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ABSTRACT

One-dimensional Bayesian filtering and smoothing problems
can be solved numerically using a number of algorithms, even
in nonlinear and non-Gaussian cases. In this educational pa-
per we advocate for the benefits of visualizing the obtained
posterior densities as complement to, e.g., estimation error
analysis. In addition to a review of Bayesian filtering and
smoothing and the respective point mass and particle solu-
tions, we devise a novel algorithm for filtering when the like-
lihood cannot be evaluated. Several instructive examples are
discussed and easily adjustable matlab code is provided as
complement to this paper.

Index Terms— Bayesian filtering, smoothing, point mass
filter, particle filter.

1. INTRODUCTION

Bayesian state estimation [1] is an established and flexible
signal processing framework that can accommodate many
real world problems such as target tracking and naviga-
tion [2], audio restoration [3], speech processing [4], and
processing of financial data [5]. The main idea is to obtain a
probabilistic description of a state xk by (sequentially) pro-
cessing measurements y1:l = {y1, . . . , yl}, where the tempo-
ral evolution of the state and its relation to the measurement
are described by a state space model

xk+1 = f(xk, vk), yk = h(xk, ek). (1)

The Bayesian framework [1, 6, 7, 8] asserts that the involved
process and measurement noise, vk and ek, respectively, and
the initial state x0 are random variables with a known dis-
tribution. Consequently, xk and yk are random variables for
all k and the estimation task amounts to finding a conditional
distribution of xk given a sequence of measurements y1:l.

In this paper we address the marginal filtering and smooth-
ing problems. That is, our aim is to recover the conditional
probability density function p(xk | y1:l) with l = k for fil-
tering and l > k for smoothing problems [9]. The focus
on the scalar case allows us to circumvent the fact that it is
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not feasible to compute p(xk | y1:l) analytically except for
a few special cases: The linear Gaussian case is solved by
the Kalman filter [6, 10], and a solution exists for discrete xk
that only assume a finite number of values [11]. We exploit
the latter result by restricting the continuous xk to a grid
{x1, . . . , xM}, which is a viable option for the scalar case.
Point mass [12] and particle [13] methods and a novel algo-
rithm are described to obtain p(xk | y1:l) at the grid points.
Here, the novel algorithm solves the filtering problems for
models that do not allow evaluation of the likelihood, and
hence prohibit an application of the point mass and particle
methods.

In addition to the novel filter, our contributions are edu-
cational. The basis of Bayesian state estimation as operations
on probability density functions is often overlooked in favor
of advanced solution concepts, although its understanding can
be used to quickly suggest viable solutions. Moreover, visual-
ization of p(xk | y1:l) can facilitate a much deeper understand
for the problem at hand than analysis of the mean squared
estimation error. For instance, it can be used to pick reason-
able estimates (e.g., maximum a posteriori vs. minimum vari-
ance [9]), and is useful to assess how promising other approx-
imate filters [14] are. For teaching purposes, easily adjustable
matlab code is available for download1.

Our paper can be viewed as complement to [1] in that it
highlights how p(xk | y1:l) can be computed and visualized
for the scalar case. Although algorithmic tools to achieve this
are mostly known [12, 13, 8], their use to visualize densities
and gain insights appeared secondary. Recent approaches to
address the filtering problem with intractable likelihood func-
tions include [15, 16], but go beyond the novel approach that
is suggested in Sec. 4.3.

2. BAYESIAN STATE ESTIMATION PROBLEMS

In order to form a stochastic state space model, the state
difference and measurement equation of (1) must be sup-
plemented with a probabilistic description of the initial
state and the noise. One option would be a joint density2

1http://users.isy.liu.se/en/rt/roth/
2This general formulation also covers the case of known dependencies

between x0, v0:k , and e1:k .
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q(x0, v0:k, e1:k). If we further assume that there exists a
one-to-one mapping (x0, v0:k, e1:k) = ψ(x0:k, y1:k), then

p(x0:k, y1:k) = q(ψ(x0:k, y1:k))|det(Dψ(x0:k, y1:k))| (2a)

follows from a transformation theorem [17] of random vari-
ables. The extra factor includes the Jacobian of the variable
change relation Dψ(x0:k, y1:k). A related result has been
noted in [6]. From (2a) we can obtain the filtering distribu-
tion via marginalization and conditioning

p(xk, y1:k) =

∫
p(x0:k, y1:k) dx0:k−1, (2b)

p(xk | y1:k) =
p(xk, y1:k)

p(y1:k)
. (2c)

In fact, the order of operations can be exchanged in many
ways. Similar considerations yield a solution for the smooth-
ing and prediction densities p(xk | y1:l). Also, a recursive fil-
tering solution for independent noise can be obtained in this
way. Transformation and marginalization operations yield
p(xk, yk | y1:k−1) from p(xk−1 | y1:k−1), p(vk−1), and p(ek).
A subsequent conditioning on yk completes the recursion. For
smoothing, the fact that past states need to be kept makes the
problem more challenging in this framework. The important
point of the above paragraph, however, is that Bayesian filter-
ing and smoothing can be expressed in terms of basic opera-
tions on probability density functions.

The filtering literature [1] often states the model in terms
of the transition density and the likelihood function

xk+1 ∼ p(xk+1 |xk), yk ∼ p(yk |xk). (3)

For independent white and additive noise in (1), i.e., xk+1 =
f(xk) + vk, (3) is easily obtained. Moreover, the aforemen-
tioned case implies certain conditional independence proper-
ties that are used in the derivation of the recursive Bayesian
filtering solution [1, 7]

p(xk+1 | y1:k) =

∫
p(xk+1 |xk)p(xk | y1:k) dxk, (4a)

p(xk | y1:k) =
p(yk |xk)p(xk | y1:k−1)

p(y1:k−1)
, (4b)

with a normalization constant p(y1:k−1). Slightly more in-
volved, a backwards recursion for the smoothing density [1,
8] can be obtained. For l > k, the filtering and prediction
results are processed in

p(xk | y1:l)

= p(xk | y1:k)

∫
p(xk+1 |xk)p(xk+1 | y1:l)

p(xk+1 | y1:k−1)
dxk+1. (5)

3. THE ALGORITHMIC TREATMENT OF
ONE-DIMENSIONAL DENSITIES

We here discuss algorithmic aspects of working with one-
dimensional densities that are relevant for Sec. 4.

3.1. Sampled densities on a grid

Assume a random x ∈ R with continuous density p(x) and
its probability mass within a known interval, i.e., p(x) = 0
outside that interval. A reasonable representation of p(x) in
a digital computer can be achieved by storing p(xi) for grid
points xi, i = 1, . . . ,M . For sufficiently dense uniformly
spaced grids with increments ∆ we can associate a point mass
p(xi)∆ to each xi. Expected values simplify to finite sums
E{f(x)} =

∑M
i=1 f(xi)p(xi)∆. The computations of Sec. 4

often yield densities that do not integrate to one. Normaliza-
tion then ensures

∑M
i=1 p(x

i)∆ = 1.

3.2. Random samples from sampled densities

Given uniformly spaced xi and p(xi), realizations of x can be
generated via the inversion method [18, 11], which uses the
cumulative distribution function and uniform random num-
bers. Below is a simple algorithm that furthermore adds noise
to obtain values in between grid points.

1: Sample u(i) ∼ U(0, 1).
2: Pick the largest xi such that

∑i
j=1 p(x

j)∆ < u(i).
3: Add uniform noise ∼ U(−∆

2 ,
∆
2 ) to form x(i).

There is a close relation to the resampling algorithms in par-
ticle filters [19].

3.3. From samples to densities

Kernel density estimates [11], or KDEs, can approximate
p(xj) given random samples x(i) and weights w(i), i =

1, . . . , N , according to p̂(xj) =
∑N

i=1 w
(i)N (xj ;x(i), σ2).

Here, σ2 is the variance of the Gaussian kernels. The al-
ternative use of rectangular kernels discloses a relationship
to histograms. The concept can be applied to vector x with
the only change that a corresponding multivariate Gaussian
density with diagonal covariance is used. This is exploited in
Sec. 4.3.

4. FILTERING AND SMOOTHING ALGORITHMS
FOR THE ONE-DIMENSIONAL CASE

In this section we review two existing and devise one novel
algorithm for the Bayesian filtering and smoothing problem.
The description is tailored to the one-dimensional case with
the intention of being easy to implement.

4.1. Point mass filters and smoothers

Point mass approaches [12] evaluate (4) and (5) for a finite
number of grid points. Hence, they apply to models that are
formulated in terms of (3).

The first point mass filter was presented in [20]. Later,
advanced versions were discussed in [8, 21]. The first related
smoother was presented in [8], in addition to the theoretical
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result (5). Instead of mere point masses, however, piecewise
linear density approximations were employed. Both [20, 21]
discuss how to best choose the grid values at each time step,
and how to rotate rectangular grids in higher dimensions. For
the one-dimensional case, however, we can skip such consid-
erations and focus on straightforward approximation of (4)
and (5).

Below is a filtering/smoothing algorithm. The only user
input is the choice of a grid as in Sec. 3.1.

1: Evaluate p(x0) for all M grid values xi to get p(xi0).
2: for k = 1, 2, . . . do
3: Evaluate p(xik |x

j
k−1) for all M2 xik and xjk−1.

4: Multiply p(xik |x
j
k−1) by p(xjk−1 | y1:k−1)

to obtain the joint density p(xik, x
j
k−1 | y1:k−1).

5: Marginalize by summing
p(xik | y1:k−1) ∝

∑M
j=1 p(x

i
k, x

j
k−1 | y1:k−1) and

normalize to obtain the prediction density p(xik | y1:k−1).
6: Evaluate p(yk |xik) for xik, i = 1, . . . ,M .
7: Multiply p(xik | y1:k−1)p(yk |xik) and normalize to

obtain the filtering density p(xik | y1:k).
8: end for
9: For k = l set smoothing result to filtering result.

10: for k = l − 1, l − 2, . . . , 0 do
11: Evaluate p(xjk+1 |xik) for all M2 xjk+1 and xik.

12: Multiply p(xjk+1 |xik) by
p(xj

k+1 | y1:l)

p(xj
k+1 | y1:k−1)

.

13: Marginalize xk+1 by summing over all j.
14: Multiply by p(xik | y1:k) and normalize to obtain the

smoothing density p(xik | y1:l).
15: end for

Both smoothing and filtering require M2 evaluations of
the transition density, which dominates the cost.

4.2. Particle filters and smoothers

Particle filters and smoothers employ sequential importance
sampling to approximate the Bayesian filtering and smooth-
ing recursions (4) and (5) for arbitrary nonlinear and non-
Gaussian models. The algorithms yield a set of N samples
x

(i)
k and weights w(i)

k|1:l that represent p(xk | y1:l). These can
be illustrated using kernel density estimates.

Because particle methods are well established, we restrict
our presentation to a short literature review. Early attempts to
Monte Carlo filtering date back to [22]. However, the first
operational particle filter [23] that introduced a crucial re-
sampling step was introduced much later. Different smooth-
ing approaches are suggested in [24, 25]. Convergence re-
sults [13] state that (4) and (5) can be recovered as N → ∞.
Whereas filtering enjoys linear complexity in the number of
particles N , in contrast to the point mass approach, basic
smoothing approaches scale with N2.

4.3. A random sampling based filtering algorithm that
does not require evaluation of the likelihood

The filtering approaches of the previous sections require the
model formulated in terms of (3), or at least evaluation of
the likelihood p(yk |xk). However, this is not possible for
many models of the form (1). One such example is treated in
Sec. 5.3.

We here propose a solution that uses random sampling
and kernel density estimates as discussed in Sec. 3. The user
determines a grid by choosing M point xi, the number of
random samplesN , and variances for two-dimensional kernel
density estimation in xk and yk.

1: for k = 1, 2, . . . do
2: Sample x(i)

k−1 and v(i)
k−1, i = 1, . . . , N ,

and compute x(i)
k|k−1 = f(x

(i)
k−1, v

(i)
k−1).

3: Compute a KDE from the x(i)
k|k−1 to get the sampled

prediction density p(xjk | y1:k−1), j = 1, . . . ,M .
4: Sample e(i)

k , i = 1, . . . , N ,
and evaluate y(i)

k = h(x
(i)
k|k−1, e

(i)
k ).

5: Compute a two-dimensional KDE from (x
(i)
k|k−1, y

(i)
k )

to obtain p(xjk, yk | y1:k−1) for j = 1, . . . ,M .
Normalize to obtain p(xjk | y1:k).

6: end for
The novelty of the above algorithm is that the filtering result
is computed as a KDE for all grid points xjk, but only the
actual measurement yk. The computations can be sped up
by computing only those kernels that actually contribute to
p(xjk | y1:k), i.e., by only processing y(i)

k close to yk.

5. EXAMPLES

Three examples are considered in greater detail.

5.1. “The particle filter example”

First, we discuss an often used benchmark problem [8, 19,
23]. The states and measurements are governed by

xk+1 =
xk
2

+ 25
xk

1 + x2
k

+ 8 cos(1.2(k + 1)) + vk, (6a)

yk =
x2
k

20
+ ek, (6b)

with independent vk ∼ N (0, 10), ek ∼ N (0, 1), and
x0 ∼ N (0, 1). The filtering and smoothing results using
the point mass approach are shown in Fig. 1. Also illus-
trated is ±

√
20yk, a mapping of the measurement under the

assumption ek = 0. It can be seen that the prediction and
filtering densities are bi-modal, and hence that the mean as
estimate would not be a good choice [9]. In the smoothing

4688



result, only the mode close to the measurement persists. Par-
ticle methods and the novel filter yield similar results with
sufficiently many samples N .
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Fig. 1. Prediction, filtering, and smoothing densities for the
“particle filter example”.

5.2. Student’s t random walk in noise

Second, a random walk that is observed in heavy-tailed noise
is considered. The model is given by

xk+1 = xk + vk, yk = xk + ek, (7)

with vk ∼ St(0, 1, 3), ek ∼ St(0, 1, 3), and x0 ∼ St(0, 1, 3).
The system is linear and the prediction, filtering, and

smoothing densities are unimodal most of the times. How-
ever, several modes can be spawn when the likelihood and
the prediction density are in conflict, as shown in Fig. 2 using
the point mass approach. This behavior has been described as
“moment of indecision” [26]. The smoothing result is again
unimodal.
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Fig. 2. Prediction, filtering, and smoothing densities for the
Student’s t random walk in noise.

Due to the heavy tails of the involved signals, particle
methods and the novel filter face difficulties for cases such
as the illustrated “moment of indecision”. Still, the results are
mostly similar except for the variation due to sampling.

5.3. Saturated measurements

The last example considers the model

xk+1 = 0.7xk + vk, yk = sat(xk + ek), (8)

with vk ∼ N (0, 1), ek ∼ N (0, 0.5), and x0 ∼ N (0, 0.1).
The sat function truncates its input beyond −1.5 and 1.5.
Hence, the measurement model reflects the realistic case of
a sensor with a limited range, e.g., a clipping accelerometer
or microphone. One realization of a trajectory and the mea-
surements is given in Fig. 3.
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Fig. 3. Trajectory of the saturated measurements example.

Filtering for (8) is difficult because the likelihood cannot
be obtained easily for the many-to-one saturation function.
Hence, the only applicable approach is the filter of Sec. 4.3.
Its output for a saturated measurement is shown in Fig 4. The
filtering density keeps most of its probability mass beyond the
saturation interval. Clearly, a Kalman filter unaware of the
saturation would yield a Gaussian that is centered between
the predicted mode and the measurement.
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Fig. 4. Prediction and filtering densities for the saturated mea-
surements example. The shaded area indicates the measure-
ment range.

6. CONCLUDING REMARKS

In this paper we have advocated for the computation and vi-
sualization of Bayesian filtering and smoothing densities, and
showed how this can be achieved using a range of algorithms.
Furthermore, a simple novel filter was suggested for the gen-
eral state space models that neither requires the transition den-
sity nor the likelihood of the model to be executed.
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[1] S. Särkkä, Bayesian Filtering and Smoothing. New
York: Cambridge University Press, Oct. 2013.

[2] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell,
J. Jansson, R. Karlsson, and P.-J. Nordlund, “Particle
filters for positioning, navigation, and tracking,” IEEE
Transactions on Signal Processing, vol. 50, no. 2, pp.
425–437, 2002.

[3] S. J. Godsill and P. J. W. Rayner, Digital Audio Restora-
tion. London; New York: Springer, Oct. 1998.

[4] C. Glaser, M. Heckmann, F. Joublin, and C. Goerick,
“Combining auditory preprocessing and Bayesian esti-
mation for robust formant tracking,” IEEE Transactions
on Audio, Speech, and Language Processing, vol. 18,
no. 2, pp. 224 –236, Feb. 2010.

[5] P. Date and K. Ponomareva, “Linear and non-linear fil-
tering in mathematical finance: A review,” IMA Journal
of Management Mathematics, vol. 22, no. 3, pp. 195–
211, Jul. 2011.

[6] Y.-C. Ho and R. Lee, “A Bayesian approach to problems
in stochastic estimation and control,” IEEE Transactions
on Automatic Control, vol. 9, no. 4, pp. 333–339, 1964.

[7] A. H. Jazwinski, Stochastic Processes and Filtering
Theory. Academic Press, Mar. 1970.

[8] G. Kitagawa, “Non-Gaussian state-space modeling of
nonstationary time series,” Journal of the American Sta-
tistical Association, vol. 82, no. 400, pp. 1032–1041,
Dec. 1987.

[9] B. D. Anderson and J. B. Moore, Optimal Filtering.
Prentice Hall, Jun. 1979.

[10] R. E. Kalman, “A new approach to linear filtering and
prediction problems,” Journal of basic Engineering,
vol. 82, no. 1, pp. 35–45, Mar. 1960.

[11] C. M. Bishop, Pattern Recognition and Machine Learn-
ing. Springer, Aug. 2006.

[12] H. W. Sorenson, “On the development of practical non-
linear filters,” Information Sciences, vol. 7, pp. 253–270,
1974.

[13] A. Doucet and A. M. Johansen, “A tutorial on particle
filtering and smoothing: fifteen years later,” in The Ox-
ford Handbook of Nonlinear Filtering, D. Crisan and
B. Rozovskii, Eds., 2011, pp. 656–704.

[14] M. Roth, G. Hendeby, and F. Gustafsson, “Nonlinear
Kalman filters explained: A tutorial on moment compu-
tations and sigma point methods,” Journal of Advances

in Information Fusion, vol. 11, no. 1, pp. 47–70, Jun.
2016.

[15] A. Jasra, S. S. Singh, J. S. Martin, and E. McCoy, “Fil-
tering via approximate Bayesian computation,” Statis-
tics and Computing, vol. 22, no. 6, pp. 1223–1237, May
2010.

[16] F. Septier, G. W. Peters, and I. Nevat, “Bayesian filtering
with intractable likelihood using sequential MCMC,”
in 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing, May 2013, pp. 6313–
6317.

[17] A. Gut, An Intermediate Course in Probability, 2nd ed.
Springer, Jun. 2009.

[18] L. Devroye, Non-Uniform Random Variate Generation.
New York: Springer, 1986.

[19] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp,
“A tutorial on particle filters for online nonlinear/non-
Gaussian Bayesian tracking,” IEEE Transactions on
Signal Processing, vol. 50, no. 2, pp. 174–188, Feb.
2002.

[20] R. Bucy and K. Senne, “Digital synthesis of non-linear
filters,” Automatica, vol. 7, no. 3, pp. 287–298, May
1971.

[21] S. C. Kramer and H. W. Sorenson, “Recursive Bayesian
estimation using piece-wise constant approximations,”
Automatica, vol. 24, no. 6, pp. 789–801, Nov. 1988.

[22] J. Handschin, “Monte Carlo techniques for prediction
and filtering of non-linear stochastic processes,” Auto-
matica, vol. 6, no. 4, pp. 555–563, Jul. 1970.

[23] N. J. Gordon, D. J. Salmond, and A. F. Smith, “Novel
approach to nonlinear/non-Gaussian Bayesian state esti-
mation,” Radar and Signal Processing, IEE Proceedings
F, vol. 140, no. 2, pp. 107–113, Apr. 1993.

[24] A. Doucet, S. Godsill, and C. Andrieu, “On sequential
Monte Carlo sampling methods for Bayesian filtering,”
Statistics and Computing, vol. 10, no. 3, pp. 197–208,
2000.

[25] S. J. Godsill, A. Doucet, and M. West, “Monte Carlo
smoothing for nonlinear time series,” Journal of the
American Statistical Association, vol. 99, no. 465, pp.
156–168, 2004.

[26] G. Agamennoni, J. I. Nieto, and E. M. Nebot, “Ap-
proximate inference in state-space models with heavy-
tailed noise,” IEEE Transactions on Signal Processing,
vol. 60, no. 10, pp. 5024 –5037, Oct. 2012.

4690


