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ABSTRACT

We consider stochastic nonparametric regression problems in a repro-
ducing kernel Hilbert space (RKHS), an extension of expected risk min-
imization to nonlinear function estimation. Popular perception is that
kernel methods are inapplicable to online settings, since the generaliza-
tion of stochastic methods to kernelized function spaces require memory
storage that is cubic in the iteration index (“the curse of kernelization”).
We alleviate this intractability in two ways: (1) we consider the use of
functional stochastic gradient method (FSGD) which operates on a sub-
set of training examples at each step; and (2), we extract parsimonious
approximations of the resulting stochastic sequence via a greedy sparse
subspace projection scheme based on kernel orthogonal matching pur-
suit (KOMP). We establish that this method converges almost surely in
both diminishing and constant algorithm step-size regimes for a specific
selection of sparse approximation budget. The method is evaluated on a
kernel multi-class support vector machine problem, where data samples
are generated from class-dependent Gaussian mixture models.

1. INTRODUCTION

We propose solving expected risk minimization problems, where the
goal is to learn a regressor that minimizes a loss function quantifying
the merit of a statistical model averaged over a data set. We focus on
instances where the number of training examples N is either very large,
or training examples arrive sequentially. This setting amounts to assum-
ing a given training example with its associated target variable (xn,yn)
are independent realizations from a stationary joint distribution of the
random pair (x,y) ∈ X × Y . Further, we focus on the case where
our regressor is not a vector-valued parameter, but instead is a function
f ∈ H in a function class H. Function estimation allows for learning
nonlinear statistical models, and has yielded promising results in appli-
cations where linearity of a given statistical model is overly restrictive,
e.g., computer vision, object recognition, [1–5], and text processing [6].

This amounts to the minimization of a convex functional ` : H ×
X × Y → R which quantifies the merit of the estimator f(x) evaluated
at feature vector x averaged over all possible training examples plus a
Tikhonov regularizer ‖f‖H to enforce stability [7, 8], stated as

f∗ = argmin
f∈H

R(f) : = argmin
f∈H

Ex,y[`(f(x), y)] +
λ

2
‖f‖2H (1)

where we define the average loss as L(f) := Ex,y[`(f(x), y)]. In gen-
eral, this problem may be intractable, but for the case thatH is equipped
with a reproducing kernel κ : X × X → R, a nonparametric function
estimation problem of the form (1) may be reduced to a parametric form
via the well-known Representer Theorem [9,10]. Function spaces of this
type are called Reproducing Kernel Hilbert Spaces (RKHS) [11].

Online kernel learning methods extend techniques from unkernel-
ized (vector-valued) stochastic optimization in terms of optimizing (1)
by replacing the objective’s descent direction with a stochastic estimate
[12]. However, several issues are unique to the kernelized setting: (i)
the implementation of stochastic methods for kernel expected risk min-
imization require storage of kernel matrices and weight vectors whose
size is comparable to the iteration index [13]; (ii) the design of kernel
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sparsification techniques must not break descent properties of the opti-
mization sequences to which they are applied; and (iii) sparse approxi-
mation schemes frequently require conditions on input parameters that
do not hold for kernel matrices induced by arbitrary data streams [14,15].

Issue (i), the curse of kernelization, is a key point of departure be-
tween the kernel stochastic optimization setting [cf. (1)] and its vector-
valued counterpart, and comes from the fact that functions f ∈ H are
coupled to the random variable x, a consequence of the Representer
Theorem [9]: f is a linear combination of kernel evaluations of ele-
ments of the training set of size N . As the sample size grows, i.e.,
N → ∞, f requires infinite realizations of x to be represented in the
Hilbert space [10]. Works on stochastic optimization in RKHS have ei-
ther ignored issue (i) [16–19], or have augmented the learned function to
reduce the storage issues associated with kernelization through sparsifi-
cation.

These sparsification schemes are either designed in terms of the un-
derlying optimization problem (supervised) or not (unsupervised). Un-
supervised methods ignore issue (ii) and only focus on limiting the ker-
nel dictionary growth [13, 20–23]. Past works that have considered su-
pervised sparsification (addressing issues (i)-(ii)) have only been pro-
posed for special cases [24–26]. [24] propose fixing the number of ker-
nel dictionary elements, or model order, rather than determining which
kernel dictionary elements are essential to represent f∗.

This is the first attempt to solve general kernelized expected risk
minimization [cf. (1)] with supervised sparsification (Section 2). To
do so, we make use of functional stochastic gradient descent (Section
3.1) together with a projection step onto a subspace of the Hilbert space
spanned by a small number of kernel dictionary elements. We construct
these instantaneous sparse subspaces by making use of kernel orthogo-
nal matching pursuit (Section 3.2), a greedy search routine which, given
a function and an approximation budget ε, returns a sparse approxima-
tion and guarantees its output to be in a specific error neighborhood of
its input [27,28]. This approach mitigates issue (iii) by not requiring any
stipulations on the kernel matrices induced by arbitrary data streams, and
emphasizing error bounds over exact recovery. We show that the result-
ing sequence converges almost surely to the optimum of (1) under both
attenuating and constant learning rate schemes (Section 4) – see [29] for
proofs. In Section 5 we present numerical results for a multi-class kernel
support vector machine problem with Gaussian mixture model data.

2. LEARNING IN REPRODUCING KERNEL HILBERT SPACE

In the case of supervised kernel learning [3], the function class H is
taken to be a Hilbert space, whose elements are functions, f : X → Y ,
that admit a representation in terms of elements of X when H has a
special structure. In particular, equip H with a unique kernel function,
κ : X × X → R, such that:

(i) 〈f, κ(x, ·)〉H = f(x), (ii)H = span{κ(x, ·)} for all x ∈ X . (2)

where 〈·, ·〉H denotes the Hilbert inner product for H. Further assume
the kernel is positive semidefinite, i.e., κ(x,x′) ≥ 0 for all x,x′ ∈ X .

For kernelized regularized empirical risk minimization, the Repre-
senter Theorem [30,31] states that the optimal f in the function classH
may be written in terms of kernel evaluations only of the training set:
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f(x) =

N∑
n=1

wnκ(xn,x) , (3)

where w = [w1, · · · , wN ]T ∈ RN denotes a set of weights. The up-
per summand index N in (3) is henceforth referred to as the model or-
der. Common choices κ include the polynomial kernel and the radial
basis (Gaussian) kernel, i.e., κ(x,x′) =

(
xTx′ + b

)c
and κ(x,x′) =

exp
{
− ‖x−x′‖22

2σ̃2

}
, respectively, where x,x′ ∈ X . c denotes the order

of the polynomial, and σ̃2 denotes the bandwidth of the Gaussian kernel.
We may now formulate the kernel variant of the empirical risk mini-

mization problem as the one that minimizes the loss functional L : H×
X × Y → R plus a complexity-reducing penalty. The loss functional L
may be written as an average over instantaneous losses ` : H×X×Y →
R, each of which penalizes the average deviation between f(xn) and the
associated output yn over the training set S = {xn, yn}Nn=1. We denote
the regularized loss as R : H → R, and consider the problem

f∗ =argmin
f∈H

R(f ;S) =argmin
f∈H

1

N

N∑
n=1

`(f(xn), yn) +
λ

2
‖f‖2H. (4)

The above problem, kernelized Tikhonov regularization [8], is one in
which we aim to learn a general nonlinear relationship between xn and
yn through a function f . We assume ` is convex with respect to its first
argument f(x). By substituting the Representer Theorem expansion in
(3) into (4), the problem amounts to finding a coefficient vector w as

f∗ = argmin
w∈RN

1

N

N∑
n=1

`(wTκX(xn), yn) +
λ

2
wTKX,Xw (5)

where we define the Gram matrix (also called the kernel matrix)
KX,X ∈ RN×N , with entries given by the kernel evaluations between
xm and xn as [KX,X]m,n = κ(xm,xn). Further define the vector of
kernel evaluations κX(·) = [κ(x1, ·) . . . κ(xN , ·)]T , which are related
to the kernel matrix as KX,X = [κX(x1) . . .κX(xN )]. Lastly, define
the dictionary associated with the kernel matrix as X = [x1, . . . ,xN ].

Observe that by exploiting the Representer Theorem, we reduce a
nonparametric infinite dimensional optimization problem in H (4) into
a finite N -dimensional parametric problem (5). Thus, for empirical risk
minimization, the RKHS provides a principled framework to solve non-
parametric regression problems as a search for coefficients over RN .

2.1. Online Kernel Learning

The goal of this paper is to solve problems of the form (4) when training
examples (xn,yn) either become sequentially available or their total
number is not necessarily finite. Hence consider the case where (xn,yn)
are independent realizations from a stationary joint distribution of the
random pair (x,y) ∈ X × Y . In this case, the objective in (4) may be
written as an expectation over this random pair as

f∗= argmin
w∈R|I|,{xn}n∈I

Ex,y[`(
∑
n∈I

wnκ(xn,x),y)]+
λ

2
‖
∑
n,m∈I

wnwmκ(xm,xn)‖2H.

(6)

where we substitute the expansion of f given by the Representer Theo-
rem [10] into (1), and define I as some countably infinite indexing set.
Our goal is to solve (6) (equivalent to (1)) while ensuring parsimony in
function representation by ensuring index set I has small cardinality.

3. ALGORITHM DEVELOPMENT

We turn to deriving an algorithmic solution to the kernelized expected
risk minimization problem stated in (1) by first deriving functional
stochastic gradient descent, making use of functional gradient (Frechét
derivative) computations (Section 3.1). The resulting parametric updates
require memory storage whose complexity is cubic in the iteration index
(the curse of kernelization). We alleviate this memory explosion using
sparse projections constructed with KOMP (Section 3.2).

3.1. Functional Stochastic Gradient Descent

Following [13], we present the generalization of the stochastic gradient
method in RKHS. The result is functional stochastic gradient descent
(FSGD). Given an independent realization (xt, yt) of the random pair
(x, y), the stochastic functional gradient update associated with (1) is

ft+1 = (1− ηtλ)ft − ηt`′(f(xt), yt)κ(xt, ·) , (7)

where ηt > 0 is learning rate (diminishing as O(1/t) or a small con-
stant – Section 4), and ∇f `(f(xt), yt)(·) = `′(f(xt), yt)κ(xt, ·) ∈
H is the functional gradient of the instantaneous loss. We denote
`′(f(xt), yt) := ∂`(f(xt), yt)/∂f(xt) as the derivative of `(f(xt), yt)
with respect to its scalar argument f(xt) evaluated at xt. Derivation
details are given in Section 3.1 of [29]. With λ > 0, step-size ηt < 1/λ,
and initialization f0 = 0 ∈ H, the Representer Theorem (3) allows us
to write ft as an expansion over past feature vectors xt

ft(x) =

t−1∑
n=1

wnκ(xn,x) = wT
t κXt(x) . (8)

On the right-hand side of (8) we have introduced the notation Xt =
[x1, . . . ,xt−1] ∈ Rp×(t−1) and κXt(·) = [κ(x1, ·), . . . , κ(xt−1, ·)]T .
The kernel expansion in (8), taken together with the functional update
(7), makes explicit that performing the stochastic gradient method in H
amounts to updates on the kernel dictionary X and coefficient vector w:

Xt+1 = [Xt, xt], wt+1 = [(1− ηtλ)wt,−ηt`′(ft(xt), yt)], (9)

This update causes Xt+1 to have one more column than Xt. We define
the model order as number of data points Mt in the dictionary at time
t (the number of columns of Xt). SGD is such that Mt = t − 1, and
hence grows unbounded with iteration index t.

3.2. Model Order Control via Stochastic Projection

We propose replacing the update (7), which may be considered a pro-
jection onto subspace HXt+1 = span{κ(xn, ·)}t−1

n=1, by the stochastic
projection of the functional stochastic gradient sequence onto the sub-
spaceHDt+1 = span{κ(dn, ·)}Mt

n=1 as

ft+1 = argmin
f∈HDt+1

∥∥∥f − ((1− ηtλ)ft − ηt∇f `(ft(xt), yt)
)∥∥∥2
H

:= PHDt+1

[
(1− ηtλ)ft − ηt∇f `(ft(xt), yt)

]
. (10)

where we define the projection P onto subspaceHDt+1 ⊂ H by (10).
Coefficient update The update (10), for a fixed dictionary Dt+1 ∈

Rp×Mt+1 , may be expressed in terms of a coefficient update only. To
do so, define the stochastic gradient update without projection f̃t, given
function ft parameterized by dictionary Dt and coefficients wt,

f̃t+1 = (1− ηtλ)ft − ηt∇f `(ft;xt,yt). (11)

This update may be represented using dictionary and weight vector

D̃t+1 = [Dt, xt], w̃t+1 = [(1− ηtλ)wt, −ηt`′(ft(xt), yt)] . (12)

Then for a fixed dictionary Dt+1, the stochastic projection in (10)
amounts to a least-squares problem on the coefficient vector (derived via
use of the Representer Theorem in [29])

wt+1 = KDt+1Dt+1 [KDt+1D̃t+1
]†w̃t+1 , (13)

where † is used to denote the pseudoinverse. Given that the projection of
f̃t+1 onto the stochastic subspace HDt+1 , for a fixed dictionary Dt+1,
is a least-squares projection, we now detail how the kernel dictionary
Dt+1 is selected from the data sample path {xu, yu}u≤t.

Dictionary Update The selection procedure for dictionary Dt+1 is
based upon greedy sparse approximation [32]. The function f̃t+1 =
(1− ηt)ft − ηt∇f `(ft;xt,yt) defined by FSGD without projection is
parameterized by dictionary D̃t+1 [cf. (12)] of model order M̃ = Mt +
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Algorithm 1 Destructive Kernel Orthogonal Matching Pursuit (KOMP)

Require: function f̃ defined by dict. D̃ ∈ Rp×M̃ , coeffs. w̃ ∈ RM̃ ,
approx. budget εt > 0
initialize f = f̃ , dictionary D = D̃ with indices I, model order
M = M̃ , coeffs. w = w̃.
while candidate dictionary is non-empty I 6= ∅ do

for j = 1, . . . , M̃ do
Find minimal approx. error with dict. element dj is removed

γj = min
wI\{j}∈RM−1

‖f̃(·)−
∑

k∈I\{j}

wkκ(dk, ·)‖H .

end for
Find dict. index minimizing approx. error: j∗ = argminj∈I γj

if minimal approximation error exceeds threshold γj∗ > εt
stop

else
Prune dict. D← DI\{j∗}
Revise set I ← I \ {j∗} and model order M ←M − 1.
Compute updated weights w defined by current dictionary D

w = argmin
w∈RM

‖f̃(·)−wTκD(·)‖H
end

end while
return f,D,w of model order M ≤ M̃ such that ‖f − f̃‖H ≤ εt

1. We form Dt+1 by selecting a subset ofMt+1 ≤Mt+1 columns from
D̃t+1 that approximates f̃t+1 well in terms of Hilbert-norm error. We
make use of kernel orthogonal matching pursuit (KOMP) [28] with error
tolerance εt to find a kernel dictionary matrix Dt+1 based on the one
which adds the latest sample point D̃t+1. This choice is due to the fact
that we can tune its stopping criterion to stochastic descent in contrast
to other compressive techniques – see Section 4. We propose using a
destructive variant of KOMP with pre-fitting (detailed in Algorithm 1).

With Algorithm 1 stated, we summarize the proposed method in
Algorithm 2 for solving (1). The method, Parsimonious Online Learn-
ing with Kernels (POLK), executes the stochastic projection of the
functional stochastic gradient iterates onto subspaces HDt+1 [cf. (10)].
The initial function is set to null f0 = 0 (empty kernel dictionary
D0 = [] and coefficient vector w0 = []). At each step, given train-
ing example (xt, yt) and step-size ηt, we compute the unconstrained
FSGD iterate f̃t+1(·) = (1 − ηtλ)ft − ηt`

′(ft(xt),yt)κ(xt, ·), rep-
resented by D̃t+1 and w̃t+1 as stated in (12). These parameters are
then fed into KOMP with budget εt, such that (ft+1,Dt+1,wt+1) =

KOMP(f̃t+1, D̃t+1, w̃t+1, εt).

4. CONVERGENCE ANALYSIS

We turn to studying the theoretical performance of Algorithm 2 devel-
oped in Section 3. In particular, we establish that the method, when a
diminishing step-size is chosen, is guaranteed to converge to the opti-
mum of (1). We further obtain that when a sufficiently small constant
step-size is chosen, the limit infimum of the iterate sequence is within a
neighborhood of the optimum. In both cases, convergence depends on
the approximation budget used in sparsification (Algorithm 1).

First, note an important fact regarding the stochastic gradient
and define its modification induced by sparsification. The stochastic
functional gradient defined by the update (7), i.e., ∇̂f `(ft(xt), yt) =
∇f `(ft(xt), yt) + λft is an unbiased estimator of the true functional
gradient of R(f) in (1), i.e.

E[∇̂f `(ft(xt), yt)
∣∣Ft] = ∇fR(ft) (14)

Moreover, define the projected stochastic gradient associated with the
sparsified stochastic descent direction in (10) as

Algorithm 2 Parsimonious Online Learning with Kernels (POLK)

Require: {xt,yt, ηt, εt}t=0,1,2,...

initialize f̂0(·) = 0, D̂0 = [], ŵ0 = [], empty dict. and coeff.
for t = 0, 1, 2, . . . do

Receive independent training pair (xt, yt)
Compute functional stochastic gradient step [cf. (11)]

f̃t+1(·) = (1− ηtλ)ft − ηt`′(ft(xt),yt)κ(xt, ·)

Revise dict. D̃t+1 = [Dt, xt], weights w̃t+1 ← [(1 −
ηtλ)wt, −ηt`′(ft(xt), yt)]
Compute sparse function approximation via Algorithm 1

(ft+1,Dt+1,wt+1) = KOMP(f̃t+1, D̃t+1, w̃t+1, εt)

end for

∇̃f `(ft(xt), yt) =
(
ft−PHDt+1

[
ft−ηt∇̂f `(ft(xt), yt)

])
/ηt (15)

With these facts noted, we may now clarify the technical setting.

(A1) The feature spaceX ⊂ Rp and target domain Y ⊂ R are compact,
and the reproducing kernel map may be bounded as

sup
x∈X

√
κ(x,x) = X <∞ (16)

(A2) The instantaneous loss ` : H × X × Y → R is uniformly C-
Lipschitz continuous for all z ∈ R, fixed y ∈ Y

|`(z, y)− `(z′, y)| ≤ C|z − z′| (17)
(A3) The loss function `(f(x), y) is convex and differentiable with re-

spect to its first (scalar) argument f(x) on R for all x ∈ X , y ∈ Y .

(A4) Let Ft denote the sigma algebra which measures the algorithm
history for times u ≤ t, i.e. Ft = {xu, yu, uu}tu=1. The pro-
jected functional gradient of the regularized instantaneous risk has
finite conditional second moments for each t, that is,

E[‖∇̃f `(ft(xt), yt)‖2H | Ft] ≤ σ2 (18)

(A1) is satisfied in most applications by the data domain, and justi-
fies bounding the loss in (A2). These conditions permit bounding the op-
timal f∗ in Hilbert norm. Variants of (A2) appear in kernelized stochas-
tic methods [16, 18]. (A3) is satisfied for most problems. (A4) ensures
that the variance of the stochastic approximation error is finite.

We next establish that under a diminishing algorithm step-size
scheme, with the sparse approximation budget selection∞∑

t=1

ηt =∞ ,
∞∑
t=1

η2t <∞ , εt = η2t , (19)

Algorithm 2 converges almost surely exactly to the optimal f∗ [cf. (1)].

Theorem 1 The sequence generated {ft} by Algorithm 2 with f0 = 0,
f∗ the minimizer of the regularized expected risk stated in (1), under
(A1)-(A4), diminishing step-size and approximation budget [cf. (19)],
and regularizer such that ηt < 1/λ for all t, yields an objective error
sequence converging to null in infimum almost surely as

lim inf
t→∞

R(ft)−R(f∗) = 0 a.s. (20)

Moreover, the function sequences {ft} converges almost surely as

lim
t→∞

‖ft − f∗‖2H = 0 a.s. (21)

Theorem 1 states that when a diminishing step-size is chosen as,
e.g. ηt = O(1/t), with approximation budget selected as εt = η2t , we
obtain exact convergence to the optimizer of (1) is attained. However, in
obtaining exact convergence, the approximation budget approaches null
εt = O(1/t2), which means that the model order may grow arbitrarily.

Instead, consider a constant algorithm step-size ηt = η with approx-
imation budget chosen as a constant which satisfies εt = ε = O(η3/2).
Then we obtain convergence in infimum to the optimal neighborhood.
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Fig. 1: POLK and BSGD for a large-scale kernel SVM multi-classification problem. Observe that POLK outperforms the competing method by an
order of magnitude in terms of objective evaluation (Fig. 1a) and misclassification rate (Fig. 1b) for the same model order (Fig. 1c). POLK learns
the appropriate model order MT = 16 defined by the data domain (15 total modes of joint data density), suggesting attainment of the optimal f∗.
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Fig. 2: Planar decision surface of final POLK classifier. Training ex-
amples from distinct classes are assigned a unique color. Grid colors
represent the classification decision by ft. Bold black dots are kernel
dictionary elements, which concentrate at the modes of the joint data
distribution. Curved lines are drawn to denote class label boundaries.

Theorem 2 The sequence {ft} generated by Algorithm 2 with f0 =
0, with f∗ defined by (1), under (A1)-(A4), with regularizer λ > 0,
constant algorithm step-size ηt = η chosen such that η < 1/λ, and
sparse approximation budget satisfying ε = Kη3/2 = O(η3/2), with K
a positive scaler, converges to a neighborhood almost surely as

lim inf
t→∞

‖ft−f∗‖H ≤
√
η

λ

(
K+

√
K2 + λσ2

)
= O(

√
η) a.s. (22)

Theorem 2 states that when a small constant step-size is used to-
gether with a bias tolerance induced by sparsification chosen as ε =
O(η3/2), Algorithm 2 converges in infimum to a neighborhood of the
optimum which depends on the chosen step-size, the Lipschitz constant
C of the instantaneous loss, the regularization parameter λ, as well as the
variance of the stochastic gradient σ2. This result is typical of stochastic
methods – the infimum is a consequence of the bias induced by sparsifi-
cation. However, use of a constant learning rate allows us to guarantee
the model order of Algorithm 2 is always bounded ( [29], Section 4.2).

Remark 1 (Sparsity of f∗) Algorithm 2 provides a method to avoid
keeping an unnecessarily large number of kernel dictionary elements
along the convergence path towards f∗ [cf. (1)], solving the classic
scalability problem of kernel methods in stochastic programming. How-
ever, if the optimal function admits a low dimensional representation
|I| <<∞, then in addition to extracting memory efficient instantaneous
iterates, POLK will obtain the optimal function exactly. In Section 5, we
illustrate this property via a multi-class classification problem.

5. NUMERICAL ANALYSIS
In this section, we evaluate the performance of Algorithm 2 on a multi-
class support vector machine (SVM) classification problem with train-
ing examples drawn from distinct Gaussian mixture models for each
class. The data generation, comparable to [26], consists of feature-
label pairs {(xn, yn)}Nn=1 drawn from a single distribution. Each yn ∈
{1, . . . , C} denotes a class label, and is drawn uniformly at random from
the label set. Then, each feature vector x ∈ Rp is drawn from a pla-
nar (p = 2) equitably weighted Gaussian mixture model, i.e., x

∣∣ y ∼
(1/3)

∑3
j=1N (µy,j , σ

2
y,jI) with unit variances σ2

y,j = 1 and class-
dependent mean µy,j . These means are realizations of a Gaussian dis-
tribution with class-dependent parameters, i.e., µy ∼ N (θy, σ

2
yI). Here

θy are equitably spaced around the unit circle, one for each class label.
We fix the number of classes C = 5 , meaning that the joint density of
the data consists of 15 distinct Gaussians. We generate 7500 feature-
label pairs: N = 5000 for training; 2500 for testing.

We formulate kernel multi-class SVM by defining for each class c a
class-specific function fc : X → R. Together these functions classify
feature vector x by maximizing the class-conditional probability y =
maxy′ fy′(x). Given N labeled training examples, we train the KSVM
by finding the set of functions f∗ = [f∗1 , . . . , f

∗
C ] ∈ HC that minimize

the λ-regularized expected risk via the multi-class hinge loss [24]

f∗ = argmin
f

1

N

N∑
n=1

`(f(xn), yn) + λ

C∑
c′=1

‖fc′‖2H , (23)

with `(f(x), y) = max(0, 1+fr(x)−fy(x)), r = argmaxc′ 6=y fc′(x).
To implement Algorithm 2 for the problem (23), several parameters

must be specified. We use the Gaussian kernel with bandwidth σ̃2 = 0.6,
regularizer λ = 10−6, constant learning rate η = 6.0, approximation
budget ε = Kη3/2, and parsimony constant [cf. (22)] K = 0.04. Fur-
ther, we initialize the kernel classifier as null, i.e., f0 = 0. To com-
pare the performance of Algorithm 2 with competitors, we consider an-
other online kernel method with supervised sparsification (projection)
developed only for KSVM, called Budgeted Stochastic Gradient Descent
(BSGD) [24], for which we used the same σ̃2 and λ, set the budget to
M = 16 for comparison (since this is the model order our method ex-
tracts at steady state), and set η = 1.0 since it yields the best results for
this instance. BSGD fixes the dictionary size, not the Hilbert-norm error.

In Figure 1 we plot the empirical results of this experiment, and
observe that POLK outperforms the competing method by an order of
magnitude in terms of objective evaluation (Fig. 1a) and test misclassi-
fication rate (Fig 1b). Moreover, for our setup, the optimal model order
is M∗ = 15, which is approximately learned by POLK MT = 16 (Fig.
1c), whereas BSGD, initialized with this parameter, does not converge.
The final decision surface fT of POLK is shown in Fig. 2 – kernel dic-
tionary elements concentrate near the modes of the joint data density.
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