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ABSTRACT
Synchronization of chaotic systems and/or maps is a key step
to implement secure communication schemes with chaos.
If the process to synchronize chaotic systems is modeled
stochastic, schemes based on extended Kalman filter (EK-
F) and unscented Kalman filter (UKF) have been studied in
the past. However, such nonlinear filters are employed with
assumptions of Gaussian noise processes and the Markov
property. Further, EKF and UKF are suboptimal filtering
methods, incurring unacceptable errors for high nonlinear
systems. In this paper, neural filter (NF) is proposed for
chaotic synchronization. This new approach requires no
mentioned assumptions and achieves optimal filter. Numeri-
cal comparisons between the proposed approach and existing
schemes are presented in this paper, showing the superiority
of the proposed approach.

Index Terms— Chaos, synchronization, nonlinear Kalman
filter, neural filter, non-Gaussian noise

1. INTRODUCTION

Synchronization of chaotic systems is essential chaotic com-
munication. The most important characteristic of a chaotic
system is sensitivity to the initial condition, which makes the
system ideal for secure communication. At the same time,
the synchronization of the transmitter and receiver systems
for different initial conditions is pivotal in reconstructing the
signal in the chaotic communication process. In [1], Pecora
and Carroll reported synchronization of chaotic system us-
ing a drive-response framework. They showed that if all the
transversal Lyapunov exponents of the response system are
negative, then the systems can be synchronized asymptotical-
ly. Following this work, many synchronization schemes have
been developed [2–8]. A detailed review of the present state
of synchronization of chaotic systems/maps is available in [9].

Among the various methods, coupled methods is a note-
worthy approach. It utilizes a form of feedback control with
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proper feedback coefficients on a chaotic system to make its
states synchronize with the transmitter. The coupling strength
depends on the global transversal Lyapunov exponents of the
system in noiseless situations and on the local transversal
Lyapunov exponents in noisy situations [5]. Since the simi-
larity between the coupled synchronization and the state es-
timation of nonlinear system, stochastic control methods are
introduced from control theory for chaotic synchronization.
Cuomoet al. [3] designed a synchronization scheme based on
the extended Kalman filter (EKF). Cruz and Nijmeijer studied
the performance of the EKF-based synchronization scheme
for different chaotic maps [10]. The theoretical analysis of
the EKF based scheme is reported by Leung and Zhu [11].
Ajeesh P. Kurian presented a scheme based on nonlinear pre-
dictive filter [5] and reported the theoretical analysis of this
method [12]. Other nonlinear filtering methods are also ap-
plied for chaotic synchronization [7, 13, 14]. However, there
are limitations of the methods derived from extensions of
the Kalman filter. These methods rely on Gaussian approx-
imation which do not hold in most applications. Moreover,
nonlinear Kalman filters are suboptimal. Large errors may
be introduced when such methods are applied to systems
with higher-order nonlinearities. Such large errors in the
state estimates cause the trajectories of the transmitter and
receiver systems to diverge and result in eventual desynchro-
nization [11].

In this paper, a scheme for chaotic synchronization that
is based on a neural filter (NF) [15–17] is developed to over-
come these limitations. The neural filter has the architecture
of the recurrent neural network with interconnected hidden
units (RNNWIHU) [16]. It is reported that an RNNWIHU
exists that inputs the measurement process y(t) and output-
s an estimate of the signal process x(t) such that the esti-
mate approaches optimal estimate as the number of hidden
neurons tends to infinity. Compared to nonlinear Kalman
filters as applied to chaotic synchronization, NF has advan-
tages: First, NF-based synchronization is data-driven, which
has no such assumptions as Markov property, Gaussian dis-
tribution, and validity of linear approximation. Second, the
NF-based synchronization approach applies even if a math-
ematical model of the chaotic system or transmitter process
is unavailable. Third, the estimate of state signals by an NF-
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based scheme is virtually optimal in the sense that it approx-
imates the minimum-variance estimate to any degree as the
number of hidden neurons of the recurrent neural network is
large enough.

The performance of the proposed method for chaotic syn-
chronization is compared with those of the EKF and UKF
based schemes. In our numerical tests, the Ikeda map with
white Gaussian noise and colored noise is conducted for the
three methods. The normalized mean square error (NMSE),
total NMSE (TNMSE), normalized instantaneous squared er-
ror (NISE) and online operating time taken for synchroniza-
tion are included in the performance comparison.

2. CHAOTIC SYNCHRONIZATION BASED ON
NEURAL FILTER

2.1. Recursive Bayesian Filter based Synchronization

Bayes filter, is a general probabilistic approach for estimat-
ing an unknown probability density function recursively over
time using receiving observation and a mathematical process
model. For synchronization of chaotic system, nonlinear
Bayes filtering algorithms can be applied as a coupled syn-
chronization method [14], which can determine the coupling
coefficient matrix adaptively instead of being constant in con-
ventional coupled synchronization. For a nonlinear system, a
closed form solution for Bayes filter is not available. How-
ever, suboptimal filtering methods, the EKF and UKF can be
performed for chaotic synchronization.

2.1.1. Extended Kalman Filter

The Kalman filter is the optimal estimate algorithm for linear
system models with additive independent white noise which
is described in terms of state space model [18]. extended
Kalman filter (EKF) is the nonlinear version of the Kalman
filter which linearizes about an estimate of the current mean
and covariance by first order Taylor series approximation [19–
21].

2.1.2. Unscented Kalman Filter

The UKF algorithm was proposed by Julier and Uhlmann [22,
23]. It utilizes the unscented transform (UT) to give a Gaus-
sian approximation to the filtering solutions of non-linear op-
timal filtering problem. UT is a method for calculating the
statistics of a random variable which undergoes a nonlinear
transformation. In UT the state distribution is represented us-
ing a minimal set of carefully chosen sample points, called
sigma points. These sigma points are propagated through the
nonlinear function and the resulting points are used to esti-
mate the mean and covariance. It is shown that the UKF
based approximation is equivalent to a third order Taylor se-
ries approximation. It is shown in [24] that the approxima-
tion introduced by the UKF has more number of Taylor series

terms which promises an improved performance compared to
the EKF. Furthermore, since no explicit Jacobian or Hession
calculation is needed, computational complexity of UKF is
comparable to EKF.

As shown in [7], UKF can also be applied for chaotic syn-
chronization. UKF has better performance than EKF, since it
has a smaller system approximation error.

2.2. Neural Filter based Synchronization

Neural filter first introduced by Lo in [15, 16]. The theorem
states that an recurrent neural network with interconnected
hidden units (RNNWIHU) exists that inputs the measuremen-
t process y(t) and outputs an estimate of the signal process
x(t), where the estimate can be made as close as desired to
the conditional expectation of the signal process given the
past history of the measurement process that has been pro-
cessed, said conditional expectation being defined on the em-
pirical joint probability distribution represented by the train-
ing dataset. Then the theorem is extended in [17]. The neu-
ral filter has several advantages over nonlinear Kalman Filter:
1). It performs with no such assumption as Markov prop-
erty, Gaussian distribution; 2) It is data-driven method even
if a mathematical model of the signal is unavailable; 3)NF
is trained in a offline manner and employed online without
weights adjustment, which provides computational efficien-
cy for practical applications; 4)It is proved to converge to the
minimum-variance filter as the number of hidden units. High
synchronization accuracy can be achieved based on the prop-
erty of NF.

The fundamental theorem of NF with RNNWIHU is ex-
pressed as following:

Theorem 1 Consider an n-dimensional stochastic process
x(t) and an m-dimensional stochastic process y(t), t =
1, ..., T defined on a probability space (Ω,A,P). Assume
that the range {y(t, ω)|t = 1, ..., T, ω ∈ Ω} ⊂ Rm is
compact. Let w and α(t) denote respectively the weight-
s (including biases) and the output vector at time t of an
RNNWIHU which has taken the inputs, y(1), ..., y(t), in the
given order.

1. Given ε > 0, there exists an RNNWIHU with one hid-
den layer of fully interconnected neurons such that

1

T

T∑
t=1

E[‖α(t)− E[x(t)|yt]‖2] < ε (1)

2. If the recurrent neural network has one hidden layer of
N neurons, which are fully interconnected, and the out-
put α(t) is written as α(t;w,N) here to indicate its de-
pendency on N and the weights w of the RNNWIHU,
then
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r(N) := min
w

1

T

T∑
t=1

E[‖α(t;w,N)− E[x(t)|yt]‖2]

(2)
is monotone decreasing and converges to 0 as N tends
to infinity.

For proof details of this theorem, we refer to the related arti-
cles [16, 17].

3. EXPERIMENTS AND DISCUSSIONS

In our simulations, NMSEs and TNMSEs are used for evalu-
ating relative performances of the three filters (EKF, UKF and
NF). The NMSEi between transmitter state xik and receiver s-
tate x̂ik is defined as,

NMSEi =

∑N
k=1(xik − x̂ik)2∑N

k=1 (xik)
2 (3)

where N is the number of iterations and the superscript i rep-
resents the ith state variable. The total NMSE (TNMSE) is
defined as the sum of all the NMSEs corresponding to individ-
ual states TNMSE =

∑n
i=1 NMSEi, where n is the number of

states. To avoid the effect of initial transients, the initial few
hundred samples are discarded . For each system, the experi-
ments is evaluated on 100 Monte Carlo runs and the average
of the NMSEs and the TNMSEs are computed. For the com-
parison of the time taken by the three different schemes for
synchronization, the normalized instantaneous squared error
(NISE) is computed, which is defined as,

NISE =
1

n

n∑
i=1

(xik − x̂ik)2 (4)

For evaluation of computational efficiency, total operating
time of three schemes on 100 Monte Carlo runs each with
2,000 iterations, are presented.

For NF based scheme, recurrent neural networks with 1
hidden layer containing 50 units are trained as neural filter-
s. After training, the weights of NF are frozen without any
adjustment when online operated.

Ikeda proposed a model of light going around across a
nonlinear optical resonator [25]. The model is nonlinear, two-
dimensional and deterministic. It was proven that for a cer-
tain set of parameters the system exhibits chaotic behavior.
The following set of equations describes how the dynamical
state of the Ikeda model evolves over time in a complex non-
repeating pattern:

mk = c1 −
c3

1 + x21,k + x22,k

x1,k+1 = c4 + c2(x1,k cos(mk)− x2,k sin(mk))

x2,k+1 = c2(x1,k sin(mk) + x2,k cos(mk))

(5)

Table 1. Performance for Ikeda map with Gaussian noise.
EKF UKF NF

NMSE1 4.77e−1 2.60e−2 1.43e−2

NMSE2 3.37e+1 2.29e−1 5.76e−2

TNMSE 3.42e+1 2.55e−1 7.19e−2

where c1, c2, c3 and c4 are real-valued parameters. We set
c1 = 0.4, c2 = 0.84 c3 = 6.0, c4 = 1.0. The states are
initialized with x0 = [1, 0]T and generated iteratively. From
this equation, it can be easily verified that the map has non-
negligible higher order terms in the Taylor series approxima-
tion due to the term of sine and cosine components.

For Ikeda map, the state x1 is transmitted for synchroniza-
tion adding channel noise ω. Therefore, the received signal y
denoted as:

yk = x1,k + ωk (6)

Two different types of noise, Gaussian noise and colored
noise, are added to yk. The SNR of received signal yk in our
experiment is restricted to 10db.

Transmitted Signal with Gaussian Noise

In the first case, we assume stochastic sequences ωk is follow-
ing Gaussian distribution with zero mean. NISEs are comput-
ed for comparing the convergence property of each method.
In Fig.1, it is shown the NISE curves of each synchroniza-
tion scheme for Ikeda map with 100 Monte Carlo runs. It
can be found that UKF and NF based schemes achieve faster
synchronization than EKF. In the case of the EKF, it has
no obvious convergence behavior. The EKF scheme suffers
from desynchronization with larger NISE. A possible expla-
nation for this phenomenon is when the SNR is low EKF
method has a relatively large deviation from averaged CRLB
for Type-II systems (chaotic systems with state-dependent
gradient square) [11]. For NF-based scheme, it converges to
a smaller value of NISE compared to UKF based scheme. It
also can be observed that the NF scheme has a very small
NISE at the beginning of synchronization process and then
keeps synchronized. The actual NMSE and TNMSE values
are presented in Table 1. It can be seen clearly that EKF
can not provide good performance for synchronization espe-
cially for the second component of state signal. NF-based
method performs at lower errors compared to EKF-based and
UKF-based schemes.

Transmitted Signal with Colored Noise

In the second case, we set stochastic sequences ωk to be col-
ored noise, which is dependent to its past states. It can be
stated as:

ωk+1 = αωk + ek (7)

where α is a real constant and ek is a Gaussian stochastic
variable.
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Fig. 1. NISE of Ikeda map with Gaussian noise of 100 Monte
Carlo runs.

Table 2. Performance for Ikeda map with colored noise.
EKF UKF NF

NMSE1 5.53e−1 1.30e−1 1.47e−2

NMSE2 3.36e+1 1.43e0 5.21e−2

TNMSE 3.41e+1 1.56e0 6.69e−2

Fig. 2 presents the NISE of NF-based scheme com-
pared to EKF and UKF based schemes. It can be observed
that trajectories of EKF-based scheme diverges and result in
desynchronization as previous case. Both UKF and NF-based
methods can achieve synchronization of the transmitter and
the receiver trajectories. NF-based scheme provides a lower
synchronization errors, whose NISE values settles around
10−5 irrespective of the iterations. In Table 2, NMSEs and T-
NMSE for this case are provided. It is shown that EKF-based
method presents the same dynamic behavior as preceding
case. For UKF, it still keep synchronization but the perfor-
mance is poorer than that in the Gaussian noise condition. In
contrast, NF-based method synchronizes the state signal with
higher accuracy, which doesn’t suffer from non-Gaussian
process.

Computational Performance for Online Operating

Although estimate accuracy is an important criterion for
chaotic synchronization, online computational complexity
is also be taken into account for performance evaluation in
practical applications. An empirical analysis comparing the
computational performances of EKF, UKF and NF with the
same architecture as preceding experiments is presented,
which is running on a laptop with Intel Core i5-2520M CPU
and 4 GB of RAM. In Table 3, total operating time of 100
Monte Carlo runs for Ikeda maps and are shown. From this
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Fig. 2. NISE of Ikeda map with colored noise of 100 Monte
Carlo runs.

Table 3. Online operating time of EKF, UKF and NF based
schemes for Ikeda maps on 100 Monte Carlo runs.

Noise type EKF UKF NF
Gaussian 18.143s 25.787s 1.498s
Colored 17.679s 25.910s 1.295s

tables, it can be observed that EKF based scheme runs a little
faster for Ikeda maps compared to UKF scheme. Meanwhile,
NF based scheme shows the best computational performance,
which is at least one order of magnitude lower than that of
EKF and UKF. Benefit from the offline training, computation-
al complexity of NF based scheme only relies on the scale of
the hidden layer of a recurrent neural network. Hence, it can
be highly efficient for practical applications.

4. CONCLUTION

In this work, a scheme for chaotic synchronization based
on neural filtering is proposed. We report numerical results
from comparing the scheme with those based on the EKF
and UKF. The transmitter and receiver systems are the Ikeda
map with white Gaussian noise in one experimental study
and colored Gaussian noise in another. The normalized mean
squared error (NMSE), total normalized mean square error
(TNMSE), normalized instantaneous square error (NISE) and
online running time are included in the performance com-
parison. Chaotic synchronization by EKF actually fails to
converge for the Ikeda map example. NF-based scheme for
chaotic synchronization outperforms UKF-based scheme in
NMSE, TNMSE, and NISE by a significant margin. The
numerical results further confirm that NF-based scheme is
computationally more efficient.

4669



5. REFERENCES

[1] Louis M. Pecora and Thomas L. Carroll, “Synchroniza-
tion in chaotic systems,” Physical Review Letters, vol.
64, no. 8, pp. 821–824, 1990.

[2] T. B. Fowler, “Application of stochastic control tech-
niques to chaotic nonlinear systems,” IEEE Transac-
tions on Automatic Control, vol. 34, no. 2, pp. 201–205,
1989.

[3] K. M. Cuomo, A. V. Oppenheim, and Steven H. Stro-
gatz, “Synchronization of lorenz-based chaotic circuits
with applications to communications,” IEEE Transac-
tions on Circuits Systems II Analog Digital Signal Pro-
cessing, vol. 40, no. 10, pp. 626–633, 1993.

[4] Maoyin Chen and Zhengzhi Han, “Controlling and syn-
chronizing chaotic genesio system via nonlinear feed-
back control,” Chaos Solitons and Fractals, vol. 17, no.
4, pp. 709–716, 2003.

[5] A. P. Kurian and S Puthusserypady, “Chaotic syn-
chronization: a nonlinear predictive filtering approach.,”
Chaos, vol. 16, no. 1, pp. 403–408, 2006.

[6] Samuel Bowong, F. M. Moukam Kakmeni, and Hilaire
Fotsin, “A new adaptive observer-based synchronization
scheme for private communication,” Physics Letters A,
vol. 355, no. 3, pp. 193–201, 2006.

[7] A. P. Kurian and S. Puthusserypady, “Unscented kalman
filter and particle filter for chaotic synchronization,” in
APCCAS 2006 - 2006 IEEE Asia Pacific Conference on
Circuits and Systems, Dec 2006, pp. 1830–1834.

[8] Martin Hasler, “Synchronization of chaotic systems and
transmission of information,” International Journal of
Bifurcation and Chaos, vol. 2, no. 2, pp. 633–644, 2011.

[9] Louis M. Pecora and Thomas L. Carroll, “Synchroniza-
tion of chaotic systems,” Chaos, vol. 25, no. 9, 2015.

[10] C. CRUZ and H. NIJMEIJER, “Synchronization
through filtering,” International Journal of Bifurcation
and Chaos, vol. 10, no. 10, pp. 763–775, 2000.

[11] H. Leung and Zhiwen Zhu, “Performance evaluation of
ekf-based chaotic synchronization,” IEEE Transactions
on Circuits and Systems I Fundamental Theory and Ap-
plications, vol. 48, no. 9, pp. 1118–1125, 2001.

[12] A. P. Kurian and S. Puthusserypady, “Performance
analysis of nonlinear-predictive-filter-based chaotic syn-
chronization,” Circuits and Systems II Express Brief-
s IEEE Transactions on, vol. 53, no. 9, pp. 886–890,
2006.

[13] K. Nosrati, A. S. Rostami, A. Azemi, and F. Mohan-
na, “A private secure communication scheme using ukf-
based chaos synchronization,” Journal of Engineering
Science and Technology Review, vol. 8, no. 2, pp. 96–
105, 2015.

[14] Sadasivan Puthusserypady and Ajeesh P. Kurian, Vari-
ants of Kalman Filter for the Synchronization of Chaotic
Systems, 2010.

[15] J. T.-H. Lo, “Synthetic approach to optimal filtering,” in
Proceedings of the 1992 International Simulation Tech-
nology Conference and 1992 Workshop on Neural Net-
works, 1992, pp. 475–481.

[16] J. T.-H. Lo, “Synthetic approach to optimal filtering,”
IEEE Transactions on Neural Networks, vol. 5, no. 5,
pp. 803–811, 1994.

[17] J. T.-H. Lo and Y. Guo, “Accommodative neural filters,”
in Proceedings of the 2016 International Joint Confer-
ence on Neural Networks.

[18] R. E. Kalman, “A new approach to linear filtering and
prediction problems,” J.basic Eng.trans.asme, vol. 82D,
no. 1, pp. 35–45, 1960.

[19] B. D. O. Anderson and J. B. Moore, Optimal Filtering,
Prentice-Hall, Inc, Englewood Cliffs, N.J., 1979.

[20] J. K. Uhlmann, “Algorithms for multiple-target track-
ing,” American Scientist, vol. 80.

[21] G. Welch and G. Bishop, “An introduction to the
Kalman filter,” Tech. Rep., Chapel Hill, NC, USA, 1995.

[22] S. Julier, J. Uhlmann, and H. F. Durrant-Whyte, “A new
method for the nonlinear transformation of means and
covariances in filters and estimators,” IEEE Transac-
tions on Automatic Control, vol. 45, no. 3, pp. 477–482,
2000.

[23] Simon J. Julier and Jeffrey K. Uhlmann, “New extension
of the kalman filter to nonlinear systems,” Proceedings
of SPIE - The International Society for Optical Engi-
neering, vol. 3068, pp. 182–193, 2010.

[24] S. J. Julier and J. K. Uhlmann, “Unscented filtering and
nonlinear estimation,” Proceedings of the IEEE, vol. 92,
no. 3, pp. 401–422, Mar 2004.

[25] K. Ikeda, “Multiple-valued stationary state and its insta-
bility of the transmitted light by a ring cavity system,”
Optics Communications, vol. 30, no. 2, pp. 257 – 261,
1979.

4670


