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ABSTRACT 

 

Seeking effective measures to characterize the chaotic 

patterns of EEG signals for seizure diagnosis is a long-term 

endeavor in the literature. We propose to count the number 

of zero-crossing (ZC) points on Poincaré surface as a feature 

when the time series of interest is embedded into the 

reconstructed state space. The experiments show that 

Poincaré surface can act as a platform to observe the chaotic 

patterns of EEG signals and the ZC feature on Poincaré 

surface is a promising pattern descriptor to discriminate 

different categories of EEG signals. When used alone for 

EEG classification, the ZC feature achieves 100%, 99.27%, 

and 94.68% accuracy in 2-class, 3-class, and 5-class 

classification on a widely used benchmark. 

 

Index Terms—Nonlinear time series analysis, feature 

extraction, pattern recognition, EEG signal classification 

 

1. INTRODUCTION 

 

EEG signal classification plays an important role in seizure 

detection and diagnosis. Feature extractor and classifier are 

the two essential components for an EEG classification 

system and have received much attention so far. To date, a 

variety of features as well as classifiers have been developed 

in the literature [17]. The widely applied features include 

nonlinear measures, such as approximate entropy [2][3], 

Lyapunov exponents [4][5], and fractal measurements 

[35][36], the spectrum analysis based features [3][6][7][8], 

the wavelet transformation based features [4][9][10][11][12] 

[39], the time-frequency analysis based features [13][38] 

[24], sparse representation [1], the high order statistics [37], 

and zero-crossing intervals in time series [22]. The 

classifiers can be sorted into the following 5 categories: 

neural networks [5][10][13][14][15], support vector 

machines [3][4] [8][16][17], neuro-fuzzy inferences systems 

[2][11], Gaussian mixture models [22][17], and ensemble 

methods [7][12]. 

Owing to the many features available in the literature, 

better classification performance can be promised by using 

the so-called feature selection technique to select the best 

discriminative features [20]. For this reason, the effort of 

seeking effective features for EEG classification has never 

been stopped and new methodologies are proposed 

increasingly. In [16], the spectral-envelope-based speech 

recognition features are introduced into the EEG 

classification literature. In [35][36], nonlinear analysis is 

regarded as an emerging methodology for EEG 

classification. In fact, nonlinear feature is always one of the 

major concerns in terms of EEG signal classification [18] 

due to the experimentally verified chaotic nature of EEG 

signals [19]. However, we are suffering from the lack of 

methodologies to measure the chaotic signatures of EEG 

signals.  

The aforementioned efforts have not resulted in a sound 

nonlinear feature that can be applied alone to achieve 

reasonably high classification accuracy. In fact, most 

nonlinear features function as auxiliary features to augment 

the other features and are not used alone for EEG 

classification. On account of that, it is meaningful to seek 

feature extraction means from other domains, for example, 

the speech features applied to EEG signal classification in 

[16]. It is known that acoustic signals are also chaotic and a 

couple of nonlinear features in reconstructed state space 

have been proposed for acoustic signal classification, 

including zero-crossing (ZC) statistics [21] on Poincaré 

Surface. In this study, we further explore the possibility of 

applying the ZC feature to EEG classification. Some 

encouraging results have been obtained in the experiments: 

When used alone, it achieves 100%, 99.27%, and 94.68% 

accuracy on the widely used benchmark [19] for 2-class, 3-

class, and 5-class classification, respectively. As for the 

other features based on state space reconstruction such as the 

locally linear embedding (LLE) feature [23] and Lyapunov 

exponents [32], the performance is quite poor. It is known 

that Lyapunov exponents characterize the dynamical 

behaviors while the LLE feature captures the geometric 

profiles of chaotic signals. In contrast, the ZC feature fuses 

geometric and dynamic information in one descriptor. This 

accounts for why it performs better than the other chaotic 

features. Moreover, the ZC feature promises better or 

comparable performance in comparison with the state-of-
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the-art methods according to the performance data reported 

in the literature. 

 

2. FEATURE EXTRACTION ON POINCARÉ 

SURFACES IN RECONSTRUCTED STATE SPACE 

 

In [21], a feature referred to as geometric statistical feature 

in state space is proposed for acoustic signal classification, 

which is the zero-crossing (ZC) statistics on Poincaré 

surface. Since EEG signals are confirmed to be nonlinear 

signals with chaotic and fractal properties [35][36], in this 

study, we explore whether the chaotic measure proposed in 

[21] is useful for EEG classification. The feature is 

computed through the following 3 steps: 

 

2.1. State Space Reconstruction 

 

The state space reconstruction is a widely used technique for 

nonlinear time series analysis [25][26]. By means of it, the 

time series [Si]:i=1,2,…,NT can be embedded to a high-

dimensional space in the form of a N-dimensional trajectory 

[Xj]:j=1,2,…,M by letting Xj=(Sj,Sj+J,Sj+2J,…,Sj+(N-1)J)T, 

where the delay time J and the embedding dimension N are 

two parameters to be determined at first. In computing J, we 

refer to [27]. Let A(k) represent the autocorrelation function 

of the time series, where k denotes the discrete-time step. 

Once A(k) drops below A(0)/e, where e=exp(1), let J=k. The 

determination of N is application-dependent [28], the 

optimal value of which is usually obtained by trail and error. 

Following state space reconstruction, we can obtain a 

high-dimensional trajectory reconstructed from the time 

series of interest. Such high-dimensional vector sequence 

can be viewed as a point cloud, which is also referred to as 

manifold. The spatial configuration of the manifold and the 

dynamic evolution of the trajectory are the two key factors 

to characterize different chaotic attractors arising from 

various dynamic systems. Here, we make use of the zero-

crossing statistics on Poincaré surface of section to capture 

the geometric and dynamic characteristics at the same time 

and fuse the geometric and dynamic information in one 

descriptor, which results in better classification performance 

than using each descriptor alone.   

 

2.2. Orientation and Position Normalization 

 

Prior to feature extraction, the point cloud should be 

normalized in terms of orientation and position. The reason 

is: The point clouds undergoing classification can be viewed 

as N-dimensional data objects. However, such data objects 

could possess different poses following state space 

reconstruction, which prevent us from comparing the data 

objects in terms of geometric similarity. Therefore, the data 

objects should be normalized at first to promise that the 

subsequent pattern matching is not affected by the rotation, 

scaling, and transition of the data objects. Note that the 

trajectories reconstructed from the same class of signals 

should be similar in shape but the pose of every 

reconstructed trajectory may vary, so orientation 

normalization is performed at first. Here, the orientation 

normalization is obtained through principal component 

analysis (PCA) [29]. Let o1o2…oN represent the 

eigenvalues of XXT, where X=[X1,X2,…,XM] is the matrix 

being composed of the previously defined trajectory data. 

Let U1,U2,…,UN represent the corresponding eigenvectors. 

Then, perform the coordinate transformation with regard to 

every trajectory point as follows: 
T
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The direction determined by U1 corresponds with the 

primary axis on which the projections of the trajectory 

points have the biggest variance in terms of statistics. Then, 

{U1,U2,…,UN} forms an orthogonal base. 

Position normalization is performed as follows: Let 

Yj=(yj1,yj2,…,yjN)T represent the coordinate values of point Yj. 

Let T
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is the regular moment of all trajectory points with order 

(P1,P2,…,PN) [30]. The position normalization is achieved 

via the following translation: 

YYY jj   (4) 

After such position normalization, the center of the 

trajectory is positioned at the original. 

 

2.3. Zero-crossing Statistics on Poincaré Surface of 

Section 

 

Following the aforementioned normalization, we can then 

observe the characteristics of the EEG signal of interest on 

the so-called Poincaré surface of section, which is a 

hyperplane to intersect with the high-dimensional trajectory 

of the signal in the reconstructed state space. Poincaré 

surface of section is a widely used means for studying 

chaotic attractors. Before one hundred years, it was observed 

by Poincaré that the trajectory points on Poincaré surfaces 

exhibit regular structures for some chaotic attractors. In 

Poincaré surface of section, we can see where and when the 

trajectory passes through such hyperplane. The points at 

which a trajectory passes through a Poincaré surface are 

referred to as points of section, which reflect not only the 

spatial configuration of the manifold but also the evolution 

of the trajectory due to the time stamps on the points of 

section. Intuitively, such information should be useful for 

signal classification. 

4652



Supposing that a Poincaré surface intersects 

perpendicularly with the ith axis at position y0, the trajectory 

points intersecting with this Poincaré surface is the union of 

two sets, denoted as P=AB: 

A={Yj=(yj1,yj2,…,yjN)T|yji=y0; j[1,M]} (5) 

]}1,1[;0))((|),({ 0,101   MjyyyyYYIYB ijjijjj
 (6) 

where I(Yj,Yj+1) is the linear interpolation between Yj and Yj+1, 

which is defined as 
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Note that the ith coordinate value of all the points on the 

Poincaré surface is a constant y0. A constant attribute is 

meaningless in the sense of classification, so we eliminate 

the ith coordinate value of all the points contained in P. 

Then, we rewrite the point set on the Poincaré surface as 

P={Zj=(zj1,zj2,…,zjL)T|j=1,2,…,K}. It is obvious that KM. 

Note that L=N-1 is the data dimension after removing the 

constant coordinate value y0. 

The number of the points contained in P, say zero-

crossing rate on Poincaré surface of section, is subject to the 

shape of the trajectory, so it can act as a measure to 

distinguish the shape signatures of different EEG signals. 

Note that a Poincaré surface can intersect perpendicularly an 

axis at any position. In this study, we let every Poincaré 

surface intersect the corresponding axis at the coordinate 

origin. 

 

3. EXPERIMENTS 

 

We use the data developed in [19] to evaluate the 

performance of the proposed feature for EEG classification. 

This data set is composed of 5 classes of EEG signals 

denoted as Z, O, N, F, S, each of which contains 100 

samples of 23.6 second duration with 173.61Hz sampling 

rate. The data length of every signal is 4097. A bandpass 

filter of 0.53-80Hz is applied prior to data sampling. The 

description of the 5 classes is provided in Table 1. 

For every class, 50% samples are selected randomly to 

train the classifier while the other samples are used for 

testing. Test as such is repeated 10 times with randomly 

selected training and testing samples with regard to each run. 

The performance data reported in the following is the 

average over the 10 tests. We use the classification accuracy 

as the performance index, which is the ratio of the number of 

the correctly classified samples to that of the total samples 

for each class, referred to as sensitivity in [13]. We use 

support vector machine (SVM) as the classifier, where we 

apply 10-fold cross validation on the training data to obtain 

the best parameters for SVM. We extract the ZC feature 

with 3 embedding dimensions, 10, 15, and 20, respectively. 

For every axis, a Poincaré surface is applied to intersect 

perpendicularly with it at the origin. Since we obtain one 

ZC-based variable per Poincaré surface, the 10, 15, and 20 

embedding dimensions lead to 45 variables/features in total, 

that is, the dimension of the feature space is 45. 

The ZC feature captures both manifold and dynamic 

information [21]. Here, we compare it with two chaotic 

descriptors focused on either manifold or dynamics. One is 

principal component analysis on locally linear embedding 

(LLE) [31] of reconstructed state space, which is a pure 

manifold based feature for EEG signal classification [23]. 

The other is the largest Lyapunov exponents [32], which is a 

pure dynamics based feature. 

In computing the ZC and LLE feature, we let the 

embedding dimension be 10, 15, and 20, respectively. As for 

the LLE feature, we let the number of nearest neighbors for 

data fitting be 10, 20, and 30, respectively. Regarding the 

Lyapunov feature, we take into account 50 evolutionary 

steps. Accordingly, the dimension of the aforementioned 

features should be 45, 180, and 150, respectively. 

 
TABLE I: DESCRIPTION OF THE DATA SET 

Z 5 healthy persons with eye open.  

O 5 healthy persons with eye close.  

N 5 patients in seizure-free intervals with signals from epileptogenic 

zone 

F 5 patients in seizure-free intervals with signals from the opposite 

zone 

S 5 patients during seizure-active period 

 
TABLE II: COMPARISON OF THE CHAOTIC FEATURES ON 3-

CLASS CLASSIFICATION (%) 

 Z&O N&F S Average 

ZC 99.9 99.5 98.4 99.27 

LLE 97.5 96.2 90.6 94.77 

Lyapunov 93.1 91 76.4 86.83 

 

TABLE III: ZC AGAINST LLE ON 5-CLASS CLASSIFICATION (%) 

 Z O N F S Average 

ZC 92.8 89.4 94.6 98.8 97.8 94.68 

LLE 83.2 83.4 75 63.4 91.2 79.24 

 

 
TABLE IV: CLASSIFICATION ACCURACY USING ZC WITH 

DIFFERENT CLASSIFIERS (%) 

 Z O N F S Average 

SVM 92.8 89.4 94.6 98.8 97.8 94.68 

1-NN 98.2 75.6 94.2 92.6 92.4 90.6 

5-NN 99.8 72.2 90.8 95.8 89.2 89.56 

Bayes 93.2 81.8 78.2 90.2 92.6 87.2 

The performance comparison on 3-class classification is 

listed in Table 2, where the overall classification accuracy is 

sorted in descending order as 99.27%, 94.77%, and 86.83% 

for ZC, LLE, and Lyapunov exponents, respectively. As the 

performance of Lyapunov exponents is far from that of the 

ZC feature, we only compare LLE with ZC on the 5-class 

classification problem, the performance of which is shown in 

Table 3. We can see that the averaged classification 

accuracy of ZC drops a little from 99.27% to 94.68% but 

that of LLE drops drastically from 94.77% to only 79.24%. 

According to the comparison, we see that ZC is the best 
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feature for EEG classification among such chaotic features. 

LLE performs better than the largest Lyapunov exponent but 

worse than the ZC feature. Besides, its discriminant power in 

classifying the 5 classes is limited. ZC incorporates both 

geometric and dynamic information since it is subject to not 

only trajectory evolution but also the spatial configuration of 

trajectory points. This account for why it outperforms 

remarkably the other chaotic features. 

 
TABLE V: COMPREHENSIVE PERFORMANCE COMPARISON FOR 

TWO-CLASS CLASSIFICATION (Z,S) 

Authors Method Year %  

Nigam etc. [15] Nonlinear pre-processing filter-

Diagnostic neural network 

2004 97.2 

Srinivasan etc. 

[14] 

Time & frequency domain features-

Recurrent neural network 

2005 99.6 

Kannathal etc. 

[2] 

Entropy measures-Adaptive neuro-

fuzzy inferences system 

2005 92.22 

Kannathal etc.  

[34] 

Chaotic measures-Surrogate data 

analysis 

2005 ~90 

Polat etc. [6] Fast Fourier transform-Decision tree 2007 98.72 

Subasi [9] Discrete wavelet transform-Mixture of 

expert model 

2007 95 

Tzallas etc. 

[13] 

Time-frequency analysis-Artificial 

neural network (ANN) 

2009 100 

Shafiul Alam 

etc. [37] 

EMD, high-order moments- ANN 2013 100 

Duque-Muñoz  

etc. [38] 

Short-time Fourier transform (STFT)- 

SVM 

2014 100 

Xie & Krishnan 

[39] 

Wavelets-Nearest neighbor 2013 100 

Kaya etc. [40] 1D local binary patterns- FT 2014 99.5 

Kumar etc. [33] Fuzzy approximate entropy- SVM 2014 100 

Dhiman etc. 

[20] 

Many features- Genetic algorithm 

based feature selection- SVM 

2014 100 

Fu etc. [24] Hilbert Huang transform- SVM 2014 99.13 

This work ZC-SVM  100 

 
TABLE VI: COMPREHENSIVE PERFORMANCE COMPARISON FOR 

THREE-CLASS CLASSIFICATION (Z,F,S) 

Authors Method Year %  

Güler etc. [5] Lyapunov exponents-Recurrent neural 

network 

2005 96.79 

Übeyli [12] Wavelet-Mixture of expert network 2008 93.17 

Sadati etc. [10] Discrete wavelet transform-Adaptive 

neural fuzzy network 

2006 85.9 

Liang etc. [3] Approximate entropy, spectra-SVM 2010 98.67 

Tzallas etc. 

[13] 

Time-frequency analysis-ANN 2009 100 

Duque-Muñoz  

etc. [38] 

STFT-SVM 2014 100 

Kaya etc. [40] One-dimensional local binary 

patterns- Bayes network 

2014 95.67 

This work ZC-SVM  99.27 

To examine how much classifiers can affect the 

classification performance, we summarize the performance 

data resulting from different classifiers in Table 4. It is 

apparent that support vector machine performs much better 

than k Nearest Neighbor (kNN) classifier and Naïve Bayes 

classifier. 

A comprehensive performance comparison is provided 

in Table 5~7 on the same benchmark and it can be seen that 

the proposed feature is comparable to the state-of-the-art 

solutions. As for the 2-class classification problem, expect 

for the proposed method, many other features perform also 

very well with 100%, for instance, STFT [38], time-

frequency analysis [13], wavelets [39], high-order statistics 

[37], and Fuzzy approximate entropy [33]. The time-

frequency feature applied in [13][38] also achieves the best 

3-class classification accuracy of 100%. However, the 

performance of time-frequency analysis on 5-classication is 

not satisfactory, which is 89% [13]. In terms of 2-class and 

3-class classification, the overall performance of the 

proposed feature is comparable to that of the time-frequency 

feature, which is 100% and 99.73%, respectively. For the 5-

class classification problem, however, the accuracy of the 

proposed feature is 94.68%, which is obviously better than 

the 89% accuracy obtained by using the time-frequency 

feature. The highest classification accuracy regarding 5-class 

classification is achieved by using the combination of 

wavelet features and Lyapunov exponents coupled with 

support vector machine classifier [4]. Also, the individual 

wavelet or spectral feature combined with fuzzy inference, 

neural network ensemble, or support vector machine 

classifier also result in high performance of over 98% 

classification accuracy [11][7][8]. As for the classical 

nonlinear features like entropy or Lyapunov exponent, 

however, the performance cannot be guaranteed to be 

satisfactory if used alone [2][3][5]. In contrast, the proposed 

feature is a more promising feature, which can be used 

independently to achieve over 94% accuracy in classifying 

the 5-class EEG signals.  

 
TABLE VII: COMPREHENSIVE PERFORMANCE COMPARISON FOR 

FIVE-CLASS CLASSIFICATION (Z,O,N,F,S) 

Authors Method Year %  

Güler etc. [11] Wavelet transform- Adaptive neuro-

fuzzy inferences system 

2005 98.68 

Güler etc. [4] Wavelet transform, Lyapunov 

exponents-SVM 

2007 99.28 

Übeyli etc. [7] Spectra-Modified mixture of expert 

model 

2007 98.60 

Übeyli [8] Spectra-SVM 2008 98.30 

Liang etc. [3] Approximate entropy, spectra-SVM 2010 85.9 

Tzallas etc. 

[13] 

Time-frequency analysis-ANN 2009 89 

This work ZC-SVM  94.68 

 

4. CONCLUDING REMARKS 

 

This study reveals that Poincaré surface provides a useful 

means to capture the intrinsic chaotic patterns of EEG 

signals. The number of zero-crossing points on Poincaré 

surface is effective in distinguishing different categories of 

EEG signals. As far as we know, it is a unique nonlinear 

feature that can be used independently to achieve over 94% 

accuracy in the 5-class EEG classification problem.  
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