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ABSTRACT in [1] and [3], respectively. Different from these two meth-

ods, in [4], the constrained maximization likelihood estim

This paper considers the detection of a distributed targeEMLE) of unknown parameters without secondary data, i.e.,
which is important in high resolution radars (HRRs). We fo- 5o that are free of cells under test. is derived.

cus on the practical scenario where only partial obsemasio

g}"’:lazlr?é;?eek;{ E;nrfgggtgt]'gftgf Vgﬁ;ﬂ? tzztpe)rgg:mt.n assumption that a set of complete observation data in asntin
9 1zed TIKell : ( ) BN s range cells under test is available. However, this agsum

;nag:x ﬁomrf[lr?tlo.n t(MS). F(;rsltlyzts d?c'.s'ond”f[le [i;hobt?rn]he tion may not be satisfied in many practical applications.-Typ
orine nypothesis test model with missing data. 'hen e €3z, scanarios that would cause incomplete observatioa dat

}'Smda;'r?vlgfvtiget#gl::g)\?ilrr:]S%rj‘iT;fﬁgzgn\ézLYriiggrthﬁfgte%ornclude element failures in array antenna [5], channel eccu
rcome the problem that the full fian m( i )'f th ancy by other device in spectrum sharing [6], or the com-
overcome the proble at the full covariance matrix o ressed sampling for lowing down of data rate in many elec-

disturban(_:e can not b € estimat_ed anglyticall_y, we adopt_ tht‘?onic systems [7]. The incomplete observation resultsaitad
MC technique, in which the estimate is obtained by solvin issing in one or more domains of space, frequency and time,

an optimization pmblem concerning both the M.LE EXPIESY hich is referred to as partial observation in the following
sion and the low rank interference. An alternating itemativ

. . . ! . The issue of partial observation for point-target model has
algorithm is followed to achieve the final estimate. Numer-been discussed in the existing works. For instance, in [8]
ical results are presented to validate the effectivenesiseof 9 ’ ’ '

proposed method when the missing data problem occurs. the well-known compressed Sa’.“p"”g (CS) m_odel [9, 10].'5
adopted to recover the sparse signal from partial observati

Index Terms— distributed target, partial observation, Meanwhile, the matrix completion (MC), which is an effec-
generalized likelihood ratio test, matrix completion, adv  tive method for the reconstruction of the full matrix fronrpa
ance matrix estimation tial observation [11, 12], is also applied to the point-&drg
model in [13]. Though the point-target with partial observa
tion is sufficiently discussed, the case of distributedetig
more complicated and has not been extensively studied yet.

The distributed target has received extensive attentiaghen In_thls paper, we con_5|der the detection of distributed tar-
past decades. Distributed target (also known as extended et with partial observation, and propose an approach based

get or spread target) means a target that takes muItipImFesoOn C_;LRT and MC to deal with this ISSue. In this wor_k, the tar-
tion cells, which is caused by the high resolution of the radad® 'S a§sume_d to be surroundeo_l by d|sturb_ance (|nterfer¢_enc
and the relatively large size of the target. The convention?k:ushno'sti) V\_"trt' u?kno:j/vr; l(g:o?r!zncethmatrlx.t_ \fVebestabItl_sh
al point-target model which concerns only a single resofuti . € hypothesis test model by dividing the partial obseovat
cell fails in this case [1]. into multiple groups according to different types of datasni

The detection of distributed target has been considered ino: Then t_he_GLRT detecto_r IS obtained with the_Ney_man-
many literature. The integrated detector is proposed in [Zfearson criterion. The MI.‘E IS |mp_osed on the est|mat|or_1 of
) he unknown parameters involved in the GLRT detector, i.e.,

. i the complex amplitude of target and the covariance matrix of
cell detection. Other works are based on the generalized ratdisturbance. The main challenge in the MLE, i.e., the esti-

test (GLRT) criterion with various disturbance models. The

. . h . . mation of the covariance matrix can not be obtained analyt-
Gaussian noise described with complex, zero-mean, circula

Gaussian distribution and the non-Gaussian clutter mddel [cally, is considered by introducing the MC technique. With

. ) - 00€%%he full covariance matrix of interference obtained via MC,
as spherically invariant random vector (SIRV), are congde - . . . ) .
the covariance matrix associated with the partial obsemwat

This work is supported by the National Natural Science Fatind of IS acquired and_the final GLRT_ detector _iS accomplished. Fur-
China (Grant No. 61571260). thermore, a weighted Frobenius norm is adopted to enhance

Note that the current approaches are mostly based on the

1. INTRODUCTION
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the estimation of the covariance matrix. Numerical resultsllustrate,R, = D,RB], p;, = Dyp; anda, = Byo.

verify the effectiveness of the proposed method. It is necessary to note that the grouping does not affect
The rest of this paper is organized as follows. Section 2he detection result, sineg,s are assumed to be uncorrelat-

specifies the detection problem and the GLRT decision rulead. If oS are dependent, the expression can be obtained by

Section 3 presents the estimating process of unknown paramegarding each range cell as a group.

eters. Simulation results are provided in Section 4. Cenclu  With the above assumptions, the probability density func-

sions are drawn in the final section. tion (PDF) undelf; can be formulated as

fR (R|aH1 ) XH17 Hl)
2. PROBLEM FORMULATION AND THE GLRT

G
DETECTOR DERIVATION = H fr(Rylog m,, Xg 1y, Hi) @)
=1
Consider a radar composing df channels and detecting the JG x
presence of a distributed target across at nivsange cells. _ [det (Xg,m,)] * —tr(x-L M
- H Ky4N, €xXp r g,H1 g, H1|»
The channel may denote the element of an array antenna, the =1 mihate &
pulse of a coherentradar, or a combination of both, depgndin hereM denot
on the specific detection scenario. Specifically, considgesi whereMyg, i, denotes
. . . "
matrix expression, the detectloq problem can be formulated My, = (R, — ptgag) (R, — ptga;{) , (4)
as the following binary hypothesis test ) ; .
o oR—W and the partial form of covariance mattX, x, is given by
0°: =
{ Hy:R=pa’ +W, () Xy, = DyXu, Dy ®)
whereR = [r1,7s,...,7x], @ = [a1,as,...,ax]T and The PDF undef{, can be obtained by replacirgy;, with 0

W = [wyi,ws,... ,wi]. 7 (k = 1,2,...,K) is the da- andXa, With Xy, in (3)~(5).

ta vector collected from thé-th range cell.«;, denotes the Accorplmg o the Neyman-Pearson .cr|ter|on, th? Likeli-
uncorrelated unknown complex amplitude of the desired ta'bo_o_d Ra_tlo Test (LRT) enables the maximum detection prob-
get's scatterer in thé-th range cell accounting for both tar- ability with the false_alarm probability fixed. However, for
get reflectivity and channel effectg; is the deterministic the case unde_r consideratianand X are unknown. A cla_s- .
steering vector of the targeiz, denotes the disturbance con- SIC @PpProach is to replace the unknown parameter with its
sisting of interference;, and white noisary,. Supposaw;.s max!mum-hkellhood estimate (MLE) .under each hypothess,
are independent and identically distributed (i.i.d.) zavean leading to GLRT [14]. We resort to this strategy herein. Then

complex circular Gaussian vectors sharing the same unknoxn% e Gll_Fdedeusmn rule in the partial observation scenaio |
covariance matrix, namelf {wyw/’} = X » o (k = ‘'ormuatedas

1,2,..., K).

In this paper, we focus on the scenario where only par- X, Ir(Rlay,, Xu,, Hh) [il
tial observation data is available. The positions of thesintp e fre (R Xm0 Ho) 5 - (6)
entries are randomly distributed and known after sampling. Xty 0

Noticing the fact that the data of different range cells may Thus, the key issue to devise the GLRT detector is the es-

share the same patterns of missing data, we divide the Ot‘ﬂ'mation of unknown parameters under each hypothesis, i.e.

served data mat_rn_R into G groups along range cell_s. Thus {aaHU X11,, X1, ), and then substitute the estimate into (6).
each group exhibits the same pattern of channel index dat

present or missing. The range cell index set and channel in-

dex set of thg-th group (9 = 1, 2, ... .G ) are denoted by, 3. ESTIMATION OF UNKNOWN PARAMETERS

(¥, C {1,2,...,K})andQ, (2, C {1,2,...,N}) respec-

tively, with cardinality|V,| = K, and|Q,| = N,. Specifi-

cally, for theg-th group, the detection problem can be writtenThe MLE of the unknown parameters associated with each

as hypothesis can be obtained by solving the maximizing prob-
{ Ho: Ry =W, T (2) leminthe numerator and the denominator of (6) respectively

Hy: Ry =pi, a5 + Wy, As to ay,, with the logarithmic form of the PDF un-

whereR,, W,, p;, anda, denote the partial form of the der H, given by (3), we can get the MLE akp, (am,)

corresponding parameters. In this scenafy, € Z%s* K via complex matrix partial differential. ~Specifically, let

andD, € ZM+*N denote the selection matrix of range cell %(Iong(RlaHl,XH],Hl)) = 0, we obtain

index and channel index, respectively. The elementBjn G G

a_lnd D, are composed (_)f I's or O, indicating the Qb;erva— ngIBgd*Hl - Z d,, 7

tions on the corresponding indices are present or missiag. T ot ot

3.1. MLE expression of the unknown parameters
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wherem, = pf’DgTXg—ngpt I, = BgTBg, andd, = (see, e.g., [4, 15]), then RafiX;) < N;. Namely, the rank
BngRHDgTXg—lpgpt, Note thatIp, represents a par- of X; is much smaller than its dimension. To concludg,
tial identical matrix with main diagonal elements 1's ingleo  is low rank.

rows specified in the set df, and O's for others. Since every ~ Consider a single item of the summation in (9) and in-
range cell has at least one channel observed (i.e., misaing &pired by the sample covariance matrix, we notice Kiat—=
entire column is not permitted in the observed data maitix), M,/K, meets (9) wherV, is invertible. In the case where
suggests thaEf:1 mgIp, is certainly invertible. Therefore, M, is not invertible, a generalized inverﬂd;]r via singular

the MLE of a7, can be given as value decomposition(§VD) [16] can be adopted and equation
G G (9) still holds. SinceX, = M,/K,, referring to (5) and
—1 * . . = .
Ao T d _ 8 considering all the groups (equivalent to all the entriethef
X [( ; M B”) (; g)} ® covariance matrix), we have
Similarly, it can be shown that the MLE dX (refers toX G 3 G
or Xy, ) satisfies > K,DID,XDID,=% DIM,D, (12)
€] G 9=t 9=t
Y K,DIX'D,=> DIX 'M,X;'D, (9 i iaht si Naand M
gy Ay g g“%g gxg g The left side and right side of (12) are denoteddsind M,
g=1 g=1 respectively.
Though the implicit MLE is obtained, there is still achal-  On the basis of the above considerations, our scheme aims

lenge that it is difficult to get the explicit expression &f  at finding a low rank matrixX; that approximateX to M.
from (9), due to the presence of the summation term and oms rank minimization is NP-hard, it is relaxed to a nuclear
ly partial observation is available. Moreover, it can bensee norm minimization problem [17]. The optimization problem
thatay, and Xy, are interdependent. Therefore, we wouldcan be formulated as

adopt more powerful tools to acquire the solutio®fwhich . ~

will be shown in the following. X = arg min | X — M |3, +~]Xi|. 13)

o : i o st. X;=0,X =X;+02Iy -0,
3.2. Estimation of the Disturbance Covariance Matrix via - 70N

Matrix Completion where~ is a regularization coefficient balancing the nuclear
norm term and the data approximation term. Itis worth noting
that we define a weighted Frobenius ngtm|| =, to replace

the Frobenius norm in the data approximation term in (13).

Consider the estimation of unknown parameters unfder
first. Since the analytical expression @fy, is already giv-
en by (8), we focus on the esnmanqn Ay, wheanl 'S ?pecifically, the weighted Frobenius normafc C™*™ can
known. Once the analytical expressions are acquired, an e wri
T . . ; e written as
ternating iterative method can be used to achieve the firal es —
timate ofay, and X g, . In the following of this subsection, |Al|p, 2 (Z Z Wi ‘a,_,_‘z)l/z (14)
the subscripH; is omitted in all the expressions for brevity. P et v '
Suppose that the received disturbance signak= c; +

n;, and the interference term, is considered as a contribu-
tion of NV; sources, which can be expressed as

In || -||F,, wi; is introduced to control the effects of matrix
entries on the data approximation caused by the differehce o

N observation number. It can be easily verified that|z, is a
: norm.
Ck = z;ﬁjpif = PB, (10) In conclusion,X; can be obtained via solving the opti-
=

mization problem in (13)X is then estimated bX = X, +
whereP = [p;,,pi,, ..., Piy,] aNdB = [B1, B2, ..., Bn, )T, oZI. An alternating iterative algorithm is used to achieve the
£; andp,, are the complex amplitude and the deterministicfinal estimate ofxy, and Xy,. As to the estimation of un-
steering vector of thg-th interference { = 1,2,...,N;),  known parameter undef,, namelyX ,, it can be obtained
respectively. Assuming the interference terprand the white by replacingé ;, with 0 in the expression oX . Final-
noise termn,;, are mutually uncorrelated andy,s are i.i.d. ly, once the estimates of unknown parameters under both hy-
zero-mean complex circular Gaussian vectors, the cowaian potheses are derived, the GLRT detector is achieved refgrri
matrix of the disturbance is given as to (6).

X =X, +otly, (11)
. . 3.3. Relation to Prior Work
where X; and oIy represent the covariance matrix of

¢, and iy, respectively. o7 is the known power level of The practical and complicated case where only partial ebser
the white noise term. Furthermor&X; = E{cyc} =  vation is available for distributed target is firstly addred in
PE{BB"}PH. Itis reasonable to assume thdf << N  this work. Meanwhile, the existing works just address one
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side of the issue, i.e., point-target with partial obseorabr
distributed target with complete observation.

Besides, the GLRT approach for distributed target with ol
complete observation can be verified to be a degenerate case osf
of our approach. Specifically, wheéB, = I'x, D, = Iy and o 05f
G = 1, i.e., there is no data missing, the MLE obtained in ul ia ooy <o |

(9) can be verified to be consistent with the full observation '

scenario in [4, 18]. s WA o AMC-GLRT.t =05
We firstly utilize the low rank property and adopt MC to i o

estimate the covariance matrix of interference. Though MLE SINR(B)

are used for parameter estimation in all the approaches, our ) L .

method use MC uniquely. While in the existing cases, the w19 2. Performance comparison with different missing rates.

LE can be obtained directly with an analytical solution, @¥hi

is not achievable in our case.

A ~B-MC-GLRT,t =0.2
~B-UIF-GLRT,T =0.2 §

Z is the estimate obtained from (8) or (13) whiis the
corresponding true value. The result is shown in Fig.1, in
which each point represents the average of 1000 Monte Carlo

In this section, we compare the performance of proposeHials' It can be seen that as SINR increases, the estimation
method denoted as MC-GLRT, with the method presenteg:ror of ozHldreduces, :nd Fhe NMSE (IXHII an?}'\(ﬂH“ of hil

in [4], which is referred to as UIF-GLRT. In the simula- he propose ?pﬁrc;]ac nlzalntalns in alow E'JVEIE\/iC gigv_:_/ e,
tions, a uniform linear array radar witlv elements and the estimate of all the unknown parameters in . are

half-wavelength spacing is considered, where the possibl'?:é\'gmflcamIy better than UIF-GLRT with the same More-

target is sought withink range cells. The configuration over, ast increases, namely available data decreases, the

of major parameters in the simulations are listed as fo&Stimation accuracy of UIF-GLRT deteriorates faster than

lows: N = 20, K = 50, the probability of false alarm MC-GLRT. The curves ofPp versus SINR with diffgremr

Pr — 10-4, interference numbeN; = 3, power of the &'¢ shown in Fig.2. We can see that the detection perfor-
interferences? = 30dB, power level of the white noise mance of MC-GLRT outperforms UIF-GLRT when the same
o2 = 0dB, target phase angle — 0, and interference phase observanoqs are.ava|lable. . Furthermore, the performance
angleg; = [20°, 40°, 60°). Moreover, we set;; = K, /K advantage is particularly noticeable whemrthanges from 0

in (13), wherekK,,; denotes the observation number of thegrgftu;hgf I(S?slf)t[;or\tl)earr?ce::r? dafehéz\slﬁg b%g!gﬁ;{;g;&icmc
(i, 7)-th entry of the covariance matriX. Additionally, the 9

missing positions ofR is adopted with zero-padding in the ';hetr:ecovte.ry OD%' Specmgally, v;/.e as§|gtr;] larger W?'ghI.S
UIF-GLRT algorithm. o the entries with more observations in the reconstruction

process and consider the properties of the full matrix ¢osi
0 tive semi-definite and low rank) as well, which improves the
osr 03 estimation accuracy and further the detection performance

07 O7F @aeann L SR T SR s S c PPy o
- =0, MC-GLRT=02 X, MC-GLRT=02
B0, UIF-GLRT=02 08 “©-X, UIF-GLRT1=0.2
0 0, MC-GLRT =05 e X, MC-GLRTr=02
o 0, UF-GLRT =05 A X, UIF-GLRT1=0.2
o orurcases 5. CONCLUSION
O X, UIF-GLRT=05
A X,y MC-GLRT=05
A X, UF-GLRT1=05

4. NUMERICAL RESULTS

In this paper, we propose a GLRT detector to deal with
: - 8 e the detection of distributed target with partial obseiwati
B ke B0 F o MW R R g ® O E R Though point-target model with partial observation and dis
(a) (b) tributed target with complete observation are all consder
in literature, the more complicated issue of distributed ta
Fig. 1. The NMSE vs SINR of unknown parameters with get with partial observation is firstly addressed in this kvor
different missing ratesr). (a) The NMSE ofa,; (b) The  With the hypothesis test model built by multiple groups of
NMSE of X, and X g, data missing, the GLRT detector is derived. The key issue
of estimating the unknown parameters in GLRT detector
Since the detection performance of GLRT highly de-is accomplished by using MC and the alternating iterative
pends on the estimation accuracy of the unknown paramedgorithm. The existing GLRT detectors are verified to be
tersay,, Xpy,, and Xy, , we record the normalized mean special cases of our approach. Numerical results verify the
squared error (NMSE) with different missing rate3 {irst-  improvement of the estimation accuracy and furthermore the
ly. The NMSE is defined a®(||Z — Z||%/|Z||%), where  detection performance.
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