synchronous
parallel method for the solution of Problem (1). Therefore we start
with a brief description of FLEXA and then build on it to define our
new asynchronous method.
Parallel synchronous updates. In FLEXA, given the current iter-
ate xk, all blocks xi are updated at the same time by solving, for
each block i, a convexified problem wherein the nonconvex objec-
tive function F is replaced by the following convex surrogate

x̂i(x
k) , argmin

xi∈Xi

F̃i(xi;x
k) , f̃i(xi;x

k) + gi(xi), (2)

where f̃i : Xi × X → R should be regarded as a (simple) strongly
convex approximations of f at the current iterate xk, with respect to
xi, that preserves the first order properties of f in xk. We require
that the following quite natural assumptions be satisfied (we denote
by∇f̃i the partial gradient of f̃i with respect to the first argument).
Assumption B (On the surrogate functions).
(B1) f̃i(•;xk) is cf̃ -strongly convex and continuously differentiable

on Xi for all xk ∈ X ;

(B2) ∇f̃i(xk
i ;xk) = ∇xif(xk), for all xk ∈ X ;

(B3) ∇f̃i(xk
i ; •) is Lipschitz continuous on X , for all xk

i ∈ Xi,
with a Lipschitz constant which is independent of i and k.

A wide array of examples of surrogate functions f̃i satisfying As-
sumption B can be found in [4]. Here we only note that one can al-
ways choose as a surrogate the linearization f̃i(xi;x

k) = ∇xif(xk)T

(xi − xk
i) + c̃i‖xi − xk

i ‖22, where c̃i is a positive constant.
Using x̂i(x

k) defined in (2), the synchronous parallel update of
each block xk

i to xk+1
i is performed taking a step γk > 0 from xk

i

along the direction x̂i(x
k)− xk

i , which reads

xk+1
i = xk

i + γk
(
x̂i(x

k)− xk
i

)
, ∀i = 1, . . . , N. (3)

The step-size γk can be chosen according to classical diminishing
rules with an additional safeguard, see Sec. 2.2 for the precise con-
ditions. We will also consider rules that do not drive the stepsize to
zero; which are useful to obtain iteration complexity results.
Parallel asynchronous updates: core-based model. We break now
the synchronization enforced in the parallel updates (3) by allow-
ing the cores to update the block-components xi in an independent
and asynchronous fashion, without any form of locking. Our asyn-
chronous model, at a core level, is described in Algorithm 1, and
termed Asynchronous FLexible ParallEl Algorithm (AsyFLEXA).
At any time, a core c can update a block-component xi of xk chosen
at random in the set N , {1, . . . , N}, thus generating the vector
xk+1. To update block i, core c: i) reads the inconsistent iterate x̃k

c ;
ii) computes x̂i(x̃

k
c) solving the strongly convex optimization prob-

lem (2); iii) reads the current iterate xk
i , which may be different from

what it cached, (x̃k
c)i, because other cores might have updated x in

the interim; and iv) writes xk+1
i according to (4). Note that we do

not restrict the (pkc)i to any specific distribution (cf. Assumption C).
Parallel asynchronous updates: global model. As pointed out also
in [22, Ch. 6] the analysis of asynchronous algorithms is a challeng-
ing task. Our approach to analyze Algorithm 1 is to build a “global
description” of the the method, where all updates performed by the
cores are seen as indistinguishable. The global model is formally
given by Algorithm 2. At this higher level, an iteration k → k + 1

Algorithm 1 (AsyFLEXA)

Initialization: k = 0, x0 ∈ X , {γk}k, (pk,ci)i,c.
while a termination criterion is not met, every core c asyn-
chronously and continuously do
(S.1): Select a block-index i with probability (pkc)i;
(S.2): Compute x̂i(x̃

k
c) [cf. (2)] using the cached inconsis-

tent iterate x̃k
c ;

(S.3): Read xk
i ;

(S.4): Update xi by setting
xk+1
i = xk

i + γk(x̂i(x̃
k
c)− xk

i); (4)

(S.5): Update the iteration counter k ← k + 1;
end while

is defined as the time at which a block i is updated by some core
using an inconsistent read xk−d , (xk−d1

1 , . . . ,xk−dN
N), where

d , (di)
N
i=1 is the vector of delays. Note that we are no longer

interested in which core has performed the aforementioned update
(we thus omitted the dependence on c). Of course different cores
would perform different updates because they would be using dif-
ferent inconsistent vectors xk−d. Roughly speaking, this source of
randomness is captured by our model assuming that the pair index-
delay (i,d) used at each iteration k to update xk is a realization of
a random vector ωk , (ik,dk), taking values onN ×D with some
probability pki,d , P((ik,dk) = (i,d)), where D is the set of all
possible delay vectors. Since each delay di ≤ τ (see Assumption
C below), D is the set of all possible N -length vectors whose com-
ponents are integers between 0 and τ . More formally, let Ω be the
sample space of all the sequences {(ik,dk)}k, and let us define the
discrete-time, discrete-value stochastic process ω, where {ωk(ω)}k
is a sample path of the process. The k-th entry ωk(ω) of ω(ω)−the
k-th element of the sequence ω−is a realization of the random vec-
tor ωk = (ik,dk) : Ω 7→ N × D. This process fully describes
the evolution of Algorithm 2. Indeed, given a starting point x0, the
trajectories of the variables xk and xk−d are completely determined
once a sample path {(ik,dk)}k is drawn by ω. The stochastic pro-
cess ω is fully defined once the joint finite-dimensional probabil-
ity mass functions pω0:k (ω0:k) , P(ω0:k = ω0:k) are given, for
all admissible tuples (ω0, . . . , ωk) and k. In fact, this joint dis-
tribution induces a valid probability space (Ω,F , P) over which
ω is well-defined and has pω0:k as its finite-dimensional distribu-
tions. The probabilities pki,d appearing explicitly in Algorithm 2 are
just the marginal distributions of pω0:k , and thus given by pki,d =∑

(ω0,...,ωk−1) pω0:k (ω0, . . . , ωk−1, (i,d)). We remark that, since
Algorithm 2 is just a descriptive model, these probabilities need not
be known, they are instead the result of the specific implementation
of Algorithm 1. Finally, we need to define the conditional probabil-
ities p((i,d) |ω0:k) , P(ωk+1 = (i,d)|ω0:k = ω0:k). We only
require some minimal conditions on the model as stated next.
Assumption C (On the global model, Algorithm 2). Suppose that

(C1) There exists a τ ∈ N+, such that dki ≤ τ , for all i and k;

(C2) For all i = 1, . . . , N and ω0:k−1 such that
pω0:k−1(ω0:k−1) > 0, it holds

∑
d∈D p((i,d) |ω0:k−1) ≥

pmin, for some pmin > 0;

(C3) P
({
ω ∈ Ω : lim infk→∞ p(ω |ω0:k−1) > 0

})
= 1.

These are quite reasonable assumptions. C1 just limits the age of
the old information used in the updates. Condition C2 guarantees
that at each iteration every block index i has a positive probability

4707

Algorithm 2 (AsyFLEXA: A Global Description)

Initialization: k = 0, x0 ∈ X , {γk}k.
while a termination criterion is not met do
(S.1): The random variables (ik,dk) take realization (i,d);
(S.2): Compute x̂i(x̃

k−d) [cf. (2)];
(S.3): Read xk

i ;
(S.4): Update xi by setting

xk+1
i = xk

i + γk(x̂i(x̃
k−d)− xk

i); (5)

(S.5): Update the iteration counter k ← k + 1;
end while

to be updated. Finally, C3 simply says, roughly speaking, that the
probability of the event that comprises all ω such that for an infinite
number of iterations the algorithm picks-up a pair index-delay whose
probability decreases to zero, must have zero probability.
2.1. Examples and special cases
The proposed model encompasses several instances of practical in-
terest, some of which are discussed next. These examples show that
we can easily recover settings analyzed in the literature but also deal
with settings that to date could not be reliably analyzed.
Deterministic sequential cyclic Block-Coordinate Descent (BCD)
method: Suppose that there is only one core that cyclically updates
all block-variables in a given order; for simplicity we assume the
natural order, from 1 to N . Since there is only one core, the reading
is always consistent and there are no delays: D = {0}. This is a
limit case, but it is very interesting that it fits into our framework.
Randomized sequential BCD method: Suppose that there is only
one core, but differently from the previous case, at each iteration,
the core selects randomly an index i with a positive (bounded away
from zero) probability. This is still a special case of our model, with
x̃k = xk or, equivalently, D = {0}.
Asynchronous BCD with inconsistent read: Consider a generic
shared memory system. Since we do not make any particular as-
sumption, the set D is given by all N -length vectors whose compo-
nents are any non negative integers between 0 and τ . Suppose that, at
every k, all cores select an index uniformly at random, but we leave
the possibility that the probabilities with respect to delays are differ-
ent. In other words, we suppose that for every given k ≥ 0, ω0:k,
and i ∈ N , we have

∑
d∈D p((i,d) |ω0:k) = 1/N.Note that this

setting corresponds to the one analyzed in [13,14]. However, we can
easily change the values of the

∑
d∈D p((i,d) |ω0:k) and make the

probabilities of selecting indices different one from the other and/or
depend on the iteration and/or on the history of the process; these
options are not available to [9,13,14]. This possibility has important
practical ramifications, since the assumption that the indices are se-
lected with uniform probability is extremely strong. We make here
another example hinting at this difficulty. Consider a message pass-
ing system; it will be in general true that cores performing operations
are different and on top, the number of block-variables dealt by each
core may also be different; in this situation uniformity of the proba-
bilities of selecting an index cannot be expected.
Asynchronous BCD with inconsistent read and block-partitioning:
This is the setting most often used in numerical experiments, since it
has proven to be most effective in practice; it also models a message
passing architecture. Suppose we have C cores and that we parti-
tion block-variables in C groups I1, I2, . . . , IC . Each block Ic is
assigned to core c and only core c can update block-variables in Ic.
Our mathematical translation of this setting is exactly the one in the
example above with the additional provision of setting for all ω0:k

and i, with i ∈ Ic, p((i,d) |ω0:k) = 0, if even just a dj , j ∈ Ic, is

not zero. In fact, since no core c′ 6= c can update the variables in
Ic, all this variables can always be assumed to have zero delay. Note
that in [13] the numerical experiments are carried out for a with-
out replacement setting which is just a variant of this setting and for
which no theoretical analysis is offered in [13].
2.2. Convergence and iteration complexity
We provide now the main convergence result. In order to do so, we
need some conditions on the stepsize sequence {γk}k.
Assumption D (On the stepsize). {γk}k is chosen so that

(D1) γk ↓ 0;
∑∞

k=0 γ
k = +∞; and

∑∞
k=0(γk)2 < +∞;

(D2) γk+1/γk ≥ η ∈ (0, 1).

Conditions in D1 are quite standard and satisfied by most practical
diminishing stepsize rules; see, e.g., [22]. D2 is less standard, but it
is however very mild and satisfied by most classical choices of γk in
diminishing stepsize methods (e.g. monotonically decreasing rules).

We can now state the main convergence result of Algorithm 2,
whose proof is omitted because of the space limitation, see [23].

Theorem 1 Consider Algorithm 2 and the stochastic process ω.
Given the initial point x0 ∈ X , let {xk}k be the sequence gener-
ated by the algorithm. Suppose that i) Assumptions A-D hold; and
ii) {xk} is bounded almost surely (a.s.). Then the following hold
a.s.: (a) Every limit point of {xk}k is stationary for Problem (1);
and (b) The sequence of objective function values converges.

In addition to Assumptions A-D, Theorem 1 requires the sequence
{xk}k to be bounded a.s.. The following corollary provides some
concrete conditions for this boundedness to hold.

Corollary 2 The same conclusions of Theorem 1 hold if assumption
ii) is replaced by the following: F is coercive on X and xk

i = x̃k
i ,

for any i ∈ N and k ≥ 0.

We note that the equality xk
i = x̃k

i is automatically satisfied in a
message passing setting or in a shared memory-based architecture if
the variables are partitioned and assigned to different cores.

The proposed framework represents a gamut of algorithms, each
of them corresponding to a specific choice of the surrogate functions
f̃i and stepsize γk, all converging under the same conditions; see
[23] for a discussion of several instances of our framework.
Pseudo-deterministic block selection: The algorithmic framework
introduced so far uses random selection rules for the updates of the
blocks. However, all convergence results can be extended to the case
in which a pseudo-deterministic selection rule of the blocks is per-
formed. In this setting, we do not make any probabilistic assumption,
but simply assume that, in Step S.1 of Algorithm 2, i and d are such
that C1 and the following modification of C2 holds:
(C2’) Every block is updated every B ≤ τ iterations, i.e., ∀k, i,

∃j ∈ {k, k+1, . . . , k+B} such that ij = i, where ij denotes
the index of the component updated at the jth iteration.

Note that the pseudo-deterministic rules are not special cases of the
random selection ones, since the latter do not satisfy condition C2’.
It can be shown that the conclusions of Theorem 1 still hold, in a de-
terministic sense, for this variant. Furthermore, one can also estimate
an iteration complexity bound, as given next. We first introduce the
following stationarity measureMF (x) = x−argminy∈X{∇f(x)T(y−
x) + g(y) + (1/2) · ‖y−x‖22}. MF is a continuous function whose
value is zero if and only if x is a stationary point. We term a point x∗,
an ε-solution of (1) if ‖MF (x∗)‖22 ≤ ε. The following deterministic
version of Theorem 1 holds.
Theorem 3 [24] Consider Algorithm 2 wherein in Step 2 the selec-
tion rule for i and d is such that Assumptions C1 and C2’ are satis-
fied. Assume further that i) Assumptions A and B are satisfied; ii) F

4708

is coercive on X ; and iii) γk is a nonincreasing sequence of scalars
satisfying lim infk γ

k > η, and γk < cf̃/(Lf + (τ2Lf)/2), for all
k. Given x0 ∈ X , let {xk}k be the sequence generated by the algo-
rithm. Then (a) Every limit point of {xk}k is stationary for Problem
(1); and (b) The sequence of objective function values converges; (c)
An ε-solution of (1) is achieved in O(1/ε) iterations.

It is possible to obtain complexity results also in the case of random
selection rules (under additional assumptions); see [24] for details.

3. NUMERICAL RESULTS
In this section we test our algorithms on a convex instance of Prob-
lem (1)−the LASSO problem−and a nonconvex one−a quadratic
nonconvex problem. All codes were written in C++ using OpenMP.
The algorithms were tested on a machine with two 10-Core Intel
Xeon-E5 processors (20 cores in total) and 256 GB of RAM. In all
the experiments, the starting point was the zero vector.
Example 1: LASSO. Consider the LASSO problem, Problem (1),
with f(x) = 1

2
‖Ax − b‖22, G(x) = λ ‖x‖1, and X = Rn, with

A ∈ Rm×n and b ∈ Rm, and λ > 0.
We tested AsyFLEXA in the following setting. We set N = n

(scalar blocks) and we partitioned the variables among the cores,
with only one core per partition. We chose this implementation be-
cause it was shown to be particularly effective; see, e.g., [8]. At each
iteration, each core selects an index within its partition uniformly
at random. The surrogate functions f̃i were chosen as f̃i(xi; x̃k) =
f(xi; x̃

k
−i)+(τk/2) ·(xi−xki)2, where the sequence {τk}k, shared

among all the cores, was updated every n iterations, according to
the heuristic proposed in FLEXA [4]. Note that in this setting, the
unique solution x̂i of each subproblem (2) can be computed in closed
form using the soft-thresholding operator [3]. For the stepsize se-
quence {γk}k we used the rule γk+1 = γk(1 − µγk) with γ0 =
1 and µ = 10−6, which satisfies Assumption D. We compared
AsyFLEXA with the state-of-the-art asynchronous schemes
ASYSPCD [13] and ARock [21]. For these competitors the use of
stepsizes that guarantee theoretical convergence leads to very poor
practical performance and the algorithms simply do not make any
practical progress towards optimality in a reasonable number of it-
erations. So, we chose values of the free parameters that violate the
thresholds set by the analysis in [13,21] for the convergence. For the
stepsize of ASYSPCD we used γ = 1 while for the one of ARock
we used the same rule employed in our AsyFLEXA, with a safe-
guard that guarantees that the stepsize never becomes smaller than
0.1. We remark that, in this partitioned setting, our AsyFLEXA is
the only algorithm with convergence guarantees (cf. Corollary 2).

We generated the LASSO problem using the random generator
proposed by Nesterov in [1], which permits to control the sparsity
of the solution. We considered problems with 40000 variables and
matrix A having 20000 rows, and set λ = 1; the percentage of
nonzero in the solution is 1%. In the implementation of all the algo-
rithms, we computed the matrix ATA and the vector ATb offline.
In the left panel of Figure 1 we plot the relative error on the objec-
tive function versus the CPU time, using 2 and 20 cores. The curves
are averaged over five independent problem realizations. The fig-
ure shows that AsyFLEXA significantly outperforms all the other
algorithms. Moreover, at difference with the other algorithms, its
empirical convergence speed significantly increases with the num-
ber of cores. This is mainly due to the facts that i) AsyFLEXA is
not a standard proximal-gradient method; ii) AsyFLEXA does not
use a stepsize determined by the parameters of f while ASYSPCD
and ARock use a stepsize determined by the Lipschitz constant of
∇xif and ∇f , respectively, which drastically slows down the al-
gorithm. In order to quantify the scalability of the algorithms, in

Fig. 1: (Left) LASSO: Relative error versus CPU time. (Right) LASSO: Speedup.

Fig. 2: Quadratic nonconvex problem: Stationarity distance versus CPU time.

the right panel of Figure 1 we plot the speedup achieved by each of
the algorithms versus the number of cores for the LASSO problem.
We defined the speedup as the ratio between the runtime on a single
core and the runtime on multiple cores. The runtimes we used are
the CPU times needed to reach a relative error less than 10−5 for
AsyFLEXA and less than 10−1 for ASYSPCD and ARock. We used
different thresholds because ASYSPCD and ARock do not reach a
relative error as small as AsyFLEXA; however the comparison in
terms of speedup is fair since all the algorithms run for a consider-
able amount of time. Note that while AsyFLEXA and ARock show
a good speedup, near to linear up to 10 cores, ASYSPCD lags behind.
Example 2: Nonconvex Quadratic Problem. We consider now the
following nonconvex instance of problem (1):

minimize
x∈Rn

F (x) , ‖Ax− b‖22 − c̄
2
‖x‖22 + c‖x‖1

s.t. −b ≤ xi ≤ b i = 1, . . . , n
(6)

where c is a positive constant chosen so that (6) is nonconvex. In par-
ticular, we set c̄ = 1000, c = 100, b = 1, n = 10000 and the matrix
A having 9000 rows was generated using the Nesterov’s method as
in the LASSO problem. The tuning of the algorithms is the same as
for the LASSO problem, except that for AsyFLEXA we set τk > c̄,
for all k, so that each surrogate function f̃i is strongly convex. Since
(6) is nonconvex, we compare the performances of the algorithms
using as a merit function the distance from stationarity described in
detail in [4, Sec. VI-C]. In Fig. 2 we plot the stationarity measure
versus the CPU time, for all the algorithms; the curves are averaged
over five independent realizations. All the algorithms were observed
to converge to the same stationary solution of (6). Note, however,
that for ASYSPCD and ARock there is no formal proof of conver-
gence in this nonconvex setting. The figure shows that, even in the
nonconvex case, AsyFLEXA outperforms the other algorithms.

4. CONCLUSIONS
We proposed a novel SCA-based algorithm for the parallel asyn-
chronous minimization of the sum of a nonconvex smooth function
and a convex nonsmooth one. The underlying probabilistic model
captures the essential features of modern multi-core architectures by
providing a more realistic description of lock-free implementations
subject to inconsistent read. We establish almost sure convergence
of the proposed scheme. Preliminary numerical results indicate that
our algorithm outperforms current asynchronous schemes on both
convex and nonconvex problems.

4709

5. REFERENCES

[1] Yu Nesterov, “Gradient methods for minimizing composite
functions,” Mathematical Programming, vol. 140, pp. 125–
161, August 2013.

[2] Paul Tseng and Sangwoon Yun, “A coordinate gradient descent
method for nonsmooth separable minimization,” Mathematical
Programming, vol. 117, no. 1-2, pp. 387–423, March 2009.

[3] Amir Beck and Marc Teboulle, “A fast iterative shrinkage-
thresholding algorithm for linear inverse problems,” SIAM
Journal on Imaging Sciences, vol. 2, no. 1, pp. 183–202, Jan.
2009.

[4] F. Facchinei, G. Scutari, and Simone Sagratella, “Parallel se-
lective algorithms for nonconvex big data optimization,” IEEE
Transactions on Signal Proces., vol. 63, no. 7, pp. 1874–1889,
April 2015.

[5] A. Daneshmand, F. Facchinei, V. Kungurtsev, and G. Scutari,
“Hybrid random/deterministic parallel algorithms for convex
and nonconvex big data optimization,” IEEE Transactions on
Signal Proces., vol. 63, no. 13, pp. 3914–3929, August 2015.

[6] Paolo Di Lorenzo and Gesualdo Scutari, “Next: In-network
nonconvex optimization,” IEEE Transactions on Signal and
Information Processing over Networks, vol. 2, no. 2, pp. 120–
136, 2016.

[7] A. Nedić, D. P. Bertsekas, and V. S. Borkar, “Distributed asyn-
chronous incremental subgradient methods,” Studies in Com-
putational Mathematics, vol. 8, pp. 381–407, 2001.

[8] B. Recht, C. Re, S. J. Wright, and F. Niu, “Hogwild: A lock-
free approach to parallelizing stochastic gradient descent,” in
Advances in Neural Information Processing Systems, 2011, pp.
693–701.

[9] X. Lian, Y. Huang, Y. Li, and J. Liu, “Asynchronous parallel
stochastic gradient for nonconvex optimization,” in Advances
in Neural Information Processing Systems, 2015, pp. 2719–
2727.

[10] Z. Huo and H. Huang, “Asynchronous stochastic gradient de-
scent with variance reduction for non-convex optimization,”
arXiv preprint arXiv:1604.03584, 2016.

[11] Horia Mania, Xinghao Pan, Dimitris Papailiopoulos, Benjamin
Recht, Kannan Ramchandran, and Michael I. Jordan, “Per-
turbed iterate analysis for asynchronous stochastic optimiza-
tion,” arXiv:1507.06970, 2016.

[12] J. Liu, S. J. Wright, C. Ré, V. Bittorf, and S. Sridhar, “An asyn-
chronous parallel stochastic coordinate descent algorithm,”
The Journal of Machine Learning Research, vol. 16, no. 1, pp.
285–322, 2015.

[13] Ji Liu and Stephen J Wright, “Asynchronous stochastic coordi-
nate descent: Parallelism and convergence properties,” SIAM
Journal on Optimization, vol. 25, no. 1, pp. 351–376, 2015.

[14] D. Davis, “The asynchronous palm algorithm for nonsmooth
nonconvex problems,” arXiv preprint arXiv:1604.00526, 2016.

[15] M. Hong, “A distributed, asynchronous and incremental algo-
rithm for nonconvex optimization: An admm based approach,”
arXiv preprint arXiv:1412.6058, 2014.

[16] E. Wei and A. Ozdaglar, “On the o (1= k) convergence of
asynchronous distributed alternating direction method of mul-
tipliers,” in Global Conference on Signal and Information Pro-
cessing (GlobalSIP), 2013 IEEE. IEEE, 2013, pp. 551–554.

[17] F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem, “Asyn-
chronous distributed optimization using a randomized alternat-
ing direction method of multipliers,” in Decision and Control
(CDC), 2013 IEEE 52nd Annual Conference on. IEEE, 2013,
pp. 3671–3676.

[18] Patrick L Combettes and Jonathan Eckstein, “Asynchronous
block-iterative primal-dual decomposition methods for mono-
tone inclusions,” arXiv preprint arXiv:1507.03291, 2015.

[19] G. M. Baudet, “Asynchronous iterative methods for multipro-
cessors,” Journal of the ACM (JACM), vol. 25, no. 2, pp. 226–
244, 1978.

[20] A. Frommer and D. B. Szyld, “On asynchronous iterations,”
Journal of computational and applied mathematics, vol. 123,
no. 1, pp. 201–216, 2000.

[21] Z. Peng, Y. Xu, M. Yan, and W. Yin, “Arock: an algorith-
mic framework for asynchronous parallel coordinate updates,”
arXiv preprint arXiv:1506.02396, 2015.

[22] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed
computation: numerical methods, vol. 23, Prentice hall Engle-
wood Cliffs, NJ, 1989.

[23] L. Cannelli, G. Scutari, F. Facchinei, and V. Kungurtsev,
“Asynchronous parallel algorithms for nonconvex big-data
optimization: Model and convergence,” Technical Report,
Purdue University, September 2016. Available online at:
http://web.ics.purdue.edu/
∼lcannell/AsyFLEXA-TR_I.pdf.

[24] L. Cannelli, G. Scutari, F. Facchinei, and V. Kungurtsev,
“Asynchronous parallel algorithms for nonconvex big-data op-
timization: Complexity and numerical results,” Technical Re-
port, Purdue University, September 2016. Available online at:
http://web.ics.purdue.edu/
∼lcannell/AsyFLEXA-TR_II.pdf.

4710

