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ABSTRACT tion are described in Section 3. The proposed estimatoviialeed

We propose a method for detecting and estimating multipject® in Section 4. Simulation results are presented in Section 5.

from multiple noisy images with partly overlapping obsdiva ar-

eas. The goal is to detect the objects that are “locally”gmem the 2. RFS FUNDAMENTALS
individual observation areas and to estimate their st@asmethod  An RFSX C R is a finite set of a random number of random vectors
is based on a new closed-form expression of the marginaépost  x ¢ R?, i.e., X = {xi, ..., x}, wherek is a nonnegative random in-

probability hypothesis density (PHD) and admits a distedumple-  teger and the; € R? are random vectors. (We use sans-serif type to
mentation. Simulation results demonstrate performan@esgaver  denote random quantities.) Note that the realizafios: {x1, . . .,
correlation-based and PHD-based methods that do not takenad x1} is not changed by a permutation of the elements. . . , z5.

tage of the overlapping observation areas. Using the FISST framework [17, 18], an RFSis characterized by
Index Terms— Random finite set, FISST, probability hypothe- its probability density function (PDFY(X), where X is any fi-
sis density, PHD, image processing. nite set of elements frorR“. The probability thaiX is contained

in a given closed sett C R? can be calculated BI(XCA) =
f(X)dX, where the right-hand side is set integral[17, 18].
1. INTRODUCTION é?milarly, an I-tuple of RFSsX;,...,X; is characterized by the
Detecting and estimating objects from observed images poim ~ joint PDF f(X1,..., X;), and the probability that th; are con-
tant in applications such as visual tracking [1], autonosnddv- tained in closed setd; C R can be calculated by an iterated set
ing [2], remote sensing [3], biomedical analytics [4, 5]d88LAM integral, i.e.,
[6, 7]. Methods for object detection and estimation from gexdike
data include [8-16]. Recently, methods based on randone feits PriXiCAr, ..., XiCAr)
(RFSs) [17, 18] have been proposed for applications in targek- I
ing and data fusion. Some of these methods involve the pilityab B //;1 Alf(Xl’ - X)dXr..d X @
hypothesis density (PHD), which is a first-order moment oR&% . . a .
distribution [19-21]. An RFS method that detects and traoktti- e PHDD(2) of an RFSXis a real-valued function oRt W'tg
ple objects based on a sequence of images is proposed intig]. 1€ defining property that its integral over any closed suliseé R
method uses a multi-Bernoulli filter and assumes a singlegear ~ 91ves the expected number of elementXafontained in4, i.e.,
multiple sensors with identical observation areas (OAs).
Here, we propose a PHD-based method for the problem of esti- E{IXnAl} = / D(z)dz. @)
mating the number and states of objects from multiple norgges. A
We allow for overlapping OAs and extend the data model of fp6] Here,|X| denotes the cardinality of .

this case. However, differently from [16], we consider mstiion An important special RFS is theoisson RFSwhose PDF is
from a single set of images, rather than sequential estmétom  [17, 18]

a temporal sequence of images. Our goal, more specifically i f(X) = e X! H f(x), 3)
estimate the numbers and states of the objects that arenpneske zEX

individual OAs. This amounts to estimating the “local RF$'tlhee wherey > 0 is the mean of the random variati®| and f(z) is a

objects present in a given OA. The proposed estimator ish@$@  \octor PDF orR® (also callecspatial PDP). A Poisson RFS is fully
new closed-form expression of the marginal posterior PHEaes (o -- tarized by its PHD, which is given by

advantage of the overlapping OAs by using all the relevarbies,
and it can be easily implemented in a decentralized mannew-S D(z) = pf(x). 4)
lation results demonstrate the superior performance oéstimator
compared to both a PHD-based estimator using only the réepec 3. DATA MODEL AND STATISTICAL FORMULATION
image and a classical correlation-based estimator [223[Ch.

This paper is organized as follows. After a review of some RF
fundamentals in Section 2, the data model and a statisticaiuia-

gWe assume that an unknown number of objects may be present in
one or several observed images. An object is characterigets b
statex € R C R For examplex may be the two-dimensional (2-D)

This work was supported by the FWF under grants P27370-N&80 an position of an object, in which cage C R2. We observe a collection

J3886-N31, the National Sustainability Program of the faem Commis- _ _ ; _ (1

sion under grant LO1401, and the Ngl'o Sgpreme AIIiec?Comm‘Eradus- Z(IA%_T (Zl’]'\% "’ z1) of I gray Scale-. IMages, when@ B E:;

formation under project SACO00601. F. Meyer is currentijvine Labora-  z; ~) € RM, i€ {1,...,I} comprises the pixel values™, m €

tory for Information and Decision Systems, MIT, Cambridiys, USA. {1,..., M} of theith image.

978-1-5090-4117-6/17/$31.00 ©2017 IEEE 4641 ICASSP 2017



R3

Ry

(m)
¢’L ( ’ ) .
(=)
By constructionX; contains all state vectots that affect image,
H 1
ie.,
f(zi]X5). 9

Therefore, giverX;, z; is conditionally independent of all the other
local RFSsX;, and hencef(z;|X1.1) = f(zi|X:). Furthermore,

Bi(x, zi)

I1

meT;(x) i

®)

f(zi]X) =

Fig. 1. Schematic representation of five pairwise overlapping OAsve assume that giveX;.;, z; is conditionally independent of all the

Ri,..., Rs associated with images, . . ., zs.

To characterize the statistical dependence of the imagélseon
object states, we first assume that only one object with statec
is present. Lefl;(x) C {1,..., M} denote the set of those pixel-
indicesm in imagez;, that are affected by an object with stateAn
object affects pixeln € T;(x) by changing the distribution ai"”)

More specifically, the conditional PDF aj‘m) givenx=wx is [16]

<m)| )= qﬁz( ("L>,w) if meT;(x),
e (™) if mgTi(x),

with known functionsg; (2™, ) and ¢; (={"™) whose integral

with respect tmgm) is 1. We define théth OA R; C R as the set of
all state vectorg: € R that affect at least one pixel in imagg i.e.,

Ri2{xeR: Ti(x)#£0}, ie{l,...,I}.

Evidently, U!_, R; C R; for simplicity, we assquL Ri = R,
i.e., the object affects at least one image The pairwise intersec-
tionsR;; £ R; N R; = Ry;, i # j are allowed to be nonempty,
which means that the OAs of two different imagesandz; may
overlap. That is, ifR;; # 0, an object with state: € R;; affects
both images; andz;. However, we restrict to pairwise overlap, i.e.,
an object can affect at most two images simultaneously. Mieians
that R; N R; N Ry, = @ for any choice of different indices j, and

k. Fig. 1 shows an example of pairwise overlapping OAs.

We now generalize to the case of multiple objects. While the
definitions ofT;(x) and R; are still valid, we have to adapt the sta-
tistical dependence. We assume that the number and stathe of
objects are random and that the objects do not possess aeribhhe
order. Accordingly, we model the entirety of all object staas an
RFSX C R with a given prior PDFf(X). Differently form [16],
we do not requirel;(z) andT;(z’) for differentz, =’ € X to be
disjoint; hence a pixel may be affected by more than one bbyge
also define a “local” object state RFS for each imagas

X: 2 XN R; CR;, I} (5)

That is, X; contains only those elements Xfthat lie in R;, i.e.,
those object states € X affecting imagez;; note thaIUf:1 X; =X.
Since the OASR; are allowed to overlap, certain statesnay be
contained in two local RFSs simultaneously. More precjsely X;
andx € X; ifand only if x € XN R;;.

The statistical dependence of tith imagez; on the state RFS
X is described by théocal likelihood functionf(z;|X). Following
[16], we assume that(z;|X) factors as

ted{l,...

f(zilX) = ai(z) [ Bi(=, 20), (6)
. xeX
with
M
ai(zi) = [ wi(=™), )
m=1
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otherz;. Thus, theglobal likelihood functionf(z1.7|X1.7) factors

as
I I

[I/Gzixun) = H (2] Xi).

f(zurlXur) =

i= =

Using Bayes' rule, we then obtain th@nt posterior PDF(up to a
normalization factor) as

I
f(X1r|zir) o« f(Xig) f(zer| X)) = f(X1g) Hf(ZL|XL)
=1 (10)
Here, f(X1.1) is thejoint prior PDF, which has to be determined
from the given prior PDF (X)), and f(z;|X:) = f(zi]|X) (cf. (9))
is given by (6).

4. DETECTION AND ESTIMATION
4.1. The RFS Estimator

The problem considered in this paper is to jointly detectrilimber
of objects affecting image; and estimate the states of these objects,
for eachi € {1,...,1}. This problem amounts testimating each
local RFSX;. Because an object can appear in two images, we con-
sider estimation of eacK; from all the observed images = z;,
j€e{l,..., I}, orequivalently fromz+.;, rather than fronz; alone.

Our estimator ofX; is based on thenarginal posterior PHD
D;(x|z1.1), which can be calculated from thearginal posterior
PDF f(Xi|z1:1) (assumed continuous) according to [17, Sec. 16.2]

Diteln) = [ Ax (@) f(GlzndX. @
JR;

Here,Ax, (x) = Dwex, 0(x— x'), whered () is the Dirac delta

function. The marginal posterior PDFR X;|z1.7) is obtained from

the joint posterior PDF (X1.7|2z1:7) in (10) by integrating out all
X, j#14, e,

f(Xilz1r) :/ f(Xurlzir)d X, (12)
RNY

where the right-hand side is the iterated set integral olleiza
with j # 4 (cf. (1)). Once the marginal posterior PHD; (x|z1.1)
has been determined, can be estimated by the following pro-
cedure [17, pp. 504-505]. First, the expected number ofctdhje
in R; given the image observations.; = zi.; is calculated as
E{IXil|z1:1} = [ Di(®|z1.r)dz (cf. (2). An estimatek; of the
number of objects iR; is then obtained by rounding{|X;||z1.7}.
Next, the positions; i, k € {1,...,K;} of the K; largest local
maxima ofD; (x| z1.r) are determined. Finally, an estimateXfis
given by the set of alk; 1., i.e., X; = {&ix} 1o,

lindeed, forr € X\R;, we haveT; () = () and thus (8) yields; (z, z;)
= 1. Hence, from (6)f(z;|X) = f(z:|X N R;), which equalsf(z;|X;)
due to (5).



4.2. Calculation of the PHD 4.3. Distributed Implementation

It remains to calculate the marginal posterior PHR)(z|z1.1). A distributed implementation of the proposed estimator loarob-

In principle, this consists of the following stepsStep 1 Deter-  tained in a straightforward manner. Consider a decené@léensor
mine the joint prior PDFf(X1.;) from the given prior PDF(X). network where sensarobserves image;. Then, the calculation of
Step 2 Obtain the marginal posterior PDF X;|z1.7) by evaluating  D;(x|z1.7) in (13) and the subsequent processing as described in
(10) and (12). Step 3 Obtain D;(xz|z1.7) by evaluating (11). In  Section 4.1 can be performed locally at sensprovided that those
what follows, we will present a general closed-form expis®f  parts of the “neighboring” images;, j € N; that are affected by
f(Xu1.r) (Step 1). We will also present closed-form expressions othe objects inR; are available at sensarThis means that the tuples
J(Xi|z1.1) (Step 2) andDi(|z1.1) (Step 3) under the assumption (;, 2(™) _ with M;; £ User,, T3(x) have to be transmitted
that the prior PDF/(X) is Poisson. Hereafter, we denote By ¢, e “neigﬁlzbor sensorgf € N; to sensor. We conclude that

the set of index pairgi,j) € {1,...,I} x {1,...,I} such that . N . .
I S T . each sensof has to transmit to its neighbor sengoe N; |M;;
R;; # 0 and: > j. Thatis, E consists of the index pairs of all (m) 9 P | M|

intersecting OAsR; and R;, where the constrainit> j ensures that integersm and real numbers; ™.

the equivalent index pairg, j) and(j, 7) are counted only once. We

also define the “neighbor sef¥; £ {j # i : Ri; # 0} as the set of 5. NUMERICAL STUDY

indices; of all R; intersectingR;. Note thatj € N; if and only if e consider three gray-scale imagesz., andzs, each of sizd 00
i € N;. Finally, for two finite setsX, Y C R, we definedy (X) via 100 pixels, where each pixel covers a unit squar&fn The cen-
the sifting property, g(X) dyv (X)dX = g(Y'), for any continuous  tars of the images are locatedgt= (40 —10)", p, = (50 50)",

functiong(X) € R. ) _andp; = (100 100)". The object states are 2-D position vectors,
The calculation off (X1.1) (Step 1) is based on the following e x'= (x, x,)Te R C R2 The pixel index seT} (z), i € {1,2,3}

result, whose proof is omitted because of space restrod will  corresponds to &x 5 array of pixels whose center is the pixel point

be provided in a future journal publication. closesttae. Thus, the OAsR;,i € {1, 2,3} are overlapping squares

: . ; in R? (with nonempty intersection®;» and R23) and R is their
;gepo;e(r;l I)_e_t J;(())(() be th;p)rlgfr tEEII:o(c)zl(.R-II-:hSes(nvtrle)J(orl:tani(s)r union. The global RFX is assumed Poisson with= 4.696 (cor-
given for)l(’vlcj% by AR T ’ responding t> = X N Ry being a Poisson RFS with mean 2) and

f(x) uniform onR. For each simulation run, a different global state

I setX was randomly drawn from this Poisson distribution.
fXun)=f < U Xi’) H dx;nr; (X;NRy). Given a set of object positioné= X, the pixel valuesﬁ"” are
i'=1 (i,))EE randomly generated as
Here, the factof ], ; c » 0x,nr, (X; N R:) ensures that all sets 2™ = Z h(m;z—p,;) + n'™. (14)

X, and X; with (7, j) € E contain the same elements in the overlap
areaR;;. In other words, all events containing sets that do notfyatis
this condition are assigned zero probability under intiégna Here,RE’”) 2 {xc R;: m € T;(x)} is the set of all object positions

Hereafter, we assume that the prior PPEX) is Poisson (see x that affect pixelz(.m> (note that J R — R.). Furthermore,
(3)). The next result, whose proof uses Theorem 1, stateshba h(m;x) is the poinlt-spread function uged in [16]
marginal posterior PDF$(X;|z1.7) (Step 2) are then also Poisson. ’ '

m

mGRg )nx

; : : Is (a—2z1)%+ (b—12)?
Theorem 2 Let f(X) be Poisson with mean > 0 and spatial PDF h(m;x) = 5 exp (— . ,
f(2). Then the marginal posterior PDF(X;|z1.7) of X; = XN R; 2may, 20},

givenzi.; = z;.7 is again Poisson, i.e., faK; C R;

F(Xilz1r) = e "ipl] I fi(zlz10),

with source intensitys, blurring factoro? = 2, anda andb defined
by m = 100(a — 1) 4 b, for a,b € {1,...,100}. Finally, p, =
p; — (50 50)7, andnﬁm) is independent and identically distributed

_ _ e zero-mean Gaussian noise with variance= 1. According to (14),
with meany; = pe; and spatial PDF each object affecting pixed™, i.e., with positionz € R!"™, adds
1 a deterministic valufeh (m ; - — p,) to the random noise valug™ .

fi(zlzrr) = — f(z) fi(x, zi) | J RZICENE We compare the performance of the proposed estimator, here-
Here ' JEN; after termed “multiple-image PHD estimator” or briefly MEitiwv

’ that of two reference methods, namely, a “single-image PHD e

€ = / f(z)Bi(z, z:) H%i(‘”’ z;)de, timator” (SE) and a single-image correlation-based estm¢CE)
R; JeN, [22, Ch. 3]. These estimators apply the same processingeritied

) . . ) below—to an estimator-dependent “spatial function.” Fe ME,
the functions; (, zi) was defined irf8), and~i;(z, z;) is equal o the gpatial function is the logarithm of the marginal pdstePHD
Bi(x, z;) if © € R;; and1 otherwise. D;(x|z1.1) in (13). For the SE, it is the logarithm @; (x|z1.7) in

Since the mafg'”a' posterior PD-F(XZ"ZM.) 1S POISSP“ with 2Note that the deterministic values due to several (clogahgad) objects
meany; and spatlal_ PD_Ffi(a:|z1:1), _the ma_rglnal posterior PHD 1,5y add up in our simulation even though this is not taken amount in
D;(x|z1.1) (Step 3) is given by (4) with obvious modifications, i.€., our model for the local likelihood function. In fact, we apgimate the true

local likelihood functionf(z;|X;) = f(z:|X) by the expression (6)—(8)
Di(e|zvr) = pi fi@lzi) = pf(@)Bi(e, z) [[ri(@,2z)). with ¢0(=0", ) = N (h(mi@ - p,), 0) and, (™) = N(0,02),
JEN; (13) whereN (i, 02) denotes a Gaussian PDF with mgaand variancer?.
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Fig. 2. Example of spatial functions of (a) ME (proposed), (b) St &) CE, for source intensiti = 50.
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Fig. 3. Performance of the proposed multi-image PHD estimator)(&ig of the two reference methods (SE and CE) versus theesourc
intensity Is: (a) mean OSPA error, (b) mean cardinality error, and (c)mieealization error.

(13) with N; =0, i.e., estimation oK; is based solely on the respec- of these components [23]), which measure the average deviag-
tive imagez;. For the CE, it is the correlation functiarfz, z;) £ tween the true and estimated object number and object positi
> ety (@) Zzim) h(m;x — p,), which is again based solely on.  respectively. Fig. 3 shows the mean OSPA, cardinality, adlt
The processn’]g app“ed to the Spat|a| function consisteffol- ization errors obtained with the three estimators for wsisource
lowing steps. The spatial function is evaluated on the ixel. The  intensitiesls. These mean errors were estimated by averaging over
positions of the 20 largest function values are used tcliwg 20 in- 10000 simulation runs per intensity value. According to @&PA
stances of a gradient ascent algorithm, which yield 20 Iozatima ~ curves, the proposed ME outperforms the two reference rdstho
of the spatial function. We then discard all maxima belowragh- ~ Wwith the largest performance gains observed for small sitgwal-
old level t to obtain a reduced list of candidate positions. StartingU€s, i-e., in the low-SNR regime. The superior performarfdd®
with the first candidate position, we cluster together afididates —demonstrates the advantages of leveraging the overlag @Ais by
inside a circle with radius and delete them from our candidate list. basing the estimation of each local RFS on all the relevaag@s.
This procedure is repeated until the list is empty. The psiofthe ~ The error floors visible in Fig. 3 are probably due to clustggrrors
largest maximum within each cluster is chosen as an estimafe  and, in the case of ME and SE, our approximation of the trualloc
an object positiorx. Finally, the set of all the obtained object po- likelihood function by (6). Both the overall OSPA error ate tcar-
sition estimate< is used as the estimate of the local RKS We dlnallty error of ME are lower than the respective errOrSEf@hiCh
note that this procedure differs from that described in iBacg.1  in turn are slightly lower than those of CE. The localizatéror of

in that it avoids the numerically difficult computation oftintegral ~ ME is lower than that of SE and CE for smdlland similar other-
fR (J:|Z1 I)dw The threshoki grad|ent ascent Step S|ze and wise. Itis also seen that fd§ between about 22 and 37 somewhat

cluster radius- were numerically optimized for each method. surprisingly, CE achieves better localization resultsit8&.
Fig. 2 shows an example of the spatial functions of the thsée e
mators for local RFX; at source intensitys = 50. There are three 6. CONCLUSION

objects present, which are visible as bright spots (coomding to
large local maxima). The SE and CE functions exhibit similat-  We proposed a PHD-based method for the problem of locally est
terns. In the ME function, one can observe an enhancemehiof t mating the number and states of objects from multiple naisges
object peaks and a reduction of the noise in the two overlegsar whose observation areas (OAs) are allowed to overlap. Qumas
To assess the performance of the three estimators, we use the is based on a closed-form expression of the marginakpost
first-order mean OSPA distance [23] between the true loc&RF  PHD and takes advantage of the overlap of the OAs. A distibut
and the corresponding estimaXe. The base metric of the OSPA implementation with moderate communication cost can bdyeas
distance is chosen as the Euclidean distance, and the pat@ifn-  obtained. Simulation results demonstrated that our estinaut-
eter is set to 30. In addition, we consider the cardinality lErwal-  performs single-image PHD-based and correlation-bagadasrs
ization error components (the first-order OSPA distancééssum  that do not exploit the overlapping OAs.
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