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ABSTRACT

We propose a method for detecting and estimating multiple objects
from multiple noisy images with partly overlapping observation ar-
eas. The goal is to detect the objects that are “locally” present in the
individual observation areas and to estimate their states.Our method
is based on a new closed-form expression of the marginal posterior
probability hypothesis density (PHD) and admits a distributed imple-
mentation. Simulation results demonstrate performance gains over
correlation-based and PHD-based methods that do not take advan-
tage of the overlapping observation areas.

Index Terms— Random finite set, FISST, probability hypothe-
sis density, PHD, image processing.

1. INTRODUCTION

Detecting and estimating objects from observed images is impor-
tant in applications such as visual tracking [1], autonomous driv-
ing [2], remote sensing [3], biomedical analytics [4, 5], and SLAM
[6, 7]. Methods for object detection and estimation from image-like
data include [8–16]. Recently, methods based on random finite sets
(RFSs) [17, 18] have been proposed for applications in target track-
ing and data fusion. Some of these methods involve the probability
hypothesis density (PHD), which is a first-order moment of anRFS
distribution [19–21]. An RFS method that detects and tracksmulti-
ple objects based on a sequence of images is proposed in [16].This
method uses a multi-Bernoulli filter and assumes a single sensor or
multiple sensors with identical observation areas (OAs).

Here, we propose a PHD-based method for the problem of esti-
mating the number and states of objects from multiple noisy images.
We allow for overlapping OAs and extend the data model of [16]to
this case. However, differently from [16], we consider estimation
from a single set of images, rather than sequential estimation from
a temporal sequence of images. Our goal, more specifically, is to
estimate the numbers and states of the objects that are present in the
individual OAs. This amounts to estimating the “local RFS” of the
objects present in a given OA. The proposed estimator is based on a
new closed-form expression of the marginal posterior PHD. It takes
advantage of the overlapping OAs by using all the relevant images,
and it can be easily implemented in a decentralized manner. Simu-
lation results demonstrate the superior performance of ourestimator
compared to both a PHD-based estimator using only the respective
image and a classical correlation-based estimator [22, Ch.3].

This paper is organized as follows. After a review of some RFS
fundamentals in Section 2, the data model and a statistical formula-
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tion are described in Section 3. The proposed estimator is developed
in Section 4. Simulation results are presented in Section 5.

2. RFS FUNDAMENTALS

An RFSX⊆R
d is a finite set of a random number of random vectors

x ∈R
d, i.e.,X= {x1, . . . , xk}, wherek is a nonnegative random in-

teger and thexi∈R
d are random vectors. (We use sans-serif type to

denote random quantities.) Note that the realizationX = {x1, . . . ,
xk} is not changed by a permutation of the elementsx1, . . . ,xk.
Using the FISST framework [17, 18], an RFSX is characterized by
its probability density function (PDF)f(X), whereX is any fi-
nite set of elements fromRd. The probability thatX is contained
in a given closed setA ⊆ R

d can be calculated asPr(X ⊆ A) =
∫

A
f(X)dX, where the right-hand side is aset integral[17, 18].

Similarly, an I-tuple of RFSsX1, . . . ,XI is characterized by the
joint PDFf(X1, . . . , XI), and the probability that theXi are con-
tained in closed setsAi ⊆ R

d can be calculated by an iterated set
integral, i.e.,

Pr(X1⊆A1, . . . ,XI⊆AI)

=

∫

A1

· · ·

∫

AI

f(X1, . . . , XI)dXI . . .dX1 . (1)

The PHDD(x) of an RFSX is a real-valued function onRd with
the defining property that its integral over any closed subset A⊆R

d

gives the expected number of elements ofX contained inA, i.e.,

E{|X∩A|} =

∫

A

D(x)dx . (2)

Here,|X| denotes the cardinality ofX.
An important special RFS is thePoisson RFS, whose PDF is

[17,18]
f(X) = e

−µ
µ
|X|
∏

x∈X

f(x) , (3)

whereµ > 0 is the mean of the random variable|X| andf(x) is a
vector PDF onRd (also calledspatial PDF). A Poisson RFS is fully
characterized by its PHD, which is given by

D(x) = µf(x) . (4)

3. DATA MODEL AND STATISTICAL FORMULATION

We assume that an unknown number of objects may be present in
one or several observed images. An object is characterized by its
statex∈R⊆R

d. For example,x may be the two-dimensional (2-D)
position of an object, in which caseR⊆R

2. We observe a collection
z1:I = (z1, . . . , zI) of I gray-scale images, wherezi =

(

z
(1)
i · · ·

z
(M)
i

)T
∈ R

M, i ∈ {1, . . . , I} comprises the pixel valuesz(m)
i , m ∈

{1, . . . ,M} of theith image.
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Fig. 1. Schematic representation of five pairwise overlapping OAs
R1, . . . , R5 associated with imagesz1, . . . , z5.

To characterize the statistical dependence of the images onthe
object states, we first assume that only one object with statex= x

is present. LetTi(x) ⊆ {1, . . . ,M} denote the set of those pixel-
indicesm in imagezi that are affected by an object with statex. An
object affects pixelm ∈ Ti(x) by changing the distribution ofz(m)

i .
More specifically, the conditional PDF ofz(m)

i givenx=x is [16]

f
(

z
(m)
i

∣

∣x
)

=

{

φi

(

z
(m)
i ,x

)

if m∈ Ti(x) ,

ψi

(

z
(m)
i

)

if m 6∈ Ti(x) ,

with known functionsφi

(

z
(m)
i ,x

)

and ψi

(

z
(m)
i

)

whose integral

with respect toz(m)
i is 1. We define theith OARi ⊆ R as the set of

all state vectorsx∈R that affect at least one pixel in imagezi, i.e.,

Ri , {x∈R : Ti(x) 6= ∅} , i∈ {1, . . . , I} .

Evidently,
⋃I

i=1Ri ⊆ R; for simplicity, we assume
⋃I

i=1Ri = R,
i.e., the object affects at least one imagezi. The pairwise intersec-
tionsRij , Ri ∩ Rj = Rji, i 6= j are allowed to be nonempty,
which means that the OAs of two different imageszi andzj may
overlap. That is, ifRij 6= ∅, an object with statex ∈ Rij affects
both imageszi andzj . However, we restrict to pairwise overlap, i.e.,
an object can affect at most two images simultaneously. Thismeans
thatRi ∩ Rj ∩ Rk = ∅ for any choice of different indicesi, j, and
k. Fig. 1 shows an example of pairwise overlapping OAs.

We now generalize to the case of multiple objects. While the
definitions ofTi(x) andRi are still valid, we have to adapt the sta-
tistical dependence. We assume that the number and states ofthe
objects are random and that the objects do not possess an inherent
order. Accordingly, we model the entirety of all object states as an
RFSX ⊆ R with a given prior PDFf(X). Differently form [16],
we do not requireTi(x) andTi(x

′) for differentx,x′ ∈ X to be
disjoint; hence a pixel may be affected by more than one object. We
also define a “local” object state RFS for each imagezi as

Xi , X ∩Ri ⊆ Ri , i∈ {1, . . . , I} . (5)

That is,Xi contains only those elements ofX that lie inRi, i.e.,
those object statesx∈X affecting imagezi; note that

⋃I

i=1Xi =X.
Since the OAsRi are allowed to overlap, certain statesx may be
contained in two local RFSs simultaneously. More precisely, x∈Xi

andx∈Xj if and only if x∈X∩ Rij .
The statistical dependence of theith imagezi on the state RFS

X is described by thelocal likelihood functionf(zi|X). Following
[16], we assume thatf(zi|X) factors as

f(zi|X) = αi(zi)
∏

x∈X

βi(x,zi) , (6)

with

αi(zi) =
M
∏

m=1

ψi

(

z
(m)
i

)

, (7)

βi(x,zi) =
∏

m∈Ti(x)

φi

(

z
(m)
i ,x

)

ψi

(

z
(m)
i

)

. (8)

By construction,Xi contains all state vectorsx that affect imagezi,
i.e.,1

f(zi|X) = f(zi|Xi) . (9)

Therefore, givenXi, zi is conditionally independent of all the other
local RFSsXj , and hencef(zi|X1:I) = f(zi|Xi). Furthermore,
we assume that givenX1:I , zi is conditionally independent of all the
otherzj . Thus, theglobal likelihood functionf(z1:I |X1:I) factors
as

f(z1:I |X1:I) =
I
∏

i=1

f(zi|X1:I) =
I
∏

i=1

f(zi|Xi) .

Using Bayes’ rule, we then obtain thejoint posterior PDF(up to a
normalization factor) as

f(X1:I |z1:I) ∝ f(X1:I)f(z1:I |X1:I) = f(X1:I)
I
∏

i=1

f(zi|Xi) .

(10)

Here,f(X1:I) is the joint prior PDF, which has to be determined
from the given prior PDFf(X), andf(zi|Xi) = f(zi|X) (cf. (9))
is given by (6).

4. DETECTION AND ESTIMATION

4.1. The RFS Estimator

The problem considered in this paper is to jointly detect thenumber
of objects affecting imagezi and estimate the states of these objects,
for eachi ∈ {1, . . . , I}. This problem amounts toestimating each
local RFSXi. Because an object can appear in two images, we con-
sider estimation of eachXi from all the observed imageszj = zj ,
j ∈ {1, . . . , I}, or equivalently fromz1:I , rather than fromzi alone.

Our estimator ofXi is based on themarginal posterior PHD
Di(x|z1:I), which can be calculated from themarginal posterior
PDF f(Xi|z1:I) (assumed continuous) according to [17, Sec. 16.2]

Di(x|z1:I) =

∫

Ri

∆Xi
(x)f(Xi|z1:I)dXi . (11)

Here,∆Xi
(x) ,

∑

x
′∈Xi

δ(x−x
′), whereδ(x) is the Dirac delta

function. The marginal posterior PDFf(Xi|z1:I) is obtained from
the joint posterior PDFf(X1:I |z1:I) in (10) by integrating out all
Xj , j 6= i, i.e.,

f(Xi|z1:I) =

∫

R∼i

f(X1:I |z1:I)dX∼i , (12)

where the right-hand side is the iterated set integral over all Rj

with j 6= i (cf. (1)). Once the marginal posterior PHDDi(x|z1:I)
has been determined,Xi can be estimated by the following pro-
cedure [17, pp. 504–505]. First, the expected number of objects
in Ri given the image observationsz1:I = z1:I is calculated as
E{|Xi| |z1:I}=

∫

Ri
Di(x|z1:I)dx (cf. (2)). An estimateK̂i of the

number of objects inRi is then obtained by roundingE{|Xi| |z1:I}.
Next, the positionŝxi,k, k ∈ {1, . . . , K̂i} of the K̂i largest local
maxima ofDi(x|z1:I) are determined. Finally, an estimate ofXi is

given by the set of all̂xi,k, i.e.,X̂i= {x̂i,k}
K̂i

k=1.

1Indeed, forx∈X\Ri, we haveTi(x)= ∅ and thus (8) yieldsβi(x, zi)
= 1. Hence, from (6),f(zi|X) = f(zi|X ∩Ri), which equalsf(zi|Xi)
due to (5).
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4.2. Calculation of the PHD

It remains to calculate the marginal posterior PHDDi(x|z1:I).
In principle, this consists of the following steps.Step 1: Deter-
mine the joint prior PDFf(X1:I) from the given prior PDFf(X).
Step 2: Obtain the marginal posterior PDFf(Xi|z1:I) by evaluating
(10) and (12). Step 3: ObtainDi(x|z1:I) by evaluating (11). In
what follows, we will present a general closed-form expression of
f(X1:I) (Step 1). We will also present closed-form expressions of
f(Xi|z1:I) (Step 2) andDi(x|z1:I) (Step 3) under the assumption
that the prior PDFf(X) is Poisson. Hereafter, we denote byE
the set of index pairs(i, j) ∈ {1, . . . , I} × {1, . . . , I} such that
Rij 6= ∅ and i > j. That is,E consists of the index pairs of all
intersecting OAsRi andRj , where the constrainti > j ensures that
the equivalent index pairs(i, j) and(j, i) are counted only once. We
also define the “neighbor set”Ni , {j 6= i : Rij 6= ∅} as the set of
indicesj of all Rj intersectingRi. Note thatj ∈ Ni if and only if
i ∈Nj . Finally, for two finite setsX,Y ⊆R, we defineδY (X) via
the sifting property

∫

R
g(X)δY (X)dX = g(Y ), for any continuous

functiong(X)∈R.
The calculation off(X1:I) (Step 1) is based on the following

result, whose proof is omitted because of space restrictions and will
be provided in a future journal publication.

Theorem 1 Let f(X) be the prior PDF ofX. Then the joint prior
PDF f(X1:I) = f(X1, . . . , XI) of the local RFSsXi = X ∩ Ri is
given forXi⊆Ri by

f(X1:I) = f

(

I
⋃

i′=1

Xi′

)

∏

(i,j)∈E

δXi∩Rj
(Xj ∩Ri) .

Here, the factor
∏

(i,j)∈E δXi∩Rj
(Xj ∩Ri) ensures that all sets

Xi andXj with (i, j)∈E contain the same elements in the overlap
areaRij . In other words, all events containing sets that do not satisfy
this condition are assigned zero probability under integration.

Hereafter, we assume that the prior PDFf(X) is Poisson (see
(3)). The next result, whose proof uses Theorem 1, states that the
marginal posterior PDFsf(Xi|z1:I) (Step 2) are then also Poisson.

Theorem 2 Letf(X) be Poisson with meanµ> 0 and spatial PDF
f(x). Then the marginal posterior PDFf(Xi|z1:I) ofXi = X∩Ri

givenz1:I = z1:I is again Poisson, i.e., forXi ⊆ Ri

f(Xi|z1:I) = e
−µiµ

|Xi|
i

∏

x∈Xi

fi(x|z1:I) ,

with meanµi = µεi and spatial PDF

fi(x|z1:I) =
1

εi
f(x)βi(x,zi)

∏

j∈Ni

γij(x,zj) .

Here,

εi =

∫

Ri

f(x)βi(x,zi)
∏

j∈Ni

γij(x,zj)dx,

the functionβi(x,zi) was defined in(8), andγij(x,zj) is equal to
βj(x,zj) if x∈Rij and1 otherwise.

Since the marginal posterior PDFf(Xi|z1:I) is Poisson with
meanµi and spatial PDFfi(x|z1:I), the marginal posterior PHD
Di(x|z1:I) (Step 3) is given by (4) with obvious modifications, i.e.,

Di(x|z1:I) = µi fi(x|z1:I) = µf(x)βi(x,zi)
∏

j∈Ni

γij(x,zj) .

(13)

4.3. Distributed Implementation

A distributed implementation of the proposed estimator canbe ob-
tained in a straightforward manner. Consider a decentralized sensor
network where sensori observes imagezi. Then, the calculation of
Di(x|z1:I) in (13) and the subsequent processing as described in
Section 4.1 can be performed locally at sensori provided that those
parts of the “neighboring” imageszj , j ∈ Ni that are affected by
the objects inRi are available at sensori. This means that the tuples
(

m, z
(m)
j

)

m∈Mji
withMji ,

⋃

x∈Rji
Tj(x) have to be transmitted

from the “neighbor sensors”j ∈ Ni to sensori. We conclude that
each sensori has to transmit to its neighbor sensorj ∈ Ni |Mij |

integersm and real numbersz(m)
i .

5. NUMERICAL STUDY

We consider three gray-scale imagesz1, z2, andz3, each of size100
×100 pixels, where each pixel covers a unit square inR

2. The cen-
ters of the images are located atp1 = (40 −10)T, p2 = (50 50)T,
andp3 = (100 100)T. The object states are 2-D position vectors,
i.e.,x = (x1 x2)

T∈R⊆R
2. The pixel index setTi(x), i ∈ {1, 2, 3}

corresponds to a5×5 array of pixels whose center is the pixel point
closest tox. Thus, the OAsRi, i ∈ {1, 2, 3} are overlapping squares
in R

2 (with nonempty intersectionsR12 andR23) andR is their
union. The global RFSX is assumed Poisson withµ = 4.696 (cor-
responding toX2 = X ∩ R2 being a Poisson RFS with mean 2) and
f(x) uniform onR. For each simulation run, a different global state
setX was randomly drawn from this Poisson distribution.

Given a set of object positionsX=X, the pixel valuesz(m)
i are

randomly generated as

z
(m)
i =

∑

x∈R
(m)
i

∩X

h(m ;x− p̃i) + n
(m)
i . (14)

Here,R(m)
i , {x∈Ri : m∈ Ti(x)} is the set of all object positions

x that affect pixelz(m)
i (note that

⋃

mR
(m)
i = Ri). Furthermore,

h(m ;x) is the point-spread function used in [16],

h(m ;x) =
Is

2πσ2
h

exp

(

−
(a−x1)

2+ (b−x2)
2

2σ2
h

)

,

with source intensityIs, blurring factorσ2
h=2, anda andb defined

by m = 100(a−1) + b, for a, b ∈ {1, . . . , 100}. Finally, p̃i ,

pi − (50 50)T, andn(m)
i is independent and identically distributed

zero-mean Gaussian noise with varianceσ2=1. According to (14),
each object affecting pixelz(m)

i , i.e., with positionx ∈ R
(m)
i , adds

a deterministic value2 h(m ;x−p̃i) to the random noise valuen(m)
i .

We compare the performance of the proposed estimator, here-
after termed “multiple-image PHD estimator” or briefly ME, with
that of two reference methods, namely, a “single-image PHD es-
timator” (SE) and a single-image correlation-based estimator (CE)
[22, Ch. 3]. These estimators apply the same processing—described
below—to an estimator-dependent “spatial function.” For the ME,
the spatial function is the logarithm of the marginal posterior PHD
Di(x|z1:I) in (13). For the SE, it is the logarithm ofDi(x|z1:I) in

2Note that the deterministic values due to several (closely spaced) objects
may add up in our simulation even though this is not taken intoaccount in
our model for the local likelihood function. In fact, we approximate the true
local likelihood functionf(zi|Xi) = f(zi|X) by the expression (6)–(8)

with φi
(

z
(m)
i ,x

)

= N
(

h(m ;x− p̃i), σ
2
)

andψi

(

z
(m)
i

)

= N (0, σ2),
whereN (µ, σ2) denotes a Gaussian PDF with meanµ and varianceσ2.
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Fig. 2. Example of spatial functions of (a) ME (proposed), (b) SE, and (c) CE, for source intensityIs=50.
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Fig. 3. Performance of the proposed multi-image PHD estimator (ME) and of the two reference methods (SE and CE) versus the source
intensityIs: (a) mean OSPA error, (b) mean cardinality error, and (c) mean localization error.

(13) withNi=∅, i.e., estimation ofXi is based solely on the respec-
tive imagezi. For the CE, it is the correlation functionc(x,zi) ,
∑

m∈Ti(x) z
(m)
i h(m ;x− p̃i), which is again based solely onzi.

The processing applied to the spatial function consists of the fol-
lowing steps. The spatial function is evaluated on the pixelgrid. The
positions of the 20 largest function values are used to initialize 20 in-
stances of a gradient ascent algorithm, which yield 20 localmaxima
of the spatial function. We then discard all maxima below a thresh-
old level t to obtain a reduced list of candidate positions. Starting
with the first candidate position, we cluster together all candidates
inside a circle with radiusr and delete them from our candidate list.
This procedure is repeated until the list is empty. The position of the
largest maximum within each cluster is chosen as an estimatex̂ of
an object positionx. Finally, the set of all the obtained object po-
sition estimateŝx is used as the estimate of the local RFSXi. We
note that this procedure differs from that described in Section 4.1
in that it avoids the numerically difficult computation of the integral
∫

Ri
Di(x|z1:I)dx. The thresholdt, gradient ascent step size, and

cluster radiusr were numerically optimized for each method.
Fig. 2 shows an example of the spatial functions of the three esti-

mators for local RFSX2 at source intensityIs = 50. There are three
objects present, which are visible as bright spots (corresponding to
large local maxima). The SE and CE functions exhibit similarpat-
terns. In the ME function, one can observe an enhancement of the
object peaks and a reduction of the noise in the two overlap areas.

To assess the performance of the three estimators, we use the
first-order mean OSPA distance [23] between the true local RFSX2

and the corresponding estimateX̂2. The base metric of the OSPA
distance is chosen as the Euclidean distance, and the cutoffparam-
eter is set to 30. In addition, we consider the cardinality and local-
ization error components (the first-order OSPA distance is the sum

of these components [23]), which measure the average deviation be-
tween the true and estimated object number and object positions,
respectively. Fig. 3 shows the mean OSPA, cardinality, and local-
ization errors obtained with the three estimators for various source
intensitiesIs. These mean errors were estimated by averaging over
10000 simulation runs per intensity value. According to theOSPA
curves, the proposed ME outperforms the two reference methods,
with the largest performance gains observed for small intensity val-
ues, i.e., in the low-SNR regime. The superior performance of ME
demonstrates the advantages of leveraging the overlap of the OAs by
basing the estimation of each local RFS on all the relevant images.
The error floors visible in Fig. 3 are probably due to clustering errors
and, in the case of ME and SE, our approximation of the true local
likelihood function by (6). Both the overall OSPA error and the car-
dinality error of ME are lower than the respective errors of SE, which
in turn are slightly lower than those of CE. The localizationerror of
ME is lower than that of SE and CE for smallIs and similar other-
wise. It is also seen that forIs between about 22 and 37, somewhat
surprisingly, CE achieves better localization results than SE.

6. CONCLUSION

We proposed a PHD-based method for the problem of locally esti-
mating the number and states of objects from multiple noisy images
whose observation areas (OAs) are allowed to overlap. Our estima-
tor is based on a closed-form expression of the marginal posterior
PHD and takes advantage of the overlap of the OAs. A distributed
implementation with moderate communication cost can be easily
obtained. Simulation results demonstrated that our estimator out-
performs single-image PHD-based and correlation-based estimators
that do not exploit the overlapping OAs.
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