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ABSTRACT
In this paper we extend to the multidimensional case the mod-
ified Poisson series representation of linear stochastic pro-
cesses driven by α-stable innovations. The latter has been
recently introduced in the literature and it involves a Gaus-
sian approximation of the residuals of the series, via the exact
characterization of their moments. This allows for Bayesian
techniques for parameter or state inference that would not be
available otherwise, due to the lack of a closed-form likeli-
hood function for the α-stable distribution. Simulation re-
sults are presented to validate the introduced extension and
the quality of the approximation of the distribution. Finally,
we show an example of generation from the process.

Index Terms— α-stable multidimensional Lévy pro-
cesses, Poisson series representation, conditionally Gaussian
distribution, residual approximation.

1. INTRODUCTION

Time series arising in the natural sciences, engineering and
finance are frequently characterised by high data-rate and ir-
regular sampling, a situation well represented by continuous-
time state-space models. The most straightforward form of
these, in terms of analytical tractability, is the linear model
driven by Brownian motion, for which a wide literature has
been developed, see e.g. [1, 2]. However, its simplicity is
limiting in the kind of phenomena that it can account for, in
particular heavy tails and jumps/ discontinuities. We refer,
for instance, to [3] for a review of application areas, span-
ning from financial models to climatological data, to audio
and image processing. A possible tool to deal with such data
is the jump-diffusion model, see [4], that adds a jump pro-
cess to the Gaussian diffusion. On the contrary, we con-
sider here a single non-Gaussian driving noise that exhibit
such behaviours, namely α-stable Lévy-processes driving lin-
ear state-space systems [5, 6].

The α-stable distribution [7] extends the Central Limit
Theorem to heavy-tailed cases with non-finite variance. Its
parameters allow extreme values (as well as skewness), while
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including the Gaussian distribution as a special case. The lack
of closed-form density expressions makes direct inference in-
tractable. An approximate conditionally Gaussian framework
targeting skewed α-Stable distributions has been recently for-
mulated by [8, 9], and it generalizes the scale mixture of nor-
mals approach given by [10, 11, 12] for the symmetric case.
This approach truncates the Poisson series representation of
α-stable random variables, see [6], and computes the para-
meters of Gaussian approximations of the residuals, using ex-
act formulae for their moments. The advantage of this repre-
sentation is to allow Bayesian inference via standard Bayesian
computational tools such as Monte Carlo Expectation Maxi-
mization, Markov chain Monte Carlo [13] and particle filters
[14]. A general approximate framework for the simulation
of Lévy-processes is given in [15, 16, 17]. This is related
to the approach in our paper in that it approximates small
jumps with a Gaussian term, but considers pure Lévy pro-
cesses, i.e. not the general linear state space models that we
are concerned with here.

The main contribution of this paper is the extension and
experimental validation of the existing framework to the case
of multidimensional state-space models. In Section 2 we de-
scribe the continuous-time models driven by α-stable noise
that we are targeting. Section 3 gives the theoretical expres-
sion for the multidimensional extension of the Poisson series
representation of α-stable stochastic integrals, and Section 4
two Gaussian approximations of the residuals of the series. In
Section 5 we provide experimental validation of the approxi-
mations and show a simulation from the process.

2. LINEAR CONTINUOUS TIME α-STABLE LÉVY
PROCESSES

In the following we consider linear continuous-time processes
of order P , xt, driven by a scalar noise lt, that can be ex-
pressed in the differential form

dxt = Axtdt+ hdlt,

where xt = [x1,t, . . . , xP,t]
′, A is a P ×P matrix describing

the interaction of the components of the process, and h is a
P -dimensional vector indicating the direct effect of the noise
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lt on each state component xi,t. Observe that, depending on
the structure of A and h, xi,t can denote the i-th derivative of
x1,t, for i > 1. The above stochastic differential equation has
solution

xt+δ = eAδxt +

∫ δ

0

eA(δ−u)hdlu, (1)

see e.g. [18]. In order to represent skewed time series with ex-
treme values, we model lt as a non-symmetric α-stable Lévy
process, meaning that l0 = 0 almost surely and that lt has in-
dependent α-stable increments lt+δ − lt ∼ Sα

(
σ̃δ1/α, β, 0

)
,

∀δ > 0. We write Y ∼ Sα(σ, β, µ) to denote that the random
variable Y has α-stable distribution in the S1 parametriza-
tion, whose characteristic function is referenced in [19]. The
parameter α ∈ (0, 2] represents the tail thickness, β ∈ [−1, 1]
the skewness, σ > 0 the scale and µ ∈ R the location. The ex-
pression of σ̃ is determined according to the modified Poisson
series representation (MPSR) of α-stable random variables
given in [8, 9] and presented in the next Section. The latter is
motivated by the fact that the α-stable characteristic function
cannot be inverted to closed-form density expressions, except
for a few special cases. Thus, approximations are needed to
allow for inference.

3. POISSON SERIES REPRESENTATION

The Poisson series representation (PSR) of α-stable random
variables was originally introduced by [20]. Here we refer to
its version in [6], where a result is provided also for the series
expansion of stochastic integrals with respect to α-stable ran-
dom measures. However, while the PSR for random variables
allows for a conditionally Gaussian representation of the dis-
tribution, the one for stochastic integrals does not. Thus a
modified Poisson series representation (MPSR), that meets
this requirement, was presented in [8] and proved in [9].
Our contribution is to generalize this formulation, given for
stochastic integrals of real-valued functions, to vector-valued
functions, namely

ξ :=

∫ δ

0

f(u)dlu,

Observe that, in (1), f(u) = eA(δ−u)h. Applying the MPSR
to ξ, we obtain the following equality in distribution D=

ξ
D
= δ1/α

∞∑
i=1

WiΓ
−1/α
i f(Vi)− b(α)

i k, (2)

where {Γi}∞i=1 are the arrival times of a Poisson process with
unit arrival rate, {Vi}∞i=1 are i.i.d. uniform random variables
in [0, δ] and {Wi}∞i=1 are i.i.d. random variables independent
of Γi and Vi, with conditions on the moments given in [9].
Denoting with E[·] the expected value,

k = E[Wi]E [f(Vi)] ,

b
(α)
i =

0 if 0 < α < 1
α

α− 1

(
i
α−1
α − (i− 1)

α−1
α

)
if 1 < α < 2.

For simplicity of notation, in the paper we do not deal with
the case α = 1 (a pole for the S1 parametrization). Then,
if Wi

i.i.d∼ N (µW , σ
2
W ), the MPSR implies that, conditionally

on the full sequences of latent variables {Γi, Vi}∞i=1, ξ has
Gaussian distribution

ξ
∣∣ {Vi,Γi}∞i=1 ∼ N

(
µWm, σ2

WS
)
, (3)

with moments proportional to the following series

m := δ1/α
∞∑
i=1

Γ
−1/α
i fi − b(α)

i E [fi] , (4)

S := δ2/α
∞∑
i=1

Γ
−2/α
i fif

′
i , (5)

where fi := f(Vi) from now on. However, for simulation
purposes, the full sequences of latent variables cannot be pro-
duced, meaning that the series (2)-(4)-(5) need to be trun-
cated. In [9] two Gaussian approximations of the residuals of
the series are proposed, in order to preserve the overall condi-
tionally Gaussian structure of ξ. We provide the multidimen-
sional version of this procedure in the following section.

4. RESIDUAL APPROXIMATION

The heavy tailed behaviour of the series (2)-(4)-(5) is deter-
mined by the first terms, due to the fact that the sequence
{Γi}∞i=1 is monotonically increasing and α > 0 (the lower
α is, the heavier the tails of the distribution are). With this
in mind, we assume that the first M terms of the series are
given, where M ∼ Poisson(c) is a random number of terms
such that ΓM ≤ c and ΓM+1 > c. The residuals of the series
are not Gaussian, if the latent variables successive to the M th
are unknown. Here we compute the moments of the residuals
and discuss the quality of the approximation of their distribu-
tion in Section 5.

4.1. Moments of the residual series

Following the procedure proposed in [9], in this first method
we compute the moments of the residual of (2) as follows

ξ
∣∣ {Vi,Γi}∞i=1

D
= δ1/α

(
M∑
i=1

WiΓ
−1/α
i fi + r

)
,

with

r := lim
d→∞

rd,

rd :=
∑

i:Γi∈[c,d]

WiΓ
−1/α
i fi −

∑
n:Γn∈[0,d]

b(α)
n k.
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Then, denoting with Var[·] the variance-covariance matrix,

E [r] = lim
d→∞

E [rd] , Var [r] = lim
d→∞

Var [rd] .

The following result can be proved.

Lemma 4.1 The moments of the residual of the series (2) are

E [r] = µW
α

1− α
c
α−1
α q(δ),

Var [r] = (σ2
W + µ2

W )
α

2− α
c
α−2
α Q(δ),

where q(δ) := E [fi] , Q(δ) := E [fif
′
i ] .

Observe that, to perform the computations, we need to eval-
uate q(δ) and Q(δ). In the stochastic process (1), these are
integrals of matrix exponentials on a bounded support. Given
that the integral of a vector or matrix-valued function is its
componentwise integral, this can be done either numerically
or according to the procedure proposed in [21]. The latter in-
volves computing the exponential of an auxiliary matrix and
combining its blocks. This method is not exact either, because
matrix exponentials are in turn defined as series, and numeri-
cal methods may be required to evaluate them, see [22].

4.2. Moments of the residual series mean and covariance

Here we characterize the moments of the residuals in the se-
ries (4) and (5), modelling their joint distribution as multivari-
ate Gaussian. The main motivation behind this approach is
that it allows to account for the correlation existing between
(4) and (5), caused by the same random variables being in-
volved. It also preserves the structure of (3), including only
the parameter σ2

W in the variance-covariance matrix of the
approximation of ξ. This proves to be useful for Bayesian
inference methods, as shown in [9]. In summary

m = δ1/α

[
M∑
i=1

Γ
−1/α
i fi + rm

]
,

S = δ2/α

[
M∑
i=1

Γ
−2/α
i fif

′
i + RS

]
,

with

rm := lim
d→∞

rmd , RS := lim
d→∞

RS
d ,

and rmd a P -dimensional vector and RS
d a P × P symmetric

positive definite matrix, respectively given by

rmd :=
∑

i:Γi∈[c,d]

Γ
−1/α
i fi −

∑
n:Γn∈[0,d]

b(α)
n k,

RS
d :=

∑
i:Γi∈[c,d]

Γ
−2/α
i fif

′
i .

In the computation, we vectorize the lower diagonal part of
RS and RS

d to the (P 2 + P )/2-dimensional vectors rS :=
vech(RS) and rSd := vech(RS

d ), where vech(·) indicates the
the half-vectorization of a symmetric matrix. Defining rtot :=[
(rm)′, (rS)′

]′
, we have that

E
[
rtot] = lim

d→∞

[
E[rmd ]
E[rSd ]

]
,

Var
[
rtot] = lim

d→∞

[
Var[rmd ] Cov[rmd , r

S
d ]

Cov[rSd , r
m
d ] Var[rSd ]

]
,

where Cov[·, ·] denotes the cross-covariance matrix. Conse-
quently, the following result is obtained.

Lemma 4.2 The moments of the residuals of the series (4)
and (5) are

E [rtot] =

[
α

1−αc
α−1
α q(δ)

α
2−αc

α−2
α vech (Q(δ))

]
,

Var [rtot] =

[
α

2−αc
α−2
α Q(δ) α

3−αc
α−3
α E [fig

′
i]

α
3−αc

α−3
α E [gif

′
i ]

α
4−αc

α−4
α E [gig

′
i]

]
,

where gi := vech (fif
′
i) .

We observe that the moments of rd, rmd , r
S
d have a higher con-

vergence rate to those of r, rm, rS the lower is α. Further-
more the mean values coincide if α > 1.

Now that we have computed the moments of the residual
terms, we can approximate them as normally distributed

r
approx∼ N (E[r],Var[r]) ,

rtot approx∼ N
(
E[rtot],Var[rtot]

)
,

respectively. However, we accentuate that this is an approx-
imation, given that we do not know the latent variables suc-
cessive to the M th. For conciseness, in the following we ex-
perimentally validate the approximation on r, but analogous
considerations hold for rtot. We show that approximating the
distribution of the residual as Gaussian is accurate if a suffi-
ciently large series truncation limit, c = c(α), is chosen.

5. RESULTS

In particular, in this section we consider h = [0, . . . , 0, 1]
′

and two scenarios for the transition matrix A:

A1 =

[
0P−1 IP−1,P−1

−aP −aP−1 . . .− a1

]
, A2 =

[
θ1 1
0 θ2

]
,

where 0P−1 is a (P − 1)-dimensional null vector, IP−1,P−1

is the (P − 1) × (P − 1) identity matrix, and stationarity is
achieved if the parameters {ai}Pi=1 ∈ R+, and {θi}2i=1 have
negative real part. The matrix A1 represents a continuous-
time autoregressive model of order P , CAR(P ), where x1,t

is the state and xi,t, i > 1 are its derivatives, see [23]. A2

corresponds to a model with components reverting to their
mean value, as in [24, 25].
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Fig. 1. Contour plot of the sample distribution of rd.
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Fig. 2. Values of c that enable multivariate Normality of rd, as a
function of α, for the considered CAR(2) process.

5.1. Validation of the Gaussian approximation

As anticipated, the quality of the Gaussian approximation de-
pends on the series truncation limit c. In terms of the com-
putational cost of the simulations from the process, we are
interested in keeping c low. In fact, c is the average num-
ber of latent variables that we need to know exactly for the
first part of the series in either approximation approach. On
the other hand, the cost of generating the Gaussian residu-
als is independent of c, while this operation corrects the bias
on the moments of the mere truncation, for any value of c.
However, we cannot arbitrarily decrease this threshold, be-
cause this would degrade the Gaussian approximation, since
the first terms assign the heavy-tailed behaviour to the series.

To test the multivariate Gaussianity of rd, we generate 103

samples from the CAR(2) model, with eigenvalues {−0.2,
−0.3}, corresponding to a2 = 0.06 and a1 = 0.5. Further-
more we choose µW = 1, σW = 1, δ = 1. We perform the
Royston’s test [26] and we examine the contours of the sam-
ple histogram of the bivariate data, as well as at the marginal
distributions of the components of rd (the latter being only
a necessary, but not sufficient condition). An example of
contour plot of the sample distribution of rd for α = 1.5,
c = 100, d = 104 can be seen in Figure 1. Figure 2 shows
how c varies as a function of α in order for the Royston’s test
to be satisfied (over a trial set of c values).
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Fig. 3. Simulated process from A2.

5.2. Simulations from the process

Here we show simulations from the process (1), comparing
the truncated series, and the two proposed residual approxi-
mations for a model that could represent the behaviour of a
financial time series, as in [24, 25]. In Figure 3, we use the
transition matrix A2, with θ1 = −0.025, θ2 = −0.09, α =
1.2, c = 100, µW = 1, σW = 1, and we simulate for 5000
irregularly sampled time steps. The process is initialised at
x0 = 0, and it presents extreme values, while reverting to its
zero mean value in both the components, as expected. The
three realizations in Figure 3 (truncated series and trunca-
tion with added residuals, as in Lemma 4.1 and 4.2) appear
very similar. However, analyses performed in [9] for the case
P = 1, where an exact benchmark is available, demonstrate
that the mere truncation introduces bias in the moments, sig-
nificant especially for values of α close to 1 and 2. Simu-
lations form the multivariate process show an analogous be-
haviour, indicating that residual approximations are neces-
sary.

Other simulations not reported here illustrate that it is pos-
sible to represent different situations by changing the transi-
tion matrix and increasing P . For example, marginally stable
systems can be obtained by setting one of the eigenvalues to
zero, while complex eigenvalues produce oscillatory states1 .

6. CONCLUSION

In this paper the expressions for a Gaussian approximation of
the conditionally Gaussian structure of the MPSR of stochas-
tic integrals of a vector valued function driven by α-stable
Lévy noise are provided. The quality of the given approxi-
mation is also validated, including simulation from the pro-
cess. The results obtained encourage future research into the
formulation of Bayesian state and parameter inference tech-
niques.

1A Matlab source code for the showed methods is available on
http://www-sigproc.eng.cam.ac.uk/Main/MR622.
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