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ABSTRACT To overcome the computational difficulties in the fusion igfth
dimensional multimodal data for detection, in this papee, con-
sider the fusion problem in a compressed domain where campre
sion is achieved via low dimensional random projections @&@s p
posed in the compressive sensing (CS) literature [9-12% prbb-
lem of detection with compressive measurements has beeassed
by several recent works [13-24]. While some of the work, such
as [13, 14, 17, 20, 21, 24] focused on sparse signal detect@mme
other works [15, 16, 18, 19] considered the problem of detgtig-
nals which are not necessarily sparse. When the signaloareo-
essarily sparse, it was observed that there is a perforntase@hen
erforming LR based detection in the compressed domain amedp
o that with uncompressed data. However, when the sigrabise
ratio (SNR) is sufficiently large, this loss is not signifitamd the
compressed detector, i. e., the detector based on comgrdstse is
capable of providing similar performance as the uncompbste-
tector. In [23], the authors have extended known signalatiet®
with CS to the multiple sensor case. While intra-signal dejeaice
was considered with Gaussian measurements, the intevrsdas
pendence was neglected in [23]. To the best of authors kioe|e
the benefits of CS based detection when it is difficult to penfaR
based detection with uncompressed data due to inter-megaind
dence have not been investigated in the literature.
In this paper, we seek the answer to the following questisn; i
it beneficial, in terms of both performance and computaticoan-
1. INTRODUCTION plexity, to model intermodal dependence to perform LR baded
) . . ) o tection in the compressed domain via Gaussian approximatier
Fusion of high dimensional heterogenous data for differéfatence  gjiher neglecting dependence (product approach) or maefesrd
problems is challenging in many applications [1]. Whileelikood  §epce using suboptimal methods (e.g., copula based fusitn w
ratio (LR) based detection (with no unknown parametersptsi@l 4t knowing exactly the best copula function that modelsedep
in the Bayesian setting, its optimality is not guaranteecnvthe dence) with uncompressed data? With arbitrary margina faif
exact joint probability density function (pdf) is not awhile. Itis  o5ch modality with uncompressed data, we show that, under ce
difficult to compute the joint pdf in the presence of multimbde- (5 conditions, better (or equivalent) detection perfance can be
pendence unless data can be modeled as Gaussian. To model cfhieved in the compressed domain with a small number of com-
plex dependencies among multivariate data in order to ceerip@  ressive measurements compared to performing fusion il the
joint pdf, copula theory has been used in [2-8]. While theeesav-  ,rqqyct approach and (ii). when widely available copulactions
eral copula density functions available in the literatdirding the 516 sed to model dependence of uncompressed data. We briefly
best copula function that fits a given set of data is compuriatly  giscuss how to determine conditions under which perfornsiog-
challenging. Further, in order to fuse multimodal data witbre  hressed detection is efficient and effective over subopiiii@ction

than two modalities, finding multivariate copula densitgdtions is  \y;ith uncompressed data in the presence of inter-modal depee.
another challenge since most of the existing copula funstare de-

rived considering the bivariate case. Thus, the benefitseofise of
copula theory for LR based detection with multimodal datmes

at a higher computational price. One of the commonly used sub .
optimal methods for fusion of multimodal data is to negletei- Let there bel sensor nodes in a network deployed to solve a detec-

S . tion problem. The measurement vector at each node is debgted
modal dependence and compute the likelihood ratio onlychase N .
the marginal pdfs of each modality (we call this 'the prodapt :;7 f ]IllQ for d_f _1’ -+, L. Under hypothesel, ando, x; has
proach’ in the rest of the paper). However, this approachpeeted € following pdfs:
to lead to poor performance when inter-modal dependendeoisgs Hy

Performing likelihood ratio based detection with high dimsenal
multimodal data is a challenging problem since the comjmriaif
the joint probability density functions (pdfs) in the prase of inter-
modal dependence is difficult. While some computationatiyes-
sive approaches have been proposed for dependent multictetda
fusion (e.g., based on copula theory), a commonly usechtretp-
proach is to compute the joint pdf as the product of margidé& -
noring dependence. However, this method leads to pooripeafuce
when the data is strongly dependent. In this paper, we centte
problem of detection when dependence among multimodalidata
modeled in a compressed domain where compression is obitain
using low dimensional random projections. We employ a Ganss
approximation while modeling inter-modal dependence exabm-
pressed domain which is computationally more efficient. Wans
that, under certain conditions, detection with multimodigpendent
data in the compressed domain with a small number of conguless
measurements yields enhanced performance compared tiiclete
with high dimensional data via either the product approacbtlioer
suboptimal fusion approaches proposed in the literature.

Index terms. Compressive sensing, multimodal data, inter-
modal dependence, likelihood ratio based detection, eofhdory

2. DETECTION WITH UNCOMPRESSED DATA

x5 ~ f1(x;)
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respectively, wherg; (x;) denotes the joint probability density func-
tion (pdf) ofx; underH; fori = 0,1andj = 1,--- , L. We assume

given by (A;x;)m = (ajm,x;) form = 1,--- /M where(.,.)
denotes the inner product. In CS theory, the mappingis often

that the elements of; are independent of each other, however, theselected to be a random matrix. Solving (3) whers are Gaussian

vectorsx’ s are dependent fgr=1, - - - , L. This is a suitable model
when the time samples collected at a given sensor are indepen
and there is spatial dependence among sensors in a disttibat-
work. To perform LR based detection, it is required to coregbe
joint pdf of {x1,---,xr}, which in general is difficult unless each
x; has a joint Gaussian pdf.

2.1. Copulabased approach

In a parametric framework, copulas are used to constructid va
joint distribution describing an arbitrary, possibly noelar depen-
dence structure [25]. According to copula theory, the pdifs c=
{x1,--+,xz} under; can be written as [25],

fi(x) = H Hfi(mnl)cin(u'znh St Ung)
n=11=1

fori = 0, 1 wherec;,, (-) denotes the copula density functiai,
F(zni|H:) with F(z|H;) denoting the marginal cdf of under#;,
andz,, is then-th element ofx;. Then, the log LR (LLR) can be
written in the following form:

fi(x)
fo(x)
+ Z log

where ¢1,, and ¢o,, are copula parameters undhdr and Ho, re-
spectively, forn = 1,--- , N. In this case, in generaly different

fi(xa[n])

fo(xa[n])

= log =

N
Z log

1 n=1

L
Trrr(x)
=

Cl"(u%nv c ,Uin|¢1n)
CO"(u?nv T 7u%n|¢0")

@)

is considered in [15] with a single sensor and it is extendethé
multiple sensor case in [23]. The degradation of perforraand¢he
compressed domain compared to that with uncompressed tdéa w
performing LR based detection is expressed in terms of tigubu
SNR or the deflection coefficient in [15, 23]. However, whefs

are not Gaussian and there is dependence among them, pesper p
formance comparison for detection in the uncompressed amd ¢
pressed domains is not available in the literature.

3.1. LR based detection with compressed data

In order to perform LR based detection based on (3), the ctanpu
tion of the joint pdf of{y1,--- ,yz} is necessary. If the marginal
pdf of x;'s are available, the marginal pdfs of each element ;s
can be computed as in the following. Theth element ofy;, ¥,
can be written asy,,; = S0, Aj[m, nlz,; where A [m,n] is
the (m, n)-th element ofA ;. Having the marginal pdfs of,; and
using the independence assumption, the joint pdf ef y,,,; can be
found after computing the characteristic functionzoflt is further
noted that{y,; }»_, for a givenj are not necessarily uncorrelated
of each other althougliz,,; }2—,'s are uncorrelated unless certain
conditions are satisfied b ; andx;. For example, if the elements
of x; are zero mean Gaussian with the covariance maiti and
the projection matrix satisfies the conditid; A7 = I, then the
elements ofy; are uncorrelated. However, in general this uncor-
relatedness may not hold. Once the marginal pdfs of the eitsme
iny,; forj = 1,---, L are found, copula theory can be used in
order to find the joint pdf of the compressive measurementovec
1, ,yr. Lettingu; = Fj(yqp) for j = M(p — 1) + g where

y
p=1,---,L,q=1,--- M, the LLR based on copula functions

copulas where each one Isvariate are selected to model depen- can pe expressed as

dence.
One of the fundamental challenges in copula theory is to find M Filye) er(u, - unp|éd)
the copula density function that will best fit the given dag $ur-  Trrr(y) =Y > log TR 4 Jog UMD OMEIOL) (g
folyrt) co(ut, - ,unmr|og)

ther, most of the copula density functions proposed in tieediure
consider the bivariate case. In order to model dependencrilbf
modal data with more than two modalities, several appraasbeh
as the use of vines have been proposed in the literature fighw
are in general computationally complex. Thus, in order tteleti-
lize copula theory for multimodal data fusion, these chrgks need
to be overcome. In the following, we consider a computatigna
efficient approach for multimodal data fusion in which degemce

1=1 k=1

The second term on the right hand side in (4) requires findipyia
density functions ofM L variables which is computationally very
difficult. Since we assume that the elements in eachre indepen-
dent under any given hypothesis, each elemegt;inan be approx-
imated by a Gaussian random variable (via Lindeberg-Fe#atral
limit theorem assuming the required conditions are sati§fié, 27])

among data is modeled in a low dimensional transformed damai for given A; when \V is sufficiently large. Then, LR based detec-

We discuss the advantages/disadvantages of the propogezhelp
over the copula based approach.

3. DETECTION WITH COMPRESSED DATA

When the signalsx;’s are high dimensional, it is desired that fu-

sion be performed in a compressed domain. The use of low d

mensional random projections for solving inference protdenas
been addressed in the recent literature [13-23].A.gbe specified

Lety = [y1 --

tion can be performed via Gaussian approximation, whiches&hke
modeling of dependence among multimodal data with compdess
measurements easier.

3.2. LR based detection via Gaussian approximation

-y1]" be aM L x 1 vector. With Gaussian approx-
imation we havey|H; ~ N (u', C*) where

i i T i ThT
by a set of unique sampling vectofa, ., }2/_, with M < N for p=[pr opr] (5)
j=1,---, L. Then, the low dimensional samples can be expressed
as, and
yi = Ajx; ?) 7- géll %1722 i i
forj =1,---, L wherey; istheM x 1 compressed measurement C = (6)
vector at thej-th node, and ther-th element of the vecto ;x; is Cci, Ci, Ci
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with p5 = E{y;[H:}, Cj = E{(y; —E{y,;})(v; —E{y; D" |H:},

e = E{ly; — E{y;Dyr — E{yx}) M} with j # E,
k =1,---,Landj 1,---,L for i = 0,1. Further, let
B; = E{xj|H:}, Dj = E{(x; — B{x;})(x; — E{x;})" [H:}
andD};, = E{(x; — E{x;})(xx — E{xx})"|H:} for j # k. Then
we have,

wi = A;B:,Ci=A,D:AT and Ci, = A;D AL (7)
forj,k=1,---,Land: =0, 1. Then, we can write,
p'=AB and C' = AD'AT (8)
where
A 0 0
A_| O A 0 ©
0 o0 Ap

isaM L x NL matrix and3’ andD* are notations analogous td
andC’, respectively. Then, the decision statistic of the LLR ldase
detector is simply given by,

1 1—1

A=yT(CT - Dy~ et - p e Dy

To illustrate the detection performance with multimodaladia the
compressed domain with Gaussian approximation compared-to
tection with uncompressed data, in the following, we presenu-
merical example considering = 2. We further consider the ele-

ments ofA ; to be iid zero mean Gaussian fpe= 1, 2.

3.3. Example

We consider two cases. In Casexl,, andx, have the follow-
ing marginal pdfs under the two hypotheses (as considergg])in
za|H; ~ N(0,07), andziz|H; ~ Exp();). Itis noted that
xz ~ Exp(A) denotes that: has an exponential distribution with
f(z) = Xe™" for z > 0 and0 otherwise. Undef{;, z;2’s are
generated so that;, = 27, + w? wherew ~ N(0,0%). Then we
haveri> ~ Exp(A1) with A1 = ﬁ UnderHo, z;2's are generated

independent of;; for: = 1,--- , N with parameten\.

For Case Il, we consider that; ~ Exp()\;) andzz|H; ~
Beta(ai, b; = 1) wherexz ~ Beta(a,b) denotes that: has a beta
distribution with pdff(z) = z1=z°"*(1 — 2)*~* andB(a, b) =

B(a,b)

Fr(fa)ig)b)) is the beta function. Undé;, 2:2’s are generated so that
u
Ti2 =
U+ Ti1

whereu ~ Gamma(ai, 81 = 1/A1). Thenzz|H1 ~ Beta(ai, b =
1) with a; = au. Itis noted thatr ~ Gamma(c, 3) denotes that
x has Gamma pdf withf (z) = sefrz;2* e "/ forz > 0 and
o, 8 > 0. UnderHo, z2 is generated independent of, with
parameterao andby = 1.

First, we illustrate how the dependence structure of tha dat
changes from uncompressed domain to the compressed dolmain.
Fig. 1, we show the scatter plots for both compressed andnmnco
pressed data at the two sensors uriler In Fig. 1, the top and
bottom subplots are for Case | and Case I, respectivelyenbit
and right subplots are for uncompressed and compressedrdata
spectively. It can be observed that while uncompressed atatze
two sensors are strongly dependent of each other, compressa
appears to be weakly dependent with a completely diffel@aué-
sian like) pattern.
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Case I: Under H,

10

-5

-10
4 -4 2

Case II: Under H1

Fig. 1: Scatter plots of uncompressed and compressed data under
Hi; N = 1000, M =200, L =2
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Fig. 2: Detection performance with multimodal dependent data in
the compressed and uncompressed domahs: 1000

3.4. Product approach with uncompressed data vs. Gaussian
approximation with compressed data

In the following, we compare the detection performance wim-
pressed multimodal data and the product approach (wherendep
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with uncompressed data. It is observed from Fig. 3 that fusiith
Gaussian and t copula functions leads to perfect detectibiie
fusion with Gumbel and Clayton copula provides poor perfmoe
even compared to the product approach. On the other harnidnfus
performance with compressed data with = 0.2 is capable of
providing perfect detection with the parameters consilerghus,
with the considered problem parameters, the use of copntifuns
with uncompressed data seems to be a waste of resources emen p
fect detection can be achieved with less computational texitp
in the compressed domain via Gaussian approximation. Thiss,
worthwhile to investigate as to when it is beneficial to usputa
theory to model dependence with uncompressed data comfmared
performing fusion by modeling dependence with compressed d
in a computationally easier fashion. We briefly addressifisise in
the following.

In order to quantify the performance of detection with both
uncompressed and compressed data, we consider Kullballet e
(KL) distance to be the performance metric. The KL distanee b

Fig. 3: Detection performance with multimodal dependent data inween the pdfs under the two hypotheses in the compressedinlom

the compressed and uncompressed domains for cake\lJ;= 10,
1/)\1 = 10.2, apg = 9.8, al = 10, bo = b1 =1

dence is ignored) with uncompressed data. Fig. 2 shows tiferpe

mance in terms of the ROC curves for the two cases considared i

Example 3.3. We make several important observations hexease
I, the detection performance with the Gaussian approxonati the
uncompressed domain is only slightly better than that wighdrod-

with the Gaussian approximation can be computed as [28]

DL (follf1)
2 {ir(AD®) + (8 - )T ANB' - B°)
|[AD'AT| }

|ADOAT| (10)

—ML + log

whereA* = AT(AD'AT)~1 A andtr(-) denotes the trace oper-

uct approach in the uncompressed domain when the compnessiator. In the case wherg;’s for [ = 1,---, L are assumed to be

ratio, ¢, = % is relatively large and the probability of false alarm independent of each other undép, we havef,(x)
is high. For smalt,., the product approach with uncompressed data

shows better performance than the Gaussian approximdtmw;
ever, the performance gap is not very significant. In Caseél,
observe a significant performance gain when performingctiete
with compressed data even with relatively smalcompared to the
product approach in the uncompressed domain. It is noteadrtha
Case |, the observations at the two sensors are uncorrelétedn-
compressed data (although they are dependent)uis diagonal.
Thus, not taking dependence into account in the uncomptetse

main seems not to result in a large performance loss compared

taking dependence in the compressed domain into accounthéOn
other hand, when considering Case I, it is noted hais not diag-
onal, and the uncompressed observations ukteare strongly cor-
related. Thus, ignoring dependence with uncompressededata to
severe performance loss compared to taking dependenc€duis-
sian approximation) into account in the compressed domeém e

wheref;" denotes the marginal pdf undgy;. Thus, the KL distance
betweenfy () and f1(-) with uncompressed data can be written as,

Dicr(follf1) Dy (follf1)

N
- E{ZIOgcln(u%ru"' 7uin|¢1")|H0}
n=1

Tg,c

whereD%? (fo||fi™) denotes the KL distance under the product ap-
proach. When the marginal pdfs are availatlé;” ( fo||fi") can

be computed. It is noted that the teffiy, . depends on the partic-
ular copula function used to model dependence. Thus, fovengi
copula function, whef( ¢, . > Di? — D% performing detection

in the compressed domain with givar (D}}CL’ is a function of M)

with very smalle,.. Further, in that case, it is observed that, there is aappears to be more effective and efficient than copula basadnf
threshold fore, after which the Gaussian approximation in the com-in the uncompressed domain. This issue will be further e in

pressed domain starts to perform better than the producbagip
with uncompressed data.

3.5. Copula based fusion with uncompressed data vs. Gaussian
approximation with compressed data

detail in future work.

4. CONCLUSION

In this paper, we showed that, under certain conditionssatien
with multimodal dependent data with compressive sensimgbea

Next, we compare the detection performance when copulas afeetter (or equivalent) than detection with the widely cdeséd
used to compute the joint pdf with uncompressed data in Fig. 3product approach and copula based fusion with uncompretzed

Since finding optimal copula function that models a giveradsst
is computationally complex, we plot the detection perfonoce&us-
ing widely available bivariate copula functions. To thademve
consider Gaussian, t, Gumbel and Clayton copula functisngea
scribed in [3, 8]. Further, we consider Example 3.3 with Qasé/e
further plot the detection performance with the productrepph

We briefly discussed the conditions under which modelingedep
dence for likelihood ratio based detection in the compseenain

is more efficient and effective than modeling dependench wiit
compressed data using copula theory which is computatjonal
expensive most of the time. Experiments with real datasétdev
considered in future work.
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