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ABSTRACT

Statistically-optimal Linear Discriminant Analysis (LDA) is
formulated as a maximization that involves the nominal statis-
tics of the classes to be discriminated. In practice, however,
these nominal statistics are unknown and estimated from a
collection of labeled training data. Accordingly, the nomi-
nal LDA basis is approximated by the solution of the popular
practical LDA problem defined upon these estimates. How-
ever, when the available training data are few, the solution
to practical LDA is known to lie far from the nominal LDA
basis. In this work, we propose a novel algorithm that oper-
ates on the estimated class statistics and generates a sequence
of bases that converges to the solution of practical LDA. Im-
portantly, our studies illustrate that early elements of the pro-
posed sequence exhibit significantly higher approximation to
the nominal LDA basis than the converging point and, thus,
offer the means for superior classification performance.

Index Terms— Dimensionality reduction, classification,
linear discriminant analysis, recognition, subspace learning.

1. INTRODUCTION AND PROBLEM STATEMENT

Linear Discriminant Analysis (LDA) is the fundamental data
analysis method, introduced in [1], that has been used ex-
tensively in the past decades for dimensionality reduction,
recognition, and supervised classification. LDA finds appli-
cation in a wide range of fields such as Image Processing,
Computer Vision, Pattern Recognition, and Bioinformatics
[2–11], to name a few. Some of the advantages of LDA that
have contributed to its immense popularity are (i) its low-cost
implementation (solution through simple generalized eigen-
value decomposition), (ii) its correspondence to Bayes’s op-
timal classification, for two homoscedastic Gaussian classes
with equal priors, and (iii) its easy adaptation for discrimi-
nating non-linearly separable classes, through the kernel trick
method [12, 13].

The notion behind LDA is to identify a low-dimensional
linear subspace whereon the data points of two or more
classes are best separable. Mathematically, given C classes
of D-dimensional points, multi-class LDA seeks for a basis

W∗ = [w∗1,w2, . . . ,w
∗
K ] ∈ RD×K that describes a K-

dimensional subspace whereon projected data exhibit high
between-class separation and low within-class dispersion.
That is, if elements in class c are distributed byN (µc,Σ), for
c = 1, 2, . . . , C, multi-class LDA seeks the rank-K solution
W∗ ∈ RD×K to the determinant-quotient problem [14, 15]

max.
W∈RD×K ; W>W=IK

JK(W) :=
|W>ΣbW|
|W>ΣW|

(1)

where | · | denotes the determinant of the matrix argument,
Σb is the between-class covariance matrix defined as Σb :=
1
C

∑C
c=1(µc − µ)(µc − µ)>, and µ is the mean of the class

means µ1,µ2, . . . ,µC . A solution to (1) is known to be given
by the K eigenvectors of Σ−1Σb that correspond to the K
highest, non-zero eigenvalues λ1, λ2, . . . , λK [15]; that is, by
W∗ such that ‖w∗k‖2 = 1 and Σ−1Σbw

∗
k = λkw∗k ∀k.

In practice, however, the nominal class statistics µ1, µ2,
. . ., µC , and Σ are unknown to the classifier and ideal LDA
in (1) cannot be formulated. Instead, a common practical
approach is to estimate these statistics from a collection of
labeled training data from each class. That is, given Nc train-
ing points {x(c)

n }Nc
n=1 from class c, c = 1, 2, . . . , C, µc, µ, Σ,

and Σb are estimated by

µ̂c :=
1

Nc
Xc1Nc

, µ̂ :=
1

N

C∑
c=1

Ncµ̂c, (2)

Σ̂ :=
1

N

C∑
c=1

Nc∑
n=1

(x(c)
n − µ̂c)(x

(c)
n − µ̂c)

>, and (3)

Σ̂b :=
1

N

C∑
c=1

Nc(µ̂c − µ̂)(µ̂c − µ̂)>, (4)

respectively, where N := N1 + N2 + . . . + NC . Accord-
ingly, the solution to (1) is approximated by the solution Ŵ ∈
RD×K to the practical LDA problem

max.
W∈RD×K ; W>W=IK

ĴK(W) :=
|W>Σ̂bW|
|W>Σ̂W|

, (5)

given by the K highest-eigenvalue eigenvectors of Σ̂
−1

Σ̂b.
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Understandably, the quality of Ŵ with respect to ideal
LDA metric in (1) and, therefore, its nominal class discrim-
inating capability, depend on the quality of the estimates in
(2)-(4). When the number of training points {Nc}c=1,2,...,C

available from each class is asymptotically large (N � D),
estimates in (2)-(4) tend to the nominal class statistics, Ĵ(W)
tends to J(W), for every W ∈ RD×K , and the solution to
(5), Ŵ, approximates the ideal LDA basis W∗.

In many cases of practical interest, however, where
D is large, the training points available to the classifier
are not enough for estimating accurately the class statis-
tics and, in particular, the within-class covariance matrix
Σ (short-training-data case). Examples include many im-
age processing applications, such as object/face recogni-
tion/classification [16, 17], where h × w images are treated
as (D = hw)-dimensional points (e.g., for h = w = 128,
D = 16 384). In such cases the collection of N � D labeled
training points becomes infeasible (or, at least, impractical)
and, even if N > D, Σ̂ is not an accurate estimate of Σ.
Accordingly, Ĵ(W) diverges from J(W) and its maximizer,
Ŵ, may lie significantly far from the sought-after basis W∗.
In the extreme case where N < D, the well-known LDA
(covariance-matrix) singularity problem emerges and, as a
remedy, a small, heuristically chosen regularizer ∆ > 0 is
commonly added to the diagonal elements of Σ̂ [3, 18]; this
approach resolves the singularity issue, but does not neces-
sarily render Σ̂ an accurate estimate for Σ.

In this work, inspired by relevant successful developments
in the auxiliary-vector (AV) filtering literature [19–22], we
propose a novel iterative algorithm for the estimation of the
ideal LDA basis W∗ from short training data. The proposed
algorithm operates directly on the estimates Σ̂ and Σ̂b in (3)-
(4) and generates a sequence of LDA bases {Wt}t=1,2,... that
provably converges to the solution of (5), Ŵ. What is most
interesting, however, is that early elements of the generated
basis sequence are shown to exhibit significantly improved
approximation to the ideal basis W∗, compared to Ŵ, in
the short-training-data case; thus, they offer the grounds for
LDA-classification of superior performance.

2. PROPOSED ITERATIVE LINEAR
DISCRIMINANT ANALYSIS

We commence our developments by defining V := [v1,

v2, . . . , vC ] ∈ RD×C , where vc :=
√

Nc

N (µ̂c − µ̂) for

every c, such that Σ̂b = VV>. Then, we denote by
Z := [z1, z2, . . . , zK ] ∈ RC×K the matrix containing the
K eigenvectors of V>Σ̂

−1
V, corresponding to its K high-

est eigenvalues p1, p2, . . . , pK . Accordingly, we define the
K × K diagonal matrix P := diag([p1, p2, . . . , pK ]>). In
view of the above definitions, it can be easily shown that
for the solution to (5), Ŵ = [ŵ1, ŵ2, . . . ŵK ] ∈ RD×K ,
given by the K eigenvectors of Σ̂

−1
Σ̂b that correspond to its

Proposed Iterative LDA Algorithm

Initialization:
b0,k ← Vzk ∀k, w0,k ← b0,k

‖b0,k‖2 ∀k
Pk ← ID − ‖Vzk‖−22 Vzkz>k V> ∀k
Iterations:
for t = 1, 2, · · ·
for k = 1, 2, · · · ,K

p← PkΣ̂bt−1,k;
if ‖p‖2 > 0

gt,k ← p
‖p‖2 , ωt,k ←

g>t,kΣ̂bt−1,k

g>t,kΣ̂gt,k

bt,k ← bt−1,k − ωt,kgt,k

else
bt,k ← bt−1,k

wt,k ← bt,k

‖bt,k‖2
If convergence is met for all k, break;

Return: LDA-basis sequence {Wt}t=1,2,···.

Fig. 1: The proposed algorithm that generates LDA-basis se-
quence {Wt}t=1,2,....

highest non-zero eigenvalues λ̂1, λ̂2, . . . , λ̂K , it holds

ŵk =
Σ̂
−1

Vzk

‖Σ̂
−1

Vzk‖2
∀k. (6)

This alternative formulation of the solution to (5) lies in the
core of our algorithmic developments presented below.

The proposed LDA algorithm runs iteratively. At each
iteration step, say the tth, it generates a subspace basis Bt =
[bt,1, bt,2, . . . ,bt,K ] ∈ RD×K and normalizes its columns,
in accordance to (6), to deliver an approximate LDA basis
Wt; that is, for every iteration step t ≥ 0,

wt,k :=
bt,k

‖bt,k‖2
∀k. (7)

In view of (7), in the sequel we focus on describing the iter-
ative generation of sequence {Bt}t. For t = 0, we initialize
the iterations at B0, with

b0,k :=
Vzk
‖Vzk‖22

∀k, (8)

motivated by the fact that for Σ̂ = Σ, Σ̂b = Σb, and Σ = ID,
the kth initial basis vector w0,k =

b0,k

‖b0,k‖2 coincides with the
ideal w∗k, for every k. Thereafter, at the general iteration step
t ≥ 1, bt,k is generated by incorporating to bt−1,k a vector
component perpendicular to the initial direction Vzk, as

bt,k := bt−1,k − ωt,kgt,k ∀k, (9)

where gt,k ∈ RD×1, ‖gt,k‖2 = 1, g>t,kVzk = 0, and ωt,k ∈
R. Considering for a moment direction vector gt,k to be fixed
and non-zero, we design parametrically the scaling coefficient

4627



ωt,k so that the within-class dispersion of training data com-
ponents on bt,k is minimized; that is, ωt,k is defined as the
solution to

min.
ω∈R

(bt−1,k + ωgt,k)>Σ̂(bt−1,k + ωgt,k). (10)

Setting to zero the derivative of (10) with respect to ω, scaling
coefficient ωt,k is found to be

ωt,k :=
g>t,kΣ̂bt−1,k

g>t,kΣ̂gt,k

∀k. (11)

Then, we steer our focus to the direction-vector gt,k and de-
fine it as the normalized vector in RD×1, orthogonal to Vzk,
that lies closest to Σ̂bt−1,k. That is, we define gt,k as the
solution to

min.
g∈RD×1; g>Vzk=0; ‖g‖2=1

‖g − Σ̂bt−1,k‖22. (12)

Solving (12) by Lagrange multipliers, we find that, if Σ̂bt−1,k
is not a scaled version of the initialization vector Vzk, then

gt,k :=

(
ID − Vzkz>k V>

‖Vzk‖22

)
Σ̂bt−1,k

‖
(
ID −

Vzkz>k V>

‖Vzk‖22

)
Σ̂bt−1,k‖2

∀k. (13)

If, otherwise, there exists α ∈ R such that Σ̂bt−1,k = αVzk,
then gt,k can take any value of unit magnitude that is orthog-
onal to Vzk, yielding a maximum value of zero in (12); evi-
dently, in this case, ωt,k in (11) becomes zero, bt,k coincides
with bt−1,k, and the sequence the kth column converges.

The following Lemmata 1 and 2 describe formally the
convergence of the proposed LDA-basis sequence – the corre-
sponding proofs are omitted from this manuscript due to lack
of space.

Lemma 1 For every k ∈ {1, 2, . . . ,K}, it holds that

limt→∞

(
ID −

Vzkz>k V>

‖Vzk‖22

)
Σ̂bt,k = 0D. (14)

By Lemma 1, (11) and (12), ωt,k converges to zero, for ev-
ery column-index k, as t tends to infinity. Therefore, the it-
eratively generated sequence {bt,k}t=1,2,... in (9) converges,
for every k; this in turn implies that both {Bt}t=1,2,... and
the proposed LDA-basis sequence {Wt}t=1,2,... converge as
well. The exact converging point of {bt,k}t=1,2,... is pre-
sented in the following Lemma 2.

Lemma 2 For every k ∈ {1, 2, . . . ,K}, it holds that

limt→∞bt,k =
1

pk
Σ̂−1Vzk ∀k. (15)

Iteration index, t
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Fig. 2: Convergence of the proposed LDA-basis sequence
{Wt}t=1,2,... to Ŵ, solution to (5), captured by ‖Ŵ −Wt‖F
(D = 40, C = 3, K = 2, N1 = N2 = N3 = 20).
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Fig. 3: Average performance of the proposed LDA-basis sequence
{Wt}t=1,2,..., with respect to the LDA metric in (1), along bench-
mark performance of Ŵ, solution to (5) (D = 40, C = 3, K = 2,
N1 = N2 = N3 = 20).

We notice now that the converging point of {bt,k}t=1,2,... is
a scaled version of ŵk in (6). Therefore, in view of the nor-
malization step in (7), the convergence of the proposed LDA-
basis sequence formally converges to the solution of (5); i.e.,

limt→∞Wt = Ŵ. (16)

The convergence of {Wt}t=1,2,... to Ŵ is illustrated in Fig.
2, by means of ‖Ŵ −Wt‖F , t = 1, 2, . . . , 2000, for a prob-
lem instance of D = 40, C = 3,K = 2, and N1 = N2 =
N3 = 20. For completeness, a detailed pseudo-code descrip-
tion of the proposed algorithm is offered in Fig. 1.

3. EXPERIMENTAL STUDIES AND CONCLUSIONS

As a first evaluation study of the performance of the proposed
LDA-basis sequence, we fix arbitrarily class statistics Σ, and
µ1,µ2, . . . ,µC , for D = 40, C = 3, and K = 2, and gen-
erate 1000 independent training sets of N = 60 points each
(N1 = N2 = N3 = 20). For each training set, we estimate
independently the class statistics by (2)-(4). Then, we calcu-
late the solution to (5), Ŵ, generate the 2000 first elements of
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Fig. 4: PDF of data projections on (a) the conventional basis Ŵ,
solution to (5), and (b) the 10th element of the proposed sequence
W10 (D = 50, C = 2, K = 1, N1 = N2 = 30).

the proposed basis sequence, {Wt}t=1,2,...,2000, and evaluate
their corresponding performances in the metric of (1) (J(Ŵ)
and {J(Wt)}t=1,2,...,2000). In Fig. 3, we plot the average
values of J(Ŵ) and {J(Wt)}t=1,2,...,2000 calculated over
the 1000 independent training sets. We observe that, in ac-
cordance to our theoretical instantaneous convergence studies
above, as t tends to 2000 the performance of the proposed se-
quence converges to that of Ŵ. However, quite interestingly,
{J(Wt)}t=1,2,...,2000 converges to J(Ŵ) from above so that
all elements of {Wt}t=1,2,... from t = 41 to t = 2000 exhibit
average performance superior to that of Ŵ.

Next, we illustrate the class-discrimination merit of the
proposed sequence. We consider C = 2 classes of (D = 50)-
dimensional points and seek the (K = 1)-dimensional sub-
space on which classes are best discriminated. The classifier
has access to N1 = N2 = 30 labeled training points from
each class. In Fig. 4, we plot the probability-density func-
tion (PDF) –empirically calculated over 10 000 points from
each class– of the points projected on the conventional basis
Ŵ ∈ RD×1, solution to (5), and the (t = 10)th element of the
proposed basis sequence, W10 ∈ RD×1. Interestingly, while
Ŵ exhibits low class-separation ability (the two PDFs over-
lap extensively), the 10th element of the proposed sequence,
calculated over the same training data as Ŵ, manages to at-
tain high class separation.

Finally, we conduct a third study on the MNIST Hand-
written Digits of [23] that offers training and testing data for
C = 10 classes of (D = 784)-dimensional (vectorized) hand-
written digits ‘0’,‘1’, . . .,‘9’. We use Nc = 150 points from
each class to train K-dimensional bases Ŵ and W10, after
regularizing appropriately the singular covariance matrix with
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Fig. 5: Probability of digit recognition by means of Ŵ and the
proposed W10 vs. basis dimensionality K = 1, 2, . . . , 9 (D =

784, C = 10, Nc = 150).
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Fig. 6: Probability of digit recognition by means of Ŵ, solu-
tion to (5), and W10 vs. number of training points per class
Nc = 10, 30, . . . , 450 (D = 784, C = 10,K = 150).

∆ = 1. For each class, we calculate the centroid (mean) of
the training data projected on each basis. Then, we project
892 testing points from each class on the calculated bases and
apply standard nearest-class-centroid classification. In Fig. 5,
we plot the probability of correct digit recognition for Ŵ and
W10, versus the basis dimensionality K = 1, 2, . . . , 9. In-
terestingly, for all values of K, the proposed basis W10 out-
performs significantly its conventional counterpart, achieving
recognition probability of up to 84%, for K = 9, while the
performance of Ŵ does not exceed 75%. In Fig. 6, we keep
K fixed to 9 and plot the probability of correct classifica-
tion for the two bases, versus the number of training samples
from each class, Nc = 10, 30, . . . , 450. Once again, the supe-
rior classification performance attained by means of proposed
basis sequence is clear, achieving recognition probability of
86.5%, for Nc = 450.

The presented experimental studies motivate our opti-
mism that the proposed LDA-basis sequence could break new
grounds for preferred classification, recognition, and learning
tools from few training data.
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