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ABSTRACT

Consensus clustering, also known as clustering ensembles
is a technique that combines multiple clustering solutions to
obtain stable, accurate and novel results. Over the last years
several consensus clustering approaches were proposed ad-
dressing practical clustering problems with different degrees
of success. In this paper, we consider data fragments as ele-
ments of a cluster ensemble framework. We propose a new
dissimilarity measure on data fragments and build a consen-
sus function that allows handling large scale clustering prob-
lems while not compromising on accuracy. We evaluate our
proposed consensus function on a number of datasets showing
its high performance with respect to other existing consensus
functions.

Index Terms— consensus clustering, clustering ensem-
bles, dissimilarity measure

1. INTRODUCTION

Data clustering is a very challenging unsupervised learning
problem since it often requires exploratory analysis hindering
the discovery of a proper single solution. Consensus cluster-
ing has emerged to be a powerful tool to solve practical data
clustering problems [1]. Motivated by the success of super-
vised ensemble learning techniques [2] consensus clustering
combines multiple clustering solutions to obtain a single fi-
nal one. As a result, consensus clustering usually provides
a more accurate and stable output [3]. Moreover, consensus
clustering also allows obtaining novel solutions that are not
achievable by any single clustering method as shown empiri-
cally [1, 4] and theoretically [5] in the past.

Given a set of objects, consensus clustering methods con-
sist of two main steps: 1) Generation, in which a set of di-
verse clusterings is produced and 2) Consensus, where gener-
ated clusterings (or some of them) are combined. This com-
bination is usually done without any access to original data
on which these clusterings were generated. Finding a proper
consensus function that accurately combines given partitions
is usually considered to be the biggest challenge in clustering
ensembles research [6, 7] and is also the focus of this paper.

In the state of the art there are two main groups of con-

sensus function approaches: median partition and object co-
occurrence. Approaches from the first group are searching
for a consensus function that is a solution of an optimiza-
tion problem. Here the objective is to maximize the sum of
similarities between the median clustering and all clusterings
in the given ensemble. The choice of similarity measure be-
tween partitions is the key challenge that is not yet fully ad-
dressed [8]. For this reason, there is no answer on which ap-
proach should be used to accurately solve practical large-scale
consensus clustering problems using median partition-based
methods. The second set of methods is based on object co-
occurrence which operates on pairs of objects and analyzes
whether two objects belong to the same cluster in every parti-
tion or not [9]. Despite its solid operational performance the
main drawback of co-occurrence based methods is their high
computational and memory complexity (usually not less than
O(N2)) and the fact that co-association matrices are not ex-
pressive enough to accurately perform aggregation on them
(especially when there are not too many ensemble members
or they are of limited diversity) [8].

Recently, due to large data volumes and a demand for
higher scalability, the data fragment (DF) concept was in-
troduced in several works on consensus clustering. Employ-
ing DF allows pruning the search space for median partition-
based ensemble aggregation methods [10] as well as to de-
crease both memory and time complexity for co-occurrence
based approaches. In [11] a data fragment-based consensus
method called CA-Tree is introduced where both the dendro-
gram (a tree diagram representing clustering results) and co-
association matrix (an indicator matrix reflecting if a pair of
data points are coclustered) are used to obtain a consensus so-
lution. The main drawback of the method is high sensitivity
to a partition that is taken as the first layer of the dendrogram
rendering results unstable. In [12] three methods adopted
from data objects to DFs are presented: a bottom-up agglom-
erative algorithm F-agglomerative, a top-down approach F-
Furtherst and a median partition based local-search heuristic
F-LocalSearch. These three methods are all adoptions of cor-
respondent object-based approaches and inherit drawbacks of
the original methods: they treat all partitions equally even
if some of them are nonsense. In addition, they employ the
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Hamming distance [13] as a distance measure which results
in non-expressive and quantized representations of distances
often leading to a non-optimal consensus solution.

In this paper, we propose a consensus clustering frame-
work that addresses the drawbacks of the Hamming distance
in co-occurance based method and reduces computational and
memory complexity. We employ a DF concept to assure scal-
ability of the consensus clustering function while proposing
an expressive distance measure on DFs that leads to a sig-
nificant improvement in the final solution compared to ap-
proaches based on Hamming distance. We further build a
consensus function around this measure based on a hierar-
chical clustering approach.

The paper is structured as follows. In Section 2, the no-
tation and DF concept are introduced. Section 3 presents
the proposed dissimilarity measure and the consensus func-
tion that is built around it. Further, we evaluate the consen-
sus function in Section 4 both on synthetic and real-world
datasets and discuss the results. Section 5 concludes our pa-
per.

2. DATA FRAGMENTS

Let X = {x1, x2, . . . , xn} be a set of n objects, where
xi is a vector in a d-dimensional feature space Rd. P =
{P1, P2, . . . , PH} is a set of H partitions (or clusterings) of
X , where each Ph = {Ch

1 , C
h
2 , . . . , C

h
Kh
} is a single par-

tition of X with Kh clusters each of them being a disjoint
nonempty subset of X with the union of Ch

k , k = 1, . . . ,Kh

being X . For each xi we define a H-dimensional label vector
yi:

yi = [P1(xi), P2(xi), . . . , PH(xi)] (1)

where Ph(xi) is the cluster label of xi in partition Ph. Since
every clustering Ph assigns symbolic labels to objects xi the
vectors yi are categorical data vectors. In addition, all vectors
yi are forming a set Y = {y1, y2, . . . , yn}. Having introduced
Y , a DF can be defined as follows.

Definition. DF Fl, l = 1, . . . , L is a subset of Y in which all
vectors are equal to each other, i.e. yi = yj ∀yi, yj ∈ Fl.

One DF can be considered as a stable group of objects within
the ensemble of clusterings where all included points are co-
clustered. We will refer to each fragment Fl by its member
fl ∈ Fl. The amount of DFs in an ensemble is usually much
less than the number of original data points which allows han-
dling large datasets [10, 12]. Moreover, with the help of DFs
it is possible to naturally extend object co-occurrence- and
median partition-based frameworks [12] and effectively use
them as elements of a consensus function for ensemble ag-
gregation [14]. The fact that every DF represents a set of sta-
ble clustered objects a proper (dis)similarity measure between
DFs should be established in order to perform a reasonable
consensus among partitions. In addition, since fl is a cate-
gorical data vector, the (dis)similarity has to be defined over

this type of data which in general is a challenging task [15].
The cardinality of each set Fl corresponds to the amount of
data points that are co-clustered by all ensemble members.
From the DF definition it is also clear that

∑L
l=1 |Fl| = N .

Intuitively, DFs that have large |Fl| are likely to form stable
clusters or substantial parts of them. DFs with small |Fl| cor-
respond to objects on which the consensus is weak (outliers
and noisy samples). At the same time, it is important to ac-
count for the frequency of each label within each clustering
since the distribution of them is in general different, can be
imbalanced and depends on the ensemble generation scheme
and underlying data structure. In the next section, we pro-
pose a dissimilarity measure between DFs that addresses this
peculiarity.

3. DISSIMILARITY OF DATA FRAGMENTS

In order to be able to operate on DFs and establish a dissim-
ilarity measure between them to find consensus partition we
first define an error function on categorical vectors yi which
we want to minimize. For any partition P with K clusters and
a dissimilarity measure between two categorical vectors dc an
error function

E(P ) =

K∑
k=1

1

|Ck| · (|Ck| − 1)

∑
yi,yj∈Ck,

yi 6=yj

dc(yi, yj) (2)

measures the aggregated average dissimilarity between points
of every cluster and closely related to optimization criteria of
k-means and agglomerative clustering algorithms [16]. The
choice of an appropriate dissimilarity measure dc is critical
since it can seriously affect the behavior of the error function.
The optimal partition P ∗ can be then defined as follows:

P ∗ = argmin
P∈Px

E(P ) (3)

where Px is a search space with all possible clusterings of Y .
In previous works on consensus clustering in which the

notion of distance between two categorical vectors yi and
yj was defined [17] mainly the Hamming distance was con-
sidered. In fact, the Hamming distance (sometimes also
called as overlap measure when introduced as a similarity
measure [15]) provides an easy and understandable way to
compare two categorical vectors. However, it suffers from
a substantial drawback since it assigns equal significance to
dissimilarities for all vectors attributes. For many problems
(including consensus clustering) the assumption of equal
significance of attributes errors is not valid as the partitions
in ensemble could be very diverse (every partition has its
own number of clusters Kh and may be generated using dif-
ferent distance metrics and clustering methods). Generally,
measuring dissimilarities between categorical vectors is not
a straightforward task since the content of dissimilarity is
highly application specific and categories are often ambigu-
ous or even arbitrary. As an alternative to the Hamming
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distance there are several data-driven dissimilarity functions
that take into account the frequency distribution of values of
every attribute. In [15] the authors systematically studied 14
measures for categorical values concluding that the choice of
them strongly depends on the assumptions that are imposed
on the data. In the sequel, we define a dissimilarity mea-
sure on DFs introduced in Section 2 and use DFs further in
Equation 2 instead of data point labels.

A general distance measure between two categorical vec-
tors fi and fj representing DF can be defined as:

d(fi, fj) =

H∑
h=1

wh · dh(fh
i , f

h
j ) (4)

where wh is the weight for every hth attribute and dh(f
h
i , f

h
j )

defines the dissimilarity between values of this attribute.
Since fi and fj are vectors representing their respective sets
we propose accounting for unequal distributions of attribute
values of every attribute. For every DF Fi and partition h we
define a significance value Sh

i according to:

Sh
i =

|Fi|
|Cfh

i
| ·Kh

(5)

where | · | is the cardinality of a set and Cfh
i

is the cluster
with label fh

i in partition h. A significance value Sh
i shows

the relative amount of co-clustered data points in the DF i of
the partition h with respect to the number of objects with the
same label that are clustered differently assuming that every
cluster has equal importance. The dissimilarity dh between
an attribute of two DFs is then defined as:

dh(f
h
i , f

h
j ) =

{
0, fh

i = fh
j

1−( 2
Kh
−Sh

i −Sh
j ), otherwise

(6)

which compares the significance of two DFs with doubled
significance of a case when a DF occupies whole cluster. In
general, the more data points a DF shares with a cluster, the
higher the certainty that this DF is a substantial subset of a
cluster. As a result, it ends up in a higher distance with other
DFs. In addition the proposed dissimilarity considers equal
importance of every cluster within a partition independently
of the amount of objects assigned to it effectively allowing
comparing DFs with different amount of objects. We note that
dh ∈ [0, 1] and is symmetric (i.e. dh(fh

i , f
h
j ) = dh(f

h
j , f

h
i )).

In Equation 4 the weights wh are assigned to each attribute h
to signify its relative importance. Since the partitions in the
ensemble can have different quality level we employ wh as
the degree of agreement of a particular partition Ph with all
the partitions in the ensemble P. For that we define a distance
measure between two partitions of the given ensemble using
their respective connectivity matrices [18], however, formu-
lated on DFs instead of object labels:

d(P1, P2) =

L∑
i,j

|Mij(P1)−Mij(P2)| × |Fi| × |Fj | (7)

where Mij(Pi) is the connectivity matrix on DFs that is de-
fined as:

Mij(Ph) =

{
1,∃Ch

k∈Ph | fh
i ∈ Ch

k and fh
j ∈ Ch

k

0, otherwise
(8)

Finally, using Equation 7 for every attribute h′ ∈ (1, . . . ,H)
we define its weight wh′ as follows:

wh′ =

∑H
h=1 wh − w′h′∑H

h=1 wh

(9)

where w′h′ is calculated as:

w′h′ =

H∑
h=1

d(Ph′ , Ph) (10)

and
∑H

h=1 wh = 1 holds.
As a result, we obtained a dissimilarity measure over

DFs (Equation 4) that provides expressive distance between
categorical vectors. The proposed dissimilarity measure is
symmetric and non-negative and can be used to construct co-
association matrices commonly used in clustering ensembles
and create a (dis)similarity matrix that summarizes richer
information than the original one.

To establish a consensus function using dissimilarity
measure proposed and solve Problem 3 on DFs we employ
agglomerative clustering with between-group average link-
age [16] on the dissimilarity matrix obtained by applying the
proposed dissimilarity measure to all DFs within the ensem-
ble. We call this consensus function DF-based Expressive
Consensus (DFEC). The proposed dissimilarity measure can
be used with various clustering methods (e.g. EM-based
clustering algorithms [8]), however, due to space limitations,
in this paper we consider only hierarchical clustering as a
consensus function.

4. EXPERIMENTAL RESULTS

To study the effectiveness of the consensus function based
on our proposed dissimilarity measure and compare its per-
formance with the state-of-the-art consensus clustering meth-
ods we conduct two sets of experiments using both synthetic
and real-world datasets. All datasets are provided with the
ground truth (class labels). For both experiments in order to
generate diverse input partitions we use multiple clustering
algorithms [16] also varying their parameters: k-means (with
random initialization), hierarchical clustering (with random
linkage and number of neighbors), affinity propagation (with
random damping factor and iterations), BIRCH (with random
threshold), DBSCAN (with random eps factor) and mean shift
(with random bandwidth). For k-means and hierarchical clus-
tering the number of clusters provided was chosen randomly
on the uniform interval [2, true cluster count +2]. As a result,
every ensemble consists of ten partitions which are assured to
be distinct and different from the ground truth. Such diversity
in input partitions does not allow particular clustering results
to dominate and thus helps to evaluate the stability of a con-
sensus clustering approach and see whether it is capable of
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providing a novel solution with respect to the input partition.
We chose the cutting threshold for DFEC as well as resulting
number of clusters for other consensus clustering methods ac-
cording to the true number of clusters.
4.1. Synthetic datasets
In this experiment we compare the performance of the
proposed DFEC with other DF-based consensus cluster-
ing methods: CA-Tree, F-Agglomerative, F-Furthest and
F-LocalSearch using four synthetic datasets: petals [19], ag-
gregation [17], flame [20] and dim32 [21]. In Table 1 we
report the Adjusted Rand Index (ARI) that is widely used
for clustering evaluation and related to the accuracy mea-
sure while operating on pairs of elements and adjusted for
chance [22]. We also provide graphical results for our pro-
posed method DFEC in Figure 1 to demonstrate its ability to
establish consensus (note that a figure for dataset dim32 is
not provided since the dimension of the original data is 32).

(a) Petals (b) Flame (c) Aggregation

Fig. 1: Consensus solution using proposed method DFEC

4.2. Real datasets
In our second sets of experiments, we a use number of real-
world datasets taken from the UCI repository [23] that are
widely used in consensus clustering research, namely breast
cancer, thyroid, wine, wdbc and seeds. In addition to the
methods evaluated in the synthetic experiment, we evaluate
CSPA, HGPA, MCLA [1], CTS, SRS, ASRS [14], HBGF [24]
and knowledge based (KB) [25] methods. To evaluate the
quality of the final consensus solution besides ARI we employ
two other commonly used external validity indexes: Impurity
Index (IMP) which reflects the amount of differently labeled
points in clusters [17] and Average Entropy (AE) which is de-
fined similarly to the entropy used in traditional decision tree
building [26]. Note that for the quality solutions, ARI should
be large while IMP and AE should be as low as possible. We
summarize the results of this experiment in Table 2.

Table 1: Adjusted Rand Index on synthetic datasets
Petals Flame Aggregation Dim32

CA-Tree 0.689 0.319 0.649 0.603
F-Agglomerative 0.468 0.078 0.318 0.399
F-Furthest 0.429 0.458 0.615 0.149
F-Local Search 0.091 0.029 0.040 0.000
Proposed approach 0.973 0.876 0.876 0.925

4.3. Discussion
Analyzing the evaluation results (Table 1 and 2) it can be
seen that in most cases proposed DFEC outperforms other
methods in terms of ARI. For some datasets IMP and AE are
not the lowest for DFEC (however comparable with the win-
ning ones). The main reason for such behavior is the fact that
these measures are biased by different aspects of clustering:
IMP considers majority-class points in each cluster, AE fo-
cuses on distribution of all labels in each cluster while ARI
is related to classical accuracy measure. The opposite effect
can be observed for F-Furthest, however, the reason for low
ARI for this method is the strong initialization dependence.
The superior performance of the proposed DFEC is achieved
thanks to the introduced distance measure that takes into ac-
count the quality of input partitions as well as significance
value for each attribute of DF (Equation 5). The results on
synthetic datasets also demonstrate that novel solutions can
be found by DFEC. Finally, Table 2 also confirms that the DF
concept allows to significantly decrease the amount of points
on which aggregation is performed (L is much lower than N )
allowing for larger datasets.

5. CONCLUSIONS

In this paper, we addressed the consensus clustering problem
by proposing a dissimilarity measure on data fragments. We
built a scalable consensus function that utilizes this distance
measure and performed evaluation on both synthetic and real-
world datasets achieving novel and accurate results that in
general outperform the ones of other state-of-the-art methods.
Since the proposed approach does not impose any assump-
tions on the original data distributions it could be applied to
clustering problems from different domains. A statement that
is also supported by the fact that the real-world datasets eval-
uated in this paper are coming from various application do-
mains.

Table 2: Evaluation results using real-world data sets (N - original number of data points, L - number of DFs)
breast cancer (N = 698, L = 81) thyroid (N = 214, L = 16) wine (N = 177, L = 21) wdbc (N = 568, L = 131) seeds (N = 210, L = 22)

ARI IMP AE ARI IMP AE ARI IMP AE ARI IMP AE ARI IMP AE
CSPA 0.017 0.967 0.083 0.155 0.453 0.902 0.231 0.588 0.647 0.232 0.599 0.414 0.457 0.426 0.504
HGPA 0.017 0.960 0.094 0.097 0.439 0.885 0.304 0.492 0.676 -0.001 0.746 0.693 0.262 0.536 0.711
MCLA 0.000 0.000 0.000 0.546 0.164 0.522 0.226 0.542 0.560 0.224 0.537 0.295 0.496 0.281 0.388
CA-Tree 0.477 0.388 0.206 0.281 0.112 0.325 0.389 0.282 0.619 0.490 0.146 0.260 0.545 0.150 0.321
CTS 0.088 0.868 0.064 0.442 0.206 0.523 0.285 0.463 0.557 0.512 0.264 0.294 0.633 0.220 0.357
SRS 0.096 0.853 0.105 0.442 0.206 0.523 0.302 0.475 0.668 0.438 0.405 0.515 0.623 0.239 0.398
ASRS 0.127 0.776 0.056 0.578 0.140 0.394 0.310 0.463 0.534 0.519 0.202 0.142 0.611 0.172 0.289
HBGF 0.042 0.907 0.075 0.386 0.243 0.669 0.261 0.554 0.577 0.338 0.484 0.295 0.520 0.347 0.421
KB -0.006 0.293 0.051 0.517 0.196 0.498 0.128 0.305 0.590 0.109 0.194 0.457 0.191 0.307 0.499
F-Agglomerative 0.191 0.637 0.087 0.273 0.458 0.606 0.169 0.684 0.312 0.264 0.539 0.150 0.316 0.567 0.261
F-Furthest 0.729 0.165 0.175 0.256 0.336 0.616 0.294 0.418 0.375 0.322 0.431 0.392 0.485 0.277 0.354
F-Local Search -0.002 0.013 0.016 0.196 0.117 0.279 -0.008 0.311 0.256 0.241 0.141 0.112 0.107 0.124 0.207
DFEC 0.845 0.040 0.166 0.601 0.131 0.371 0.367 0.291 0.412 0.594 0.113 0.254 0.665 0.124 0.346
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