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ABSTRACT

This paper considers the detection of a distributed target,
which is important in high resolution radars (HRRs). We fo-
cus on the practical scenario where only partial observation is
available. The key contribution of this work is the proposition
of a generalized likelihood ratio test (GLRT) detector using
matrix completion (MC). Firstly, a decision rule is obtained
for the hypothesis test model with missing data. Then the es-
timation of the unknown parameters involved in the detector
is derived via the maximum-likelihood estimator (MLE). To
overcome the problem that the full covariance matrix of the
disturbance can not be estimated analytically, we adopt the
MC technique, in which the estimate is obtained by solving
an optimization problem concerning both the MLE expres-
sion and the low rank interference. An alternating iterative
algorithm is followed to achieve the final estimate. Numer-
ical results are presented to validate the effectiveness ofthe
proposed method when the missing data problem occurs.

Index Terms— distributed target, partial observation,
generalized likelihood ratio test, matrix completion, covari-
ance matrix estimation

1. INTRODUCTION

The distributed target has received extensive attention inthe
past decades. Distributed target (also known as extended tar-
get or spread target) means a target that takes multiple resolu-
tion cells, which is caused by the high resolution of the radar
and the relatively large size of the target. The convention-
al point-target model which concerns only a single resolution
cell fails in this case [1].

The detection of distributed target has been considered in
many literature. The integrated detector is proposed in [2]
and is shown to perform much better than the single range
cell detection. Other works are based on the generalized ratio
test (GLRT) criterion with various disturbance models. The
Gaussian noise described with complex, zero-mean, circular
Gaussian distribution and the non-Gaussian clutter modeled
as spherically invariant random vector (SIRV), are considered
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in [1] and [3], respectively. Different from these two meth-
ods, in [4], the constrained maximization likelihood estimate
(MLE) of unknown parameters without secondary data, i.e.,
data that are free of cells under test, is derived.

Note that the current approaches are mostly based on the
assumption that a set of complete observation data in continu-
ous range cells under test is available. However, this assump-
tion may not be satisfied in many practical applications. Typ-
ical scenarios that would cause incomplete observation data
include element failures in array antenna [5], channel occu-
pancy by other device in spectrum sharing [6], or the com-
pressed sampling for lowing down of data rate in many elec-
tronic systems [7]. The incomplete observation results in data
missing in one or more domains of space, frequency and time,
which is referred to as partial observation in the following.

The issue of partial observation for point-target model has
been discussed in the existing works. For instance, in [8],
the well-known compressed sampling (CS) model [9, 10] is
adopted to recover the sparse signal from partial observation.
Meanwhile, the matrix completion (MC), which is an effec-
tive method for the reconstruction of the full matrix from par-
tial observation [11, 12], is also applied to the point-target
model in [13]. Though the point-target with partial observa-
tion is sufficiently discussed, the case of distributed target is
more complicated and has not been extensively studied yet.

In this paper, we consider the detection of distributed tar-
get with partial observation, and propose an approach based
on GLRT and MC to deal with this issue. In this work, the tar-
get is assumed to be surrounded by disturbance (interference
plus noise) with unknown covariance matrix. We establish
the hypothesis test model by dividing the partial observation
into multiple groups according to different types of data miss-
ing. Then the GLRT detector is obtained with the Neyman-
Pearson criterion. The MLE is imposed on the estimation of
the unknown parameters involved in the GLRT detector, i.e.,
the complex amplitude of target and the covariance matrix of
disturbance. The main challenge in the MLE, i.e., the esti-
mation of the covariance matrix can not be obtained analyt-
ically, is considered by introducing the MC technique. With
the full covariance matrix of interference obtained via MC,
the covariance matrix associated with the partial observation
is acquired and the final GLRT detector is accomplished. Fur-
thermore, a weighted Frobenius norm is adopted to enhance
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the estimation of the covariance matrix. Numerical results
verify the effectiveness of the proposed method.

The rest of this paper is organized as follows. Section 2
specifies the detection problem and the GLRT decision rule.
Section 3 presents the estimating process of unknown param-
eters. Simulation results are provided in Section 4. Conclu-
sions are drawn in the final section.

2. PROBLEM FORMULATION AND THE GLRT
DETECTOR DERIVATION

Consider a radar composing ofN channels and detecting the
presence of a distributed target across at mostK range cells.
The channel may denote the element of an array antenna, the
pulse of a coherent radar, or a combination of both, depending
on the specific detection scenario. Specifically, considering a
matrix expression, the detection problem can be formulated
as the following binary hypothesis test

{
H0 : R = W

H1 : R = ptα
T +W ,

(1)

whereR = [r1, r2, . . . , rK ], α = [α1, α2, . . . , αK ]T and
W = [w1,w2, . . . ,wK ]. rk (k = 1, 2, . . . ,K) is the da-
ta vector collected from thek-th range cell.αk denotes the
uncorrelated unknown complex amplitude of the desired tar-
get’s scatterer in thek-th range cell accounting for both tar-
get reflectivity and channel effects.pt is the deterministic
steering vector of the target.wk denotes the disturbance con-
sisting of interferenceck and white noisenk. Supposewks
are independent and identically distributed (i.i.d.) zero-mean
complex circular Gaussian vectors sharing the same unknown
covariance matrix, namelyE

{
wkw

H
k

}
= X ≻ 0 (k =

1, 2, . . . ,K).
In this paper, we focus on the scenario where only par-

tial observation data is available. The positions of the missing
entries are randomly distributed and known after sampling.
Noticing the fact that the data of different range cells may
share the same patterns of missing data, we divide the ob-
served data matrixR into G groups along range cells. Thus
each group exhibits the same pattern of channel index data
present or missing. The range cell index set and channel in-
dex set of theg-th group (g = 1, 2, . . . ,G ) are denoted byΨg

(Ψg ⊂ {1, 2, . . . ,K}) andΩg (Ωg ⊂ {1, 2, . . . , N}) respec-
tively, with cardinality|Ψg| = Kg and|Ωg| = Ng. Specifi-
cally, for theg-th group, the detection problem can be written
as {

H0 : Rg = Wg

H1 : Rg = ptgα
T
g +Wg,

(2)

whereRg, Wg, ptg andαg denote the partial form of the
corresponding parameters. In this scenario,Bg ∈ ZKg×K

andDg ∈ Z
Ng×N denote the selection matrix of range cell

index and channel index, respectively. The elements inBg

andDg are composed of 1’s or 0’s, indicating the observa-
tions on the corresponding indices are present or missing. To

illustrate,Rg = DgRBT
g , ptg = Dgpt andαg = Bgα.

It is necessary to note that the grouping does not affect
the detection result, sinceαks are assumed to be uncorrelat-
ed. If αks are dependent, the expression can be obtained by
regarding each range cell as a group.

With the above assumptions, the probability density func-
tion (PDF) underH1 can be formulated as

fR (R|αH1
,XH1

, H1)

=

G∏

g=1

fR (Rg|αg,H1
,Xg,H1

, H1)

=
G∏

g=1

[det (Xg,H1
)]
−Kg

πKgNg
exp

[
−tr

(
X−1

g,H1
Mg,H1

)]
,

(3)

whereMg,H1
denotes

Mg,H1
=

(
Rg − ptgα

T
g

) (
Rg − ptgα

T
g

)H
, (4)

and the partial form of covariance matrixXg,H1
is given by

Xg,H1
= DgXH1

DT
g . (5)

The PDF underH0 can be obtained by replacingαH1
with 0

andXH1
with XH0

in (3)∼(5).
According to the Neyman-Pearson criterion, the Likeli-

hood Ratio Test (LRT) enables the maximum detection prob-
ability with the false alarm probability fixed. However, for
the case under consideration,α andX are unknown. A clas-
sic approach is to replace the unknown parameter with its
maximum-likelihood estimate (MLE) under each hypothesis,
leading to GLRT [14]. We resort to this strategy herein. Then
the GLRT decision rule in the partial observation scenario is
formulated as

max
αH1

,XH1

fR (R|αH1
,XH1

, H1)

max
XH0

fR (R|XH0
, H0)

H1

>
<

H0

η. (6)

Thus, the key issue to devise the GLRT detector is the es-
timation of unknown parameters under each hypothesis, i.e.,
{αH1

,XH1
,XH0

}, and then substitute the estimate into (6).

3. ESTIMATION OF UNKNOWN PARAMETERS

3.1. MLE expression of the unknown parameters

The MLE of the unknown parameters associated with each
hypothesis can be obtained by solving the maximizing prob-
lem in the numerator and the denominator of (6) respectively.

As to αH1
, with the logarithmic form of the PDF un-

der H1 given by (3), we can get the MLE ofαH1
(α̂H1

)
via complex matrix partial differential. Specifically, let
∂
∂α (logfR (R|αH1

,XH1
, H1)) = 0, we obtain

G∑

g=1

mgIBg
α̂∗

H1
=

G∑

g=1

dg, (7)
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wheremg = pH
t DT

g X
−1

g Dgpt , IBg
= BT

g Bg, anddg =

BT
g BgR

HDT
g X

−1

g Dgpt. Note thatIBg
represents a par-

tial identical matrix with main diagonal elements 1’s in those
rows specified in the set ofΨg and 0’s for others. Since every
range cell has at least one channel observed (i.e., missing an
entire column is not permitted in the observed data matrix),it
suggests that

∑G
g=1

mgIBg
is certainly invertible. Therefore,

the MLE ofαH1
can be given as

α̂H1
=

[( G∑

g=1

mgIBg

)−1( G∑

g=1

dg

)]∗
. (8)

Similarly, it can be shown that the MLE ofX ( refers toXH0

orXH1
) satisfies

G∑

g=1

KgD
T
g X̂

−1

g Dg =

G∑

g=1

DT
g X̂

−1

g MgX̂
−1

g Dg. (9)

Though the implicit MLE is obtained, there is still a chal-
lenge that it is difficult to get the explicit expression ofX

from (9), due to the presence of the summation term and on-
ly partial observation is available. Moreover, it can be seen
thatα̂H1

andX̂H1
are interdependent. Therefore, we would

adopt more powerful tools to acquire the solution ofX, which
will be shown in the following.

3.2. Estimation of the Disturbance Covariance Matrix via
Matrix Completion

Consider the estimation of unknown parameters underH1

first. Since the analytical expression ofα̂H1
is already giv-

en by (8), we focus on the estimation ofXH1
whenα̂H1

is
known. Once the analytical expressions are acquired, an al-
ternating iterative method can be used to achieve the final es-
timate ofαH1

andXH1
. In the following of this subsection,

the subscriptH1 is omitted in all the expressions for brevity.
Suppose that the received disturbance signalwk = ck +

nk, and the interference termck is considered as a contribu-
tion ofNi sources, which can be expressed as

ck =

Ni∑

j=1

βjpij = Pβ, (10)

whereP = [pi1 ,pi2 , . . . ,piNi
] andβ = [β1, β2, . . . , βNi

]T .
βj andpij are the complex amplitude and the deterministic
steering vector of thej-th interference (j = 1, 2, . . . , Ni),
respectively. Assuming the interference termck and the white
noise termnk are mutually uncorrelated andnks are i.i.d.
zero-mean complex circular Gaussian vectors, the covariance
matrix of the disturbance is given as

X = Xi + σ2

0
IN , (11)

whereXi and σ2

0IN represent the covariance matrix of
ck andnk, respectively. σ2

0
is the known power level of

the white noise term. Furthermore,Xi = E{ckc
H
k } =

PE{ββH}PH . It is reasonable to assume thatNi ≪ N

(see, e.g., [4, 15]), then Rank(Xi) ≤ Ni. Namely, the rank
of Xi is much smaller than its dimension. To conclude,Xi

is low rank.
Consider a single item of the summation in (9) and in-

spired by the sample covariance matrix, we notice thatX̌g =
Mg/Kg meets (9) whenMg is invertible. In the case where
Mg is not invertible, a generalized inverseM †

g via singular
value decomposition(SVD) [16] can be adopted and equation
(9) still holds. SinceX̌g = Mg/Kg, referring to (5) and
considering all the groups (equivalent to all the entries ofthe
covariance matrix), we have

G∑

g=1

KgD
T
g DgX̌DT

g Dg =
G∑

g=1

DT
g MgDg. (12)

The left side and right side of (12) are denoted asX̃ andM̃ ,
respectively.

On the basis of the above considerations, our scheme aims
at finding a low rank matrixXi that approximates̃X to M̃ .
As rank minimization is NP-hard, it is relaxed to a nuclear
norm minimization problem [17]. The optimization problem
can be formulated as

X̂i = arg
Xi

min ‖X̃ − M̃‖2Fw
+ γ‖Xi‖∗

s.t. Xi � 0,X = Xi + σ2

0
IN ≻ 0,

(13)

whereγ is a regularization coefficient balancing the nuclear
norm term and the data approximation term. It is worth noting
that we define a weighted Frobenius norm|| · ||Fw

to replace
the Frobenius norm in the data approximation term in (13).
Specifically, the weighted Frobenius norm ofA ∈ Cm×n can
be written as

||A||Fw
,

( m∑

i=1

n∑

j=1

wij |aij |
2

)1/2

. (14)

In || · ||Fw
, wij is introduced to control the effects of matrix

entries on the data approximation caused by the difference of
observation number. It can be easily verified that|| · ||Fw

is a
norm.

In conclusion,X̂i can be obtained via solving the opti-
mization problem in (13),̂X is then estimated bŷX = X̂i+
σ2
0I. An alternating iterative algorithm is used to achieve the

final estimate ofαH1
andXH1

. As to the estimation of un-
known parameter underH0, namelyX̂H0

, it can be obtained
by replacingα̂H1

with 0 in the expression ofX̂H1
. Final-

ly, once the estimates of unknown parameters under both hy-
potheses are derived, the GLRT detector is achieved referring
to (6).

3.3. Relation to Prior Work

The practical and complicated case where only partial obser-
vation is available for distributed target is firstly addressed in
this work. Meanwhile, the existing works just address one
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side of the issue, i.e., point-target with partial observation or
distributed target with complete observation.

Besides, the GLRT approach for distributed target with
complete observation can be verified to be a degenerate case
of our approach. Specifically, whenBg = IK , Dg = IN and
G = 1, i.e., there is no data missing, the MLE obtained in
(9) can be verified to be consistent with the full observation
scenario in [4, 18].

We firstly utilize the low rank property and adopt MC to
estimate the covariance matrix of interference. Though MLE
are used for parameter estimation in all the approaches, our
method use MC uniquely. While in the existing cases, the M-
LE can be obtained directly with an analytical solution, which
is not achievable in our case.

4. NUMERICAL RESULTS

In this section, we compare the performance of proposed
method denoted as MC-GLRT, with the method presented
in [4], which is referred to as UIF-GLRT. In the simula-
tions, a uniform linear array radar withN elements and
half-wavelength spacing is considered, where the possible
target is sought withinK range cells. The configuration
of major parameters in the simulations are listed as fol-
lows: N = 20,K = 50, the probability of false alarm
PF = 10−4, interference numberNi = 3, power of the
interferenceσ2

i = 30dB, power level of the white noise
σ2
0 = 0dB, target phase angleφt = 0, and interference phase

angleφi = [20◦, 40◦, 60◦]. Moreover, we setwij = Koij/K
in (13), whereKoij denotes the observation number of the
(i, j)-th entry of the covariance matrixX. Additionally, the
missing positions ofR is adopted with zero-padding in the
UIF-GLRT algorithm.
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Fig. 1. The NMSE vs SINR of unknown parameters with
different missing rates (τ ). (a) The NMSE ofαH1

; (b) The
NMSE ofXH1

andXH0

Since the detection performance of GLRT highly de-
pends on the estimation accuracy of the unknown parame-
tersαH1

,XH1
, andXH0

, we record the normalized mean
squared error (NMSE) with different missing rates (τ ) first-
ly. The NMSE is defined asE(‖Ẑ − Z‖2F/‖Z‖2F ), where
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Fig. 2. Performance comparison with different missing rates.

Ẑ is the estimate obtained from (8) or (13) whileZ is the
corresponding true value. The result is shown in Fig.1, in
which each point represents the average of 1000 Monte Carlo
trials. It can be seen that as SINR increases, the estimation
error ofαH1

reduces, and the NMSE ofXH1
andXH0

of
the proposed approach maintains in a low level. Meanwhile,
the estimate of all the unknown parameters in MC-GLRT are
significantly better than UIF-GLRT with the sameτ . More-
over, asτ increases, namely available data decreases, the
estimation accuracy of UIF-GLRT deteriorates faster than
MC-GLRT. The curves ofPD versus SINR with differentτ
are shown in Fig.2. We can see that the detection perfor-
mance of MC-GLRT outperforms UIF-GLRT when the same
observations are available. Furthermore, the performance
advantage is particularly noticeable whenτ changes from 0
to 0.2. The improvement is achieved by utilizing the specific
structure of disturbance and recasting the estimation ofX as
the recovery ofXi. Specifically, we assign larger weights
to the entries with more observations in the reconstruction
process and consider the properties of the full matrix (posi-
tive semi-definite and low rank) as well, which improves the
estimation accuracy and further the detection performance.

5. CONCLUSION

In this paper, we propose a GLRT detector to deal with
the detection of distributed target with partial observation.
Though point-target model with partial observation and dis-
tributed target with complete observation are all considered
in literature, the more complicated issue of distributed tar-
get with partial observation is firstly addressed in this work.
With the hypothesis test model built by multiple groups of
data missing, the GLRT detector is derived. The key issue
of estimating the unknown parameters in GLRT detector
is accomplished by using MC and the alternating iterative
algorithm. The existing GLRT detectors are verified to be
special cases of our approach. Numerical results verify the
improvement of the estimation accuracy and furthermore the
detection performance.
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