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ABSTRACT

In this paper, a simultaneous sparsity representation-based binary
hypothesis (S-SRBBH) model for target detection in hyperspectral
image (HSI) is proposed. The S-SRBBH exploits the interpixel cor-
relation within neighboring pixels in HSI, and then, each test pixel
is represented by only the background dictionary (Ab) under null
hypothesis or from the union of Ab and target dictionary (At) un-
der alternative hypothesis. Usually, an inner window region (IWR)
centered within an outer window region (OWR) contribute in con-
structing Ab. Indeed, the use of IWR has a huge effect on the detec-
tion performance since it encloses the targets of interests, but its use
requires the information of the size of the targets which is usually
hardly available. That is why, this paper also serves to construct Ab

without IWR by exploiting the low-rank and sparse matrix decom-
position (LRaSMD) technique to decompose the HSI into low-rank
background HSI and sparse target HSI. Then for each test pixel, a
concentric window is located on the low-rank background HSI, and
all the pixels within the window contribute to form Ab. Two real
HSIs are used to demonstrate that S-SRBBH achieves good target
detection especially when the LRaSMD technique is exploited to
construct Ab.

Index Terms— Hyperspectral image, simultaneous sparsity, bi-
nary hypothesis, inner window, low-rank

1. INTRODUCTION

Hyperspectral image (HSI) consists of simultaneously acquiring the
same spatial scene in a very narrow and contiguous spectral wave-
length (color) bands [1, 2]. Hence, the resulting HSI is a 3-D data
cube which provides both spatial and spectral information. With the
rich information afforded by the high spectral dimensionality, target
detection is not surprisingly one of the most important applications
of HSI, where each pixel x ∈ <p is labeled as target or background
based on their spectral signatures [1, 2, 3, 4, 5, 6, 7]. Usually, the
detection is built using a binary hypothesis test that chooses between
the following competing null and alternative hypothesis: target ab-
sent (H0), that is, the test pixel, x, consists only of background; and
target present (H1) where x may be either fully or partially occupied
by the target material. A lot of algorithms proposed for hyperspectral
target detection use only a single spectrum for the detection. Well
known algorithms under this category include the following, with
different binary hypothesis models: adaptive matched filter (AMF)
[8, 9], adaptive normalized matched filter (ANMF) [10], adaptive
Kelly detector [11].

In fact, using only a single spectrum for the detection is usu-
ally insufficient to achieve good target detection since the spectrum

changes with the environmental situation. A lot of algorithms have
been developed to take the variability into account. Well known al-
gorithms include: matched subspace detector (MSD) [12], adaptive
subspace detector (ASD) [13].
The main drawback of all the classical detectors cited above is that
there is always an explicit assumption (Gaussian) on the statistical
distribution characteristics of the observed data. To do away with
such assumption, Chen et al. [14] developed a target detection algo-
rithm based on sparse representation for HSI data. In particular, each
test pixel in HSI, be it target or background, is assumed to lie in a
low dimensional subspace and thus can be represented by a very few
training samples, including both Ab and At. Zhang et al. [15] pro-
posed the sparsity representation based binary hypothesis (SRBBH)
model in which they combined the idea of binary hypothesis and
sparse representation to obtain a more complete and realistic model
than in [14]. More precisely, if the test pixel belongs toH0, it will be
modeled by the Ab only; otherwise, it will be modeled by the union
of Ab and At. This in fact yields a competition between the two
hypothesis corresponding to the different pixel class label.

The SRBBH model which has been developed very recently
does not take into account any joint sparsity model that can incorpo-
rate the interpixel correlation within the HSI by assuming that neigh-
boring pixels usually consist of similar materials and thus have the
same spectral characteristics [16]. In addition, in both [14] and [15],
the Ab for each test pixel is constructed using a dual concentric win-
dow, with an inner window region (IWR) centered within an outer
window region (OWR), and only the pixels in the OWR will form
the columns in Ab as shown in Figure 1(a). For example, if the size
of OWR is m×m and the size of IWR is t× t, where t < m, then
the total number of pixels in the OWR that will form Ab is m2− t2,
and hence, Ab ∈ Rp×(m2−t2).

Clearly, the dimension of IWR is very important and has strong
effect on the detection performance since it is mainly used to enclose
the targets of interests to be detected. It should be larger than or
equal to the size of the desired targets of interests in the correspond-
ing HSI, so as to exclude (but not completely) the probable target
pixels from appearing in Ab. It follows that, the main drawback of
using an IWR is that one needs to know the upper bound of the target
size and possibly its shape in order to choose a proper IWR. Unfor-
tunately, this information is usually not at our disposal. This renders
the choice of a proper IWR a difficult and tricky task, failing which,
the detection performance can deteriorate significantly.

In this paper, we first develop the S-SRBBH model that is simi-
lar to SRBBH, but it further considers a simultaneous joint sparsity
model [16] that incorporates the spatial correlation that exists within
neighboring pixels in HSI. More precisely, for each test pixel, all its
neighbors within a small neighborhood can be simultaneously rep-
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resented by a linear combination of a few common training samples
but weighted with a different set of coefficients for each pixel. Next,
the most challenging task in such a scheme is clearly that of accu-
rately constructing Ab when the test pixel is a target. We want to
achieve this task even without using an IWR in Figure 1(a). In fact,
directly applying Figure 1(a) without an IWR to construct Ab (and
by excluding the test pixel) will potentially deteriorates the detection
performance. That is why, we propose two step-procedure that will
be described in further details in subsection 2.2:

• Firstly, a low-rank and sparse matrix decomposition (LRaSMD)
technique [17, 18] is applied to any given HSI to separate it
into a low-rank background HSI and a sparse outlier HSI
that contains the targets and possibly some additional noise
errors.

• Secondly, for each test pixel, a concentric window is created
on the low-rank background HSI, and each pixel in the win-
dow (except the test pixel) will contribute to one column in
Ab. Note that this concentric window does not require the
information about the target size as most of the target pixels
have been removed in the low-rank background HSI.

It should be remembered that the low-rank and sparse matrix decom-
position does not always ensure the complete removal of the target
corruption in the low-rank background HSI. This is due to the ar-
tifacts brought about by the optimization algorithms used in such
LRaSMD techniques which typically involve convex relaxations or
greedy techniques as surrogates.

The remainder of this paper is organized as follows. The S-
SRBBH model, as well as the procedure for constructing Ab using
the LRaSMD technique, are briefly described in Section 2. The tar-
get detection capability of S-SRBBH when compared to some other
detectors (SRBBH, AMF, ANMF and MSD) under different cases
for constructing Ab is evaluated on the two real hyperspectral im-
ages presented in Section 3. Finally, Section 4 gives concluding re-
marks and some directions for future work.

2. MAIN CONTRIBUTIONS

2.1. The Simultaneous SRBBH (S-SRBBH)

It is expected that for real world HSI, neighboring pixels usually
consist of similar materials and thus have similar spectral character-
istics [16]. In this case, all the pixels in a small neighborhood can
be simultaneously represented as a sparse linear combination of the
common training samples but weighted with different coefficients.
We define the matrix X = [x1, x2, · · · , xq] ∈ Rp×q , where q is
the total number of pixels in the neighborhood.
Note that if q = 1, we return back to the SRBBH model. Hence, the
S-SRBBH can be considered as a generalization of SRBBH when
q > 1. Therefore if x ∈ H0, we have:

x1 = c1,1a
b
1 + c1,2a

b
2 + · · ·+ c1,Nba

b
Nb
,

...

xq = cq,1a
b
1 + cq,2a

b
2 + · · ·+ cq,Nba

b
Nb
.

This implies that:

X = [ab
1 a

b
2 · · ·ab

Nb
][c1 c2 · · · cq] = AbCb , (1)

where ab
1, a

b
2 · · · , ab

Nb
are the background training samples, Nb is

the total number of background training samples, Ab ∈ Rp×Nb ,

and Cb ∈ RNb×q .
Now, if x ∈ H1, we have:
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(2)

where at
1, a

t
2 · · · , at

Nt
are the target training samples, Nt denotes

the total number of target training samples, At ∈ <p×Nt , A ∈
Rp×(Nb+Nt) is the union of Ab and At, C′b ∈ RNb×q , Zt ∈
RNt×q , and S ∈ R(Nb+Nt)×q .
It is well known that the targets usually occupy a very small part of
the whole HSI, and therefore, Nt << Nb.
In fact, both Cb and S stand to be sparse, and therefore, the two (non-
convex and NP-HARD) minimization subproblems to solve are:

Ĉb = argmin
Cb

||AbCb −X||F s.t. ||Cb||0,2 ≤ K0 , (3a)

Ŝ = argmin
S
||AS−X||F s.t. ||S||0,2 ≤ K′0 , (3b)

where ||Cb||0,2 and ||S||0,2 denote the total number of nonzero rows
of Cb and S, respectively.
The method for constructing Ab based on the LRaSMD technique,
as well as the construction of At, are given in the next subsection.
In fact, K0 and K′0 are a given upper bound on the sparsity level
[19]. In fact, if K0 and K′0 are set differently, this can lead to sig-
nificantly weakened competition between H0 and H1. That is why,
and to greatly reduce the complexity of the parameter adjustment,
K0 and K′0 are set equally to each other [15]. In this paper, we
solve each subproblem using the Simultaneous Orthogonal Match-
ing Pursuit (SOMP) [20] greedy algorithm. After that Cb and S
are being estimated (to contain a few nonzero rows), the detection
performance is evaluated as:

DS−SRBBH(x) = ||X−AbĈb||F − ||X−AŜ||F , (4)

where Ŝ =
(

Ĉ′
b

Ẑt

)
. If DS−SRBBH(x) > η with η being a pre-

scribed threshold value, then x is declared as target; otherwise, x
will be labeled as background.

2.2. Construction of background and target dictionaries

In fact, the targets in HSI always occupy a small part of the entire
image and they are assumed to be randomly distributed and have
low probability [21]. Hence, they are characterized by the sparsity
property (in the spatial domain). The background is usually assumed
to have a low-rank property. Recall that each pixel in HSI lies in
a low dimensional subspace and thus can be represented by a few
training samples.
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Fig. 1. (a) Dual concentric window for the Ab construction. (b) Ab

construction based LRaSMD.

Based on the aforementioned analysis, the LRaSMD which form
a matrix by adding an unknown sparse matrix to an unknown low-
rank matrix is exploited to construct Ab as shown in both step 1
and step 2 of Figure 1(b). The construction of Ab via LRaSMD is
described in the following two steps:

As a first step: for any HSI of size h × w × p, where h and w
are the height and width of the image scene, respectively, and after
rearranging it into a two-dimensional matrix D = [di,j ] ∈ Re×p,
where e = h × w, the model of HSI can be modeled [21, 22] as
D = B + E + N, where B = [bi,j ] ∈ Re×p is the (low-rank)
background matrix, E = [ei,j ] ∈ Re×p is the (sparse) target matrix,
and N ∈ Re×p is usually assumed to be independent and identically
distributed Gaussian noise.

As a second step: after that the background matrix B and the
target matrix E are being estimated, we use only the estimation of B
and we resize it to a cube of the same size h× w × p (we shall call
it as low-rank background HSI). Next, for each test pixel, we create
a concentric window (on the low-rank background HSI), and all the
pixels (except the test pixel) within the window will each contribute
to one column in Ab.
Note that by resizing the estimate of E to a cube of size h× w × p,
we shall call it as the sparse target HSI. In our paper, the sparse
target HSI has no role since it is not used in neither constructing
Ab nor At. Since in hyperspectral target detection there is always
a prior information about the target of interest to detect, the At is
known and can be constructed using the MORTRAN atmospheric-
modeling program [23] to generate a large number of target signa-
tures under various atmospheric conditions. In addition, the At can
also be formed by the USGS [24] and the ASTER [25] digital spec-
tral libraries. In our paper, the At is simply formed from some of
the target pixels present in the global image scene.

2.3. Recovery of the low-rank and sparse components

Recently, a number of LRaSMD optimization algorithms have been
developed to recover both low-rank and sparse components. Among
them, Candès et al. [17] proposed the robust principal component
analysis (RPCA) which offers a blind separation of low-rank data
and sparse noise. More precisely, the RPCA assumes that D =
B + E and therefore exactly decomposes D into B and E. How-
ever, this exact decomposition does not always exist for real data
matrix D.

That is why, Zhou and Tao [18] developed a more adaptive model,
called the ”Go decomposition” (GoDec). In GoDec, the exact RPCA
decomposition of D does not exist due to an additive noise N and
predefined rank(B) ≤ r, card(E) <= k, where r and k stand for
the upper bound of the rank of B and the cardinality of E, respec-
tively. It assumes the following minimization problem:

argmin
B, E

||D−B−E||2F s.t. rank(B) ≤ r, card(E) ≤ k . (5)

Both B and E are recovered by alternatively solving the following
minimization subproblems until convergence:

Bt = argmin
rank(B)≤r

||D−B−Et−1||2F , (6a)

Et = argmin
card(E)≤k

||D−Bt −E||2F . (6b)

Bt can be updated via Bilateral Randomized Projections (BRP)
based low-rank approximation [26]. More particularly, assume that
P1 = (D − Et−1)V1, V2 = P1, and P2 = (D − Et−1)

T V2,
where V1 ∈ Rp×r , and V2 ∈ Re×r are two random matrices. The
BRP-based rank r approximation of D ∈ Re×p is

Bt = P1(V
T
2 P1)

−1PT
2 . (7)

The Et in subproblem (6b) can be updated via entrywise hard thresh-
olding of (D−Bt).

In this paper, we exploit a variant of GoDec called ”Semi-Soft
GoDec” (SSGoDec) [27]. The SSGoDec is similar to GoDec, but it
serves to adopt soft thresholding to the entries of Et instead of hard
thresholding. In this case, E is updated by:

Et = sign(D−Bt) max(|D−Bt| − λ, 0) , (8)

where λ > 0 is a soft threshold. The main motivation of using
SSGoDec instead of GoDec is that the former is 4 times faster than
the latter while the error is kept the same or even smaller.

3. SIMULATION RESULTS AND ANALYSIS

The first HSI (DATA) [28] is an 201×200 image and consists of 167
spectral bands. We have only used a small zone (pixels in rows 1 to
150 and columns 80 to 180) for the detection. The main background
materials of the selected zone are road and vegetation. There are
three cars on the road and we will consider them as targets to be
detected. Figure 2 exhibits the mean power in dB over the 167 bands.

The second HSI is the Pavia Center City (PaviaC). It is a 1096
× 1096 image and consists of 102 bands in wavelengths ranging
from 430 to 860 nm. We used a small zone (pixels in rows 1 to 130
and columns 223 to 350) for the detection. The main background
materials of this zone are bridge and water. There are some vehicles
on the bridge and bare soil near the bridge pier and hence they will
be selected as targets to be detected [22]. Figure 7 exhibits the mean
power in dB over the 102 bands.

In the experiments, we considered three cases to form Ab:

• Case 1: using Figure 1(a) with IWR of size 5× 5,

• Case 2: using Figure 1(a) but without IWR (and by excluding
the test pixel),

• Case 3: using Figure 1(b).
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Fig. 3. AUCs: Case 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pfa

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
d S-SRBBH (AUC=0.9939)

SRBBH (AUC=0.9507)
AMF (AUC=0.9626)
ANMF (AUC = 0.8852)
MSD (AUC = 0.9477)

Fig. 4. ROC: Case 1
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Fig. 5. ROC: Case 2
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Fig. 6. ROC: Case 3
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Fig. 8. AUCs: Case 3
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Fig. 9. ROC: Case 1
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Fig. 10. ROC: Case 2
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Fig. 11. ROC: Case 3

We evaluate the target detection performance of S-SRBBH by com-
paring it to some others (AMF, ANMF, MSD and SRBBH) on the
different three cases. The detection performances are evaluated
quantitatively by the receiver operating characteristics (ROC) curves
which describe the probability of detection (Pd) as a function of
probability of false alarm (Pfa). More particularly, we pick thou-
sands of different thresholds η between the minimal and maximal
values of each detector output. The Pd is determined as the ratio
of the number of target pixels determined as target and the total
number of true target pixels. Whereas the Pfa can be calculated
by the ratio of the number of false alarms (background pixels deter-
mined as targets) and the total number of pixels in the region test. In
the implementation of AMF and ANMF, we used the robust Fixed
Point (FP) [29] for covariance estimation. In addition, to obtain
more stable inverse covariance, we regularized the FP as in [30]
(shrinkage of the FP towards the identity matrix). In addition, the
target signature we used for AMF and ANMF is the mean of target
atoms at

1, a
t
2, · · · , at

Nt
, where we choose Nt = 9 for both DATA

and PaviaC. In the case of MSD, the eigenvectors corresponding
to the significant eigenvalues of the FP matrices obtained from At

and Ab are used to generate the basis for target and background
subspaces, respectively [31]. The OWR in Figure 1(a) is chosen
to be of size 15 × 15 for all the detectors and we consider that the
concentric window in Figure 1(b) is of the same size of OWR. We
set K0 = K′0 = 8. We choose q = 25, that is, a neighborhood of
size 5 × 5. Importantly, the same Case (Case 1, 2 or 3) applied to
construct Ab for S-SRBBH is also applied to all the other detectors
in comparison. In addition, the choose of λ is a hard problem and we
found that the value λ = 1/

√
max (e, p) achieves good detection.

For DATA HSI: Figure 3 evaluates the S-SRBBH for Case 3 in
terms of Area Under Curves (AUC) on different values of r = 1, 2,
3, 4, 5, 6, 7, 8, 9, 10, 20, 40, 60, 80, 100. The highest AUC is 0.9899
at r = 3, and hence, this value of r will be used in Figure 6. Figure
4 evaluates the target detection performances of S-SRBBH when
compared to other detectors for Case 1. Obviously, the S-SRBBH
achieves the highest AUC (=0.9939). Both S-SRBBH and SRBBH
(AUC=0.9507) achieve good target detection since an IWR of the
size of the desired targets is used in Figure 1(a). In Figure 5 (for Case
2), both S-SRBBH (AUC=0.7136) and SRBBH (AUC=0.7335) have

the lowest AUC values comparing to the other detectors. This is to
be expected since no IWR is used in Figure 1(a), and hence there
are a lot corruption to Ab by the target pixels. Figure 6 shows that
both S-SRBBH (AUC=0.9899) and SRBBH (AUC=0.9807) have
the highest AUC values among the other detectors, as well as much
higher AUC values than for Case 2 in Figure 5.

For PaviaC HSI: The same evaluations that have been made in
Figure 3, 4, 5 and 6 are performed for PaviaC HSI in Figure 8, 9, 10
and 11, respectively. In Figure 8, the highest AUC is 0.9908 at r = 5
and hence this value of r will be used in Figure 11. Figure 9 (for Case
1) shows that S-SRBBH achieves the highest AUC (=0.9468). Simi-
larly, Figure 10 (for Case 2) demonstrates again that both S-SRBBH
(AUC=6216) and SRBBH (AUC=7284) perform very poorly since
no IWR is used in Figure 1(a). In Figure 11, we can notice again that
both S-SRBBH (AUC=0.9908) and SRBBH (AUC=0.9620) achieve
the highest AUCs and much higher AUC values than for Case 2 in
Figure 10. This demonstrates again that our use of LRaSMD based
SSGoDec ensure a much less corruption to Ab by the target pixels
than if Figure 1(a) is applied without an IWR.

4. CONCLUSION

In this paper, we first developed the S-SRBBH model that is sim-
ilar to SRBBH but it further considers the interpixel correlation in
hyperspectral imagery. Then, we served to achieve good target de-
tection even without using an IWR in the Ab construction. This is
done by first, exploiting the LRaSMD technique based on the SS-
GoDec optimization algorithm to approximately separate the given
HSI into low-rank background HSI and sparse target HSI. Second,
for each test pixel, a concentric window is used on the low-rank
background HSI and all the pixels within the window are used to
form Ab. Two real hyperspectral images demonstrate that S-SRBBH
has higher AUC values than of all the other detectors in comparison
for both Case 1 and Case 3. In addition, exploiting the LRaSMD to
construct Ab for both S-SRBBH and SRBBH greatly improves their
target detection performances as shown between Case 2 and Case 3.

As for future enhancements, our contribution would be to at-
tempt to exploit our full knowledge about the target of interest to
add constraints on the SSGoDec since its direct use does not ensure
the complete removal of targets from the low-rank background HSI.
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