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ABSTRACT

The paper introduces a novel class of complex nonlinear filters, the
complex functional link polynomial (CFLiP) filters. These filters
present many interesting properties. They are a sub-class of linear-
in-the-parameter nonlinear filters. They satisfy all the conditions
of Stone-Weirstrass theorem and thus are universal approximators
for causal, time-invariant, discrete-time, finite-memory, complex,
continuous systems defined on a compact domain. The CFLiP ba-
sis functions separate the magnitude and phase of the input signal.
Moreover, CFLiP filters include many families of nonlinear filters
with orthogonal basis functions. It is shown in the experimental re-
sults that they are capable of modeling the nonlinearities of high
power amplifiers of telecommunication systems with better accuracy
than most of the filters currently used for this purpose.

Index Terms— Nonlinear signal processing, nonlinear filters,
complex nonlinear filters, functional link polynomial filters.

1. INTRODUCTION

Functional link polynomial (FLiP) filters have been defined in the
real domain [1] and are a sub-class of linear-in-the-parameter non-
linear filters. Their basis functions are polynomials of nonlinear ex-
pansions of delayed input samples and follow the constructive rule
of the triangular representation of Volterra filters. They satisfy the
conditions of the Stone-Weirstrass theorem and thus are universal
approximators, for causal, time-invariant, finite-memory, continu-
ous systems defined on a compact domain. They include also many
sub-classes of filters with orthogonal polynomials for appropriate
stochastic inputs, as the even mirror Fourier nonlinear (EMFN) fil-
ters [2], the Legendre [3], the Chebyshev [4], and the Wiener nonlin-
ear filters [5]. The orthogonality of the basis functions allows a fast
convergence of adaptive gradient-descent identification algorithms.
Moreover, for orthogonal filters it is possible to develop perfect pe-
riodic sequences (PPSs) [5–7], which guarantee the orthogonality of
the basis functions on a finite interval and allow an efficient identifi-
cation with the cross-correlation method.

In the complex domain, many filters based on orthogonal poly-
nomials have been proposed mostly for the identification and com-
pensation of radio frequency (RF) high power amplifiers (HPAs) of
telecommunication systems [8–15]. It was shown in [8] that the or-
thogonality of the basis functions greatly improves the condition
number of the autocorrelation matrix involved in the least-square
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(LS) identification of the HPA. The filters proposed in [8–12, 14]
are not universal approximators. In fact, their basis function have
been specialized only to account for the characteristics of RF HPAs
and are composed by the product of an input sample and a polyno-
mial involving modules of delayed input samples. Even introducing
cross-terms with the strategy of the generalized memory polynomial
filters [16], they do not satisfy the conditions of the Stone-Weirstrass
theorem and they are not universal approximators. An exception is
given by the Kautz-Volterra filters [17], whose basis functions are
orthogonal products of infinite impulse response filtered inputs. The
Kautz-Volterra basis functions, however, require the development of
an optimal set of poles and will not be considered in the following.

In this paper, we introduce the complex functional link poly-
nomial (CFLiP) filters. These filters are a non-trivial extension to
the complex domain of the family of FLiP nonlinear filters and they
present many interesting properties. As for the FLiP filters, they be-
long to the class of linear-in-the-parameter nonlinear filters. They
satisfy all the conditions of Stone-Weirstrass theorem for the com-
plex domain and, thus, they are universal approximators for causal,
time-invariant, discrete-time, finite-memory, complex, continuous
systems defined on a compact domain. They can be based upon
orthogonal basis functions, thus guaranteeing good conditioning of
the autocorrelation matrix of LS identification, fast convergence of
gradient-descent identification algorithms, existence of PPSs that al-
low the identification of the filter with the cross-correlation method.
They also admit many sub-classes of orthogonal filters for specific
distributions of the input signal. The CFLiP filters separate the mag-
nitude and phase of the input samples and can be specialized for the
identification and compensation of RF HPAs. On one hand, the or-
thogonal filters of [8, 12] and the generalized memory polynomial
filters [16] can be considered as a special case of CFLiP filters. On
the other hand, CFLiP filters are able to provide a much more com-
plete estimation of RF HPAs than the orthogonal filters of [8–12,14]
and the generalized memory polynomial filters. In fact, they have
much richer phase terms and can better represent the characteristics
of HPAs in presence of memory effects, as will be shown in the fol-
lowing.

The rest of the paper is organized as follows. Section 2 intro-
duces the family of CFLiP filters. Section 3 specializes the family
for dealing with HPAs. Section 4 provides simulation results about
the identification of an HPA model used in the literature. Concluding
remarks are given in Section 5.

In what follows, C1 indicates the unit circle of the complex do-
main, i.e., C1 = {z ∈ C, with |z| ≤ 1}; z∗ indicates the conjugate
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of z; AH is the Hermitian transpose of A; N and Z are the sets of
natural and integer numbers, respectively.

2. COMPLEX FUNCTIONAL LINK POLYNOMIAL
FILTERS

In this section, we first review the Stone-Weierstrass theorem for
the complex domain. Then, we introduce the CFLiP filters and we
discuss the families of Orthogonal CFLiP filters.

2.1. The Stone-Weierstrass theorem

Let us consider a causal, time-invariant, finite-memory, complex,
continuous nonlinear system with memory of N samples,

y(n) = f [x(n), x(n− 1), ..., x(n−N + 1)], (1)

where x(n) ∈ C1, y(n) ∈ C, and f is a continuous function from
CN1 to C. It is possible to expand the function f in (1) with a series
of basis functions fi(n) = fi[x(n), x(n− 1), ..., x(n−N + 1)],

y(n) =

+∞∑
i=0

cifi(n), (2)

with ci ∈ C and fi(n) a function fromCN1 toC. Any choice of basis
functions fi(n) defines a different class of filters. Here we want to
develop a class of complex nonlinear filters that can arbitrarily well
approximate the system on the compact C1 according to the Stone-
Weirstrass (S-W) theorem [18]:

Theorem (S-W theorem). Suppose A is a self-adjoint algebra of
complex continuous functions on the compact set K, A separates
points on K, and A vanishes at no point on K, then the uniform
closure B of A consists of all complex continuous functions on K.

According to this theorem, every self-adjoint algebra of complex
continuous functions on the compactCN1 which separates points and
vanishes at no point is able to arbitrarily well approximate the con-
tinuous function f in (1). A family A of complex functions is said
to be an algebra if A is closed under addition, multiplication, and
scalar multiplication. An algebra A is self-adjoint if for any com-
plex function f ∈ A also the conjugate f∗ belongs to A. Note that
the S-W theorem for complex functions is identical to that for real
functions, apart from the self-adjoint property. In what follows, we
develop a class of basis functions fi(n) that satisfy the conditions of
the S-W theorem.

2.2. CFLiP filters

We first develop the set of basis functions for the 1-dimentional case,
i.e., for y(n) = f [x(n)] and N = 1. We separate module and
phase of x(n), considering the polar form x(n) = r(n)ejφ(n) with
r(n) ∈ [0, 1] and φ(n) ∈ [0, 2π]. Let g0[r(n)], g1[r(n)], ..., be a
set of real basis functions that satisfy the conditions of the S-W the-
orem for the continuous real functions defined in [0, 1]; g0[r(n)] is
usually assumed equal 1 and gi[r(n)] can be considered a polyno-
mial of order i. Then, a set of one-dimensional complex basis func-
tions that can arbitrarily well approximate f [x(n)] in C1 is given

Table 1. Basis functions of order 3 for a CFliP filter with memory
N , order K = 3, and phase P = 1

∀ n1 = 0, ..., N − 1, n2 = n1 + 1, ..., N − 1,

n3 = n2 + 1, ..., N − 1:

g3[r(n− n1)]e
jφ(n−n1)

g2[r(n− n1)]e
jφ(n−n1)g1[r(n− n2)]

g2[r(n− n1)]g1[r(n− n2)]e
jφ(n−n2)

g1[r(n− n1)]e
jφ(n−n1)g2[r(n− n2)]

g1[r(n− n1)]g2[r(n− n2)]e
jφ(n−n2)

g2[r(n− n1)]e
2jφ(n−n1)g1[r(n− n2)]e

−jφ(n−n2)

g1[r(n− n1)]e
−jφ(n−n1)g2[r(n− n2)]e

2jφ(n−n2)

g1[r(n− n1)]e
jφ(n−n1)g1[r(n− n2)]g1[r(n− n3)]

g1[r(n− n1)]g1[r(n− n2)]e
jφ(n−n2)g1[r(n− n3)]

g1[r(n− n1)]g1[r(n− n2)]g1[r(n− n3)]e
jφ(n−n3)

g1[r(n− n1)]e
jφ(n−n1)g1[r(n− n2)]e

jφ(n−n2)

·g1[r(n− n3)]e
−jφ(n−n3)

g1[r(n− n1)]e
jφ(n−n1)g1[r(n− n2)]e

−jφ(n−n2)

·g1[r(n− n3)]e
jφ(n−n3)

g1[r(n− n1)]e
−jφ(n−n1)g1[r(n− n2)]e

jφ(n−n2)

·g1[r(n− n3)]e
jφ(n−n3)

by gk[r(n)]ejpφ(n) for any k ∈ N and any p in Z. Indeed, these
basis functions and their linear combinations form a self-adjoint al-
gebra that vanishes at no point (for the presence of g0 = 1) and
separates points (two separate points differ for module or phase and
g1[r(n)] or ejφ(n) separates them). We say that the basis function
gk[r(n)]e

jpφ(n) has order k and phase p.
When N > 1, we consider the one-dimensional basis functions

at time n, n− 1, ..., n−N + 1 and then we form all possible prod-
ucts of these basis functions, obtaining the followingN -dimensional
basis functions fi(n),

gk0 [r(n)]e
jp0φ(n) ·. . .·gkN−1 [r(n−N+1)]ejpN−1φ(n−N+1) (3)

with k0, ..., kN−1 ∈ N and p0, ..., pN−1 ∈ Z. We define the order
K of the basis function fi as the sum of the order of one-dimensional
factors, i.e., K = k0 + . . .+ kN−1. We define the phase P of fi as
the sum of the phases of the one-dimensional factors, i.e., P = p0 +

. . .+pN−1. The basis functions in (3) and their linear combinations
form a self-adjoint algebra that satisfy all the requirements of the
S-W theorem for the approximation of the system in (1).

A CFLiP filter of memoryN , orderK, and phase P , is the linear
combination of the basis functions in (3) with orders from 0 toK and
phase P , satisfying the following constraints:

i) All basis functions of order K have phases pi with |pi| ≤ ki
for i = 0, ..., N − 1.

ii) All basis functions of order lower thanK have phases p0, ..., pN−1

equal to one of the basis function of order K and orders
k0, ..., kN−1, lower than or equal to those of this basis function.

The condition i) guarantees the CFLiP filter is composed by a finite
number of basis functions, otherwise there would be an infinite num-
ber of terms of order K and phase P . The condition ii) guarantees
that for any set of phases p0, ..., pN−1 we have all the possible orders
k0, ..., kN−1, from ki = 0 till the maximum used value for each i.
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For example, Table 1 provides the basis functions of the 3-rd order
kernel of a CFLiP filter with memory N , order K = 3, and phase
P = 1.

Eventually, a CFLiP filter of memory N , order K, and phases
P0,...,PR is the parallel of R filters having memory N , order K,
phase Pi, with i = 1, ..., R. We will see that a single phase is often
sufficient to model the nonlinear systems of some applications. As
a matter of fact, in the next sections we will consider K = 3 and
P = 1, thus having CFLiP filters with a number of coefficients equal
to 30

(
N+2

3

)
− 39

2
N2 − 13

2
N . The number of coefficients can be

reduced by limiting the diagonal number DN of the filter, i.e., the
maximum time difference between the samples of the cross-products
[19].

2.3. Orthogonal CFLiP filters

It is clear that every choice of the real basis functions gi, defines a
different family of CFLiP filters. Some families of orthogonal FLiP
filters have been proposed for the approximation of real nonlinear
systems. For example, the even mirror Fourier nonlinear (EMFN)
filters [2] and the Legendre nonlinear (LN) filters [3] are orthogonal
for a white uniform distribution of the input signal in [−1,+1]. For
any of these filters, we can define the corresponding CFLiP filter,
whose basis functions are orthogonal for a white uniform distribution
in C1. For N = 1, the basis functions g̃k(r̃) of these orthogonal
filters are defined in the interval [−1,+1], but they can be easily
shifted on the interval [0, 1], with a change of variables, considering
gk(r) = g̃k(2r − 1).

In EMFN filters, we have g̃k(r̃) = cos(kπr̃/2) for k even,
g̃k(r̃) = sin(kπr̃/2) for k odd. In Complex EMFN (CEMFN) fil-
ters, with the change of variables we have gk(r) = cos(kπr).

In LN filters, the functions g̃k(r̃) are the Legendre polynomials.
In Complex LN (CLN) filters, the functions gk(r) are the Shifted
Legendre polynomials [20], given by

gk(r) = (−1)k
k∑
s=0

(
k

s

)(
k + 1

s

)
(−r)s. (4)

3. MODELLING RF HIGH POWER AMPLIFIERS

HPAs used in modern wireless systems are often operated close to
the saturation level to maximize the energy efficiency. Their behav-
ior is therefore highly nonlinear and causes adjacent channel inter-
ference and degradation of the achievable bit error rate. While the
HPA is typically a memory-less device, the effect of the filters that
precede and follow the HPA introduce memory effects that have to
be accounted for when modeling the system.

It has been shown in the literature [16] that if the HPA in the RF
passband can be modeled as a Volterra filter, then its complex base-
band representation is a complex Volterra filter composed only by
odd kernels. Each kernels of order 2Q+ 1 is composed by products
of Q+ 1 direct samples and Q conjugate samples. For example, for
order 3 we have the following terms,

x(n)x(n− n1)x
∗(n− n2),

x(n)x∗(n− n1)x(n− n2),
x∗(n)x(n− n1)x(n− n2). (5)

If we replace the input samples in (5) with their polar form, we see
that the model is composed by basis functions with phase P = 1.
As a matter of fact, most of the models proposed in the literature for
modeling HPAs are often phase 1 filters, i.e., are composed by basis
functions with phase P = 1. For example, memory polynomial
filters have

y(n) =

K∑
k=1

N−1∑
i=0

akix(n− i)|x(n− i)|k−1, (6)

generalized memory polynomial filters include cross-terms [16],

y(n) =

K∑
k=1

N−1∑
i=1

akix(n− i)|x(n− i)|k−1

+

K∑
k=1

N−1∑
i=0

DN∑
l=1

bkilx(n− i)|x(n− i− l)|k

+

K∑
k=1

N−1∑
i=0

DN∑
l=1

ckilx(n− i)|x(n− i+ l)|k (7)

where DN is the diagonal number. In the orthogonal memory poly-
nomial filters [8] we have

y(n) =

K∑
k=1

N−1∑
i=0

akiψk[x(n− i)], (8)

where ψk are shifted Legendre polynomials (different from those
of (4) as explained later) and are a linear combination of the terms
in (6). These filters include also even order kernels that have been
found important for modeling HPAs [21].

The filters in (6), (7), and (8), can be considered as special cases
of the CFLiP filters, but they are not universal approximators be-
cause their basis functions do not satisfy the conditions of the S-W
theorem. Particularly interesting are the orthogonal memory poly-
nomial filters in (8). It should be notice that the shifted Legendre
polynomials ψk of [8] are different from those in (4), which fol-
lows the standard conventions in mathematics [20]. The ψk derives
from the orthogonalization of the monomials x, x2,..., for a uniform
distribution of x in [0, 1]. The polynomials in (4) derives from the
orthogonalization of the monomials 1, x, ... for the same distribu-
tion. By choice, the ψk do not include a constant term, which is
present in g0 in (4). A family of CFliP filters can be developed also
on the basis of the polynomials ψk, for k ≥ 1 and will be named
CLN2 in the following. Nevertheless, the CLN2 filters are not uni-
versal approximators for complex systems since they do not include
a constant term.

It is clear from (5), (6), (7), and (8), that CFLiP filters of phase
P = 1 could be an interesting candidate for modeling and compen-
sating HPAs. In the next section we will show through simulations
that they are capable of improving the modeling accuracy of HPAs
compared to the previously mentioned filters. Indeed, CFLiP filters
always include cross-terms and they have more complex phase terms
than (6), (7), and (8). For example, as shown in Table 1, the CFLiP
filter with K = 3 and P = 1 has the following three phase terms
among his basis functions: ejφ(n−n1), e2jφ(n−n1)e−jφ(n−n2),
ejφ(n−n1)ejφ(n−n2)e−jφ(n−n3). The first phase term is present in
(6), (7), and (8). On the contrary, the other two phase terms, while
consistent with the products in (5), are normally not considered in
the literature.

4658



Table 2. Identification results for the Wiener-Hamerstein HPA
model

Filter N K ND L NMSE(dB) Cond.Num.
CLN 5 3 0 20 −24.7 7.78

CLN 5 3 2 257 −38.5 36.6

CLN 5 3 3 419 −41.6 43.3

CLN 5 3 4 530 −42.3 47.4

CLN2 5 3 0 15 −24.1 2.54

CLN2 5 3 2 103 −37.8 785.

CLN2 5 3 3 147 −40.2 1.12 · 103

CLN2 5 3 4 175 −40.9 1.32 · 103

CEMFN 5 3 0 20 −24.7 3.38

CEMFN 5 3 2 257 −32.0 10.5

CEMFN 5 3 3 419 −32.4 12.4

CEMFN 5 3 4 530 −32.4 13.6

MP 5 3 0 15 −24.7 3.30 · 103

MP 5 5 0 25 −24.7 4.93 · 106

MP 5 7 0 35 −24.7 6.21 · 109

GMP 5 3 2 39 −24.7 4.85 · 103

GMP 5 3 3 49 −24.7 7.42 · 103

GMP 5 3 4 55 −24.7 9.33 · 103

OP 5 3 0 15 −24.7 2.53

OP 5 5 0 25 −24.7 3.99

OP 5 7 0 35 −24.7 5.48

GOP 5 3 2 39 −24.7 425.

GOP 5 3 3 49 −24.7 719.

GOP 5 3 4 44 −24.7 1.14 · 103

Vp1 5 3 0 10 −23.9 30.6

Vp1 5 3 2 47 −29.7 45.5

Vp1 5 3 4 80 −30.4 49.3

Vp1 5 5 0 15 −24.6 916

Vp1 5 5 2 203 −38.1 1.67 · 103

Vp1 5 5 3 407 −40.8 1.88 · 103

Vp1 5 5 4 605 −41.4 2.09 · 103

4. SIMULATION RESULTS

In section we provide some simulation results about the identifi-
cation of an HPA model. In particular, we consider the Wiener-
Hammerstein HPA model used in the experiments of [8]. The model
is composed by the cascade of a linear time-invariant (LTI) system
H(z), followed by a memory-less nonlinearity, in turn followed by
a LTI system G(z), with

H(z) =
1

1.5

1 + 0.25z−2

1 + 0.4z−1
, G(z) =

1

0.52

1− 0.25z−1

1− 0.2z−1

and the memoryless nonlinearity given by the arctan model

y(n) =
(
γ1 tan

−1(ζ1|z(n)|) + γ2 tan
−1(ζ2|z(n)|)

)
ejρ(n)

with ρ(n) the phase of z(n), γ1 = 8.000 35 − j4.611 57, γ2 =

−3.771 67 + j12.037 58, ζ1 = 2.268 95, and ζ2 = 0.8234. The
model has input signal x(n) which is a white uniform noise in C1

and output signal d(n). The signal-to-noise ration is 80 dB. The
model has been identified using different polynomial filters, specifi-
cally, the CLN filter, the CLN2 filter, the CEMFN filter, the memory
polynomial filter (MP), the generalized memory polynomial filter

(GMP), the orthogonal polynomial filter of [8] (OP), and its exten-
sion with cross-terms as in generalized memory polynomial filters
(GOP), and the complex Volterra filter composed only by phase 1
terms as in (5) (Vp1). All these filters belong to the class of linear-
in-the-parameter nonlinear filters and can be expressed with the fol-
lowing input-output relationship,

y(n) = [f1(n), f2(n), . . . , fL(n)] · h (9)

where fi(n) for i = 1, ..., L are the basis functions at time n, L is
the number of basis functions, and h is the coefficient vector. The
coefficients can be estimated with the LS approach:

hLS = (FHF)−1FHd. (10)

where d is a column vector whose n-th term is the HPA model out-
put sample d(n) and F is the matrix whose n-th row is formed by
the basis functions [f1(n), f2(n), . . . , fL(n)]. The filters have been
first identified using (10) over 10 000 samples of the input signal and
then the normalized mean square error has been measured in follow-
ing 10 000 samples. Table 2 provides the results of identifications for
the different filters and the 2-norm condition number of the matrix
(FHF). The memory of all filters is N = 5, but different orders K
and different diagonal numbersDN have been considered for the var-
ious filters. As we can see from Table 2, the CLN and CLN2 filters
for DN ≥ 2 outperform by several dB most of the filters currently
considered in the literature (i.e., MP, GMP, OP, and GOP). Similar
results have been obtained also for other models of the HPA. The
improved modeling accuracy is provided by the richer set of phase
terms (i.e., from the use of the phase terms e2jφ(n−n1)e−jφ(n−n2),
ejφ(n−n1)ejφ(n−n2)e−jφ(n−n3)) and is obtained at the cost of a
larger number of basis functions L. CLN and CLN2 filters provide
similar results, with the latter having a lower computational com-
plexity (since they lack the one-dimensional basis functions g0(n))
but a higher condition number. CEMFN filters provide worse iden-
tification results because the arctan model has a cusp for z(n) = 0

and even mirror functions are inadequate to represent it. Vp1 fil-
ters of order 5 provide identification performance similar to CLN
and CLN2 filters, at the price of a larger number of coefficients, and
have worse condition number.

5. CONCLUSION

CFLiP filters have been introduced in this paper. They belong to the
class of linear-in-the-paramenter nonlinear filters and they are uni-
versal approximators according to the Stone-Weierstrass theorem.
CFLiP filters include many classes of nonlinear filters based on or-
thogonal polynomials. The orthogonality of the basis functions im-
proves the condition number of the autocorrelation matrix used in
LS identification and increases the convergence speed of gradient-
descent identification algorithms. Future works will include the non-
trivial development of PPSs for CFLiP filters, which guarantee the
orthogonality of the basis function on a finite period. Using PPSs
as input signals, CFLiP filters can be efficiently estimated with the
cross-correlation method, computing the cross-correlation between
the basis function and the system output. Moreover, the most rele-
vant basis functions according to some information criterion can also
be easily estimated.
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