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ABSTRACT

We propose an improved version of the non-negative inde-
pendent component analysis algorithm that uses a multiplica-
tive update rule (M-NICA). We examine a challenging NICA
application in a noise-embedded multi-speaker voice activ-
ity detection (VAD) setup. We present a novel approach that
includes sparsity constraints to solve the energy separation
problem with independent source signals. A sparse feature
extraction step is performed to project the non-negative sig-
nals onto a dimension-reduced subspace and identify sparse
principal components. Then, we maximize the signal decor-
relation by employing a median measure of central tendency
in the computation of the covariance matrix that contributes in
robustness against outliers. Moreover, our approach supplies
a straightforward multi-speaker VAD, for which no empirical
thresholding or other ad-hoc decision rule is required. In-
stead, an active voice frame simply corresponds to a non-zero
value of the separated energy signal. Numerical experiments
using real data validate the superior performance of the pro-
posed technique.

Index Terms— Multiplicative Non-negative indepen-
dent component analysis (M-NICA), `1-norm regulariza-
tion, Multi-speaker voice activity detection (VAD), Wireless
acoustic sensor networks

1. INTRODUCTION
Independent component analysis (ICA) is a well established
technique that is capable of separating independent sources
that are linearly mixed, e.g., in a wireless sensor network
(WSN). Given a multivariate observed data, ICA character-
izes the model for which some unmixed latent variables and
a mixing system are unknown and subject to estimation. The
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latent variables are the source signals that determine the in-
dependent components of the observed data. A vast amount
of research explores ICA, see, e.g. [1,2], particularly its pow-
erful performance compared to other methods such as prin-
cipal component analysis (PCA) [3, 4]. Many applications
require ICA for their data analysis, including image denois-
ing [5] and face recognition [6] in digital images or speech
enhancement [7] and voice activity detection (VAD) [3, 4].

In this work, we consider the application of multi-speaker
VAD for a wireless acoustic sensor networks (WASN). This
involves dealing with mixtures of simultaneously recorded
speech signals at spatially distributed microphones. ICA is
used to extract unmixed (non-negative) energy signals, based
on which speaker specific VAD is performed. Non-negative
ICA algorithms (NICA) are presented in [8, 9]. Similar rep-
resentations that are tailored to the statistics of non-negative
data exist in the literature, such as non-negative matrix factor-
ization (NMF) in [10, 11]. In noisy environments, the lack of
robustness is very problematic for NICA. The majority of the
NICA methods assume a noise-free model in order to keep the
problem tractable. However, this assumption is unrealistic in
real world scenarios. Consequently, we assume an embedded-
noise NICA model. A variety of non-negative data represen-
tation problems take advantage of the `1-norm regularization
in order to obtain a sparse representation of the solution [12].
This is known as non-negative sparse coding and is proposed
in [13–18].

Contributions: We provide an improvement of the M-
NICA algorithm in [3, 4] by integrating sparsity constraints
in the embedded-noise NICA model. Sparsity is introduced
by using a sparse singular value decomposition (SSVD) as
an initial step for the multiplicative update. We initialize our
algorithm by projecting the non-negative data onto the right
rotation matrix subspace on which we impose sparsity. The
sparse right singular vectors are a low-dimensional represen-
tation of the independent components. We show that using
these sparse features as input for the multiplicative update
rule maximizes the decorrelation between the components,
and yet ensures non-negativity and makes unnecessary the
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projection step in M-NICA. Our approach supplies a straight-
forward multi-speaker VAD, for which no empirical thresh-
olding or other ad-hoc decision rule is required, since voice
activity directly correponds to a non-zero energy signal value.

2. PROBLEM FORMULATION
We examine an audio scenario that consists of a known num-
ber N of mutually independent speech sources [̃s1, . . . , s̃N ]T

impinging on J sensors. The sources are considered to be
uniquely labeled, which can be done, e.g. by applying the al-
gorithm of [19] or [20]. These sensors form an ad-hoc WASN.
Fig. 1 depicts our exemplary use-case. The N speakers gen-
erate signals s̃n[t], n = 1, . . . N , where t denotes the sample
time index. We assume statistical second order stationarity
for blocks of length L and define the instantaneous power of
a signal s̃n[t], n = 1, . . . N at each block as

sn[k] =
1

L

L−1∑
l=0

s̃n[kL+ l]2, (1)

where k = 1, . . . ,K is the frame index. The sn[k] are stacked
in an N dimensional vector s[k]. The instantaneous noisy
signal power in the j-th microphone is

yj [k] =
1

L

L−1∑
l=0

ỹj [kL+ l]2, j ∈ {1, . . . , J}, (2)

where ỹj denotes the noisy signal observed at the j-th micro-
phone. The non-negative yj [k] are stacked in a J-dimensional
vector y[k]. We can then write

y[k] ≈ As[k] + ω[k], ∀k ∈ N, (3)

where A ∈ RJ×N is an unknown matrix of damping co-
efficients [A]jn that describe the power attenuation between
speaker n and microphone j. The J-dimensional vector ω[k]
represents the additive white noise at frame k that is con-
structed following Eqs. (1)-(2). Based on the observed set of
instantaneous linear mixtures y[k] of mutually independent
non-negative energy signals, our goal is to estimate a sparse
representation of the unknown vectors s[k] and consequently
to determine the voice activity of the speakers.

3. MEDIAN-BASED M-NICA WITH SPARSITY
CONSTRAINTS (SMM-NICA)

In the following subsections, we explain how sparse coding is
integrated into the M-NICA algorithm for the sake of better
signal estimation and an enhanced VAD procedure in a noisy
environment.

3.1. Sparse singular features

We define Y ∈ RJ×K+ as the matrix containing all vectors
y[k] with k = 1 . . .K. The standard M-NICA algorithm pre-
processes the data using a singular value decomposition step
(SVD). The latter can be seen as a PCA technique in itself that
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Fig. 1. Acoustic scenario containing N = 2 speech sources
and J = 20 microphones in a 20 × 10 meter room with a
reverberation time of T60 = 0.3 seconds. The sampling fre-
quency of the microphone signals is fs = 16 kHz.

extracts the first principal components [21]. Transforming Y
using the SVD projects the signal onto the sub-spaces

SVD(Y) = UΣV>, (4)

where the left orthogonal matrix U ∈ RJ×J represents the
principal directions, Σ ∈ RJ×K is the scaling matrix of sin-
gular values, and V> ∈ RK×K is the right rotation orthog-
onal matrix of singular vectors. The matrix product ΣV > ∈
RJ×K embodies the principal components. The linear trans-
formation Σ controls the speech energies by a scale factor
that is the same in all directions. Omitting this factor does not
deteriorate the signal shape. In addition, based on [22], the
criterion of orthogonality for the vectors in U forces the right
vectors in V to be a mixture of sources. We suggest using the
matrix of right singular vectors as a feature for the subsequent
energy separation step. We employ a sparse decomposition
(SSVD) in lieu of an SVD to extract sparse features. We im-
pose sparsity on the right rotation matrix V. We seek a lower
rank representation of the matrix Y with the requirement that
the right singular vectors vn, n = 1, . . . , N are sparse.

3.2. Sparse right singular vectors subspace projection

First, a rank-one SVD layer (σ,u,v)> is the best approxima-
tion of Y if it solves

argmin
σ,u,v

‖Y − σuv>‖2, (5)

where u is a unit J-vector and v is a unitK-vector. In order to
obtain a sparse vector v, we add sparsity-inducing penalties
on v in the optimization objective in Eq. (5). We thus can ex-
pand Eq. (5) with an `1 regularization penalty term to formu-
late a sparsity promoting problem. Specifically, we minimize
with respect to the triplet (σ,u,v) the following penalized
sum-of-squares criterion

‖Y − σuv>‖2 + λvΦ(σv), (6)
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with Φ(σv) being the `1 regularization function

Φ(σv) =

K∑
k=1

|σvk| (7)

and λv being the non-negative penalty parameter. The selec-
tion of λv corresponds to selecting the degree of sparsity of
v. The latter is the number of zero components in v or, based
on [17], the number of k elements that satisfy

g(λv) = #

({
k ∈ {1, · · · ,K} : [Y>u]kσ >

λv
2

})
(8)

for a fixed u. Where g(λv) is the degree of sparsity function
and #(·) represents the cardinality symbol. Moreover, [17]
and [23] suggest the use of the BIC, from [24], to estimate
the optimal number of non-zero coefficients

BIC(λv) =
‖Y − Ŷ‖2

jk%̂2
+

log(jk)

jk
g(λv) (9)

with %̂2 denoting the ordinary least squares of the error vari-
ance in Eq. (6). In order to reach a sparse v, the minimization
of Eq. (6) with respect to σv is iterated until convergence. A
closed form solution for minimizing σvk in Eq. (6) is pro-
posed in [17]. Consequently, it follows that the sparse repre-
sentation of the vector v is obtained using

vk =
1

σ

[
sgn

{
[Y>u]k

}(
|[Y>u]k| −

λv
2

)]
, (10)

with λv being the minimizer of Eq. (9).

3.3. SMM-NICA algorithm

The following algorithm summarizes the steps of our method.
Given Y, we iterate Eq. (5)-(13) to build a matrix of sparse
singular vectors VS . We use the sparse VS to initialize
SMM-NICA as shown in Eq. (14). Then, Eqs. (15)-(19) are
reiterated to retrieve an invariant estimate of S. According
to [3, 4], the nature of the multiplicative update introduced in
Eq. (19) conserves the non-negativity of the matrix S. The
functionD{·} in Eqs. (17)-(18) sets all off-diagonal elements
to null. In Eq. (15), we use the median central measure in-
stead of the mean suggested in [3, 4]. A precise descriptive
measure depends highly on the shape of the data distribu-
tion. The median mid-point outperforms the mean in terms
of accuracy for heavy tailed distributions since the mean can
strongly be influenced by a small number of outliers [25].
Fig. 2 shows the right-skewed histogram for the energy of
source S1 considered in Fig 1. Obviously, the mean char-
acterizes the relatively high but infrequent values. For our
purpose, the median is a better summary of the typical value.

4. EXPERIMENTAL RESULTS
In this section, we provide simulation results for the multi-
speaker energy separation based on our proposed SMM-
NICA technique. We consider the scenario depicted in Fig. 1

Algorithm SMM-NICA
Input

1: Y = (y[1], · · · ,y[K]) ∈ RJ×K
+ based on Eq. (3)

2: VS , Ø
Initialization

3: for n = 1, . . . , N do
4: Extract rank-one SVD layer (σ,u,v)> from Y that

solves Eq. (5)
5: Minimize Eq. (6) with respect to v
6: Update the sparse right singular vector v using Eq. (10)
7: Construct the sparse matrix VS , VS ‖ v>,

with ‖ being the concatenation symbol.
8: Set

σ = u>Yv (11)

9: Compose a sparse lower-rank matrix

YSSVD = σuv> (12)

10: Matrix subtraction

Y = Y −YSSVD (13)

11: end for
12: Define

[S]n,k ← |[VS ]n,k|, ∀n = 1, . . . , N, ∀k = 1, . . . ,K. (14)

13: repeat
S̈ = median

(n)∈N
{Sn}, ∀n = 1, . . . , N (15)

CS = (S− S̈)(S− S̈)> (16)

Λ1 = D{CS} (17)

Λ2 = D{(Λ−1
1 CS)

2} (18)

14: Minimize the correlation in [S]n,k

[S]n,k ← [S]n,k

[
S̈S>Λ−1

1 S + SS>Λ−1
1 S̈ + Λ2S

S̈S>Λ−1
1 S̈ + SS>Λ−1

1 S + Λ2S̈

]
n,k

(19)
15: until reaching a fixed-point of Eqs. (15)-(19)
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Fig. 2. Right-skewed histogram for the ground truth energies
of S1 with the mean (red line) and median (dashed green)
speech energy central values.
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with two speech sources S1 and S2 affected by a reverberant
environment. We compare the performance of the proposed
algorithm with the original M-NICA based on diverse per-
formance metrics in different noise variance environments.
Table 1 outlines the overall separation results when a mixture
of two active speech sources (S1, S2) is considered. These
mixtures are corrupted with noise of two variance levels,
i.e. σ2

ω = {0.1, 0.5}. In a first experiment, an additive white
Gaussian noise (WGN) is considered. The proposed method
reduces the RMSE considerably. We further asses our results
in terms of the signal correlation ρ. The proposed SMM-
NICA is capable of enhancing the signal correlation for S1,
as shown in Tab. 1. The distance between the estimated
energies and the ground truth is evaluated through l1 and l2
norms, respectively. The developed SMM-NICA technique
displays remarkably small distances outperforming M-NICA
in all cases. Moreover, we analyse the normalized RMSE
that omits the energy scaling in the performance assessment.
Fig. 3-a and 3-b illustrate the ground truth energies for S1
and S2, respectively. The corresponding unmixed energies
produced by M-NICA are depicted in Fig. 3-c and 3-d. It can
be seen that some erroneous energy spikes, appear in the M-
NICA result. For example, the energies in Fig. 3-c experience
a cross-talk in the frame interval around k = [450, · · · , 550],
which obviously belongs to the alternative source S2. On
the other hand, Fig. 3-e shows a high accuracy in the sense
that the cross-talk is attenuated and most of the supposedly
zero-energies are indeed attenuated to zero and thus properly
unmixed. We further compare the performance of M-NICA
to our proposed technique for S2 where the SMM-NICA
in Fig. 3-f precisely tunes the energies describing the pause
regions to zero. As a second case, we also study the per-
formance of the proposed method with an additive babble
noise. The results are summarized in the bottom part of
Tab. 1. Again, both SMeM-NICA and SMM-NICA out-
perform M-NICA. Regarding the VAD performance, we
exploit the sparse estimated energies in the VAD procedure.
Hence, a simple detector that does not require a threshold is
implemented. Our VAD step simply assigns the estimated
zero-energies to the non-active speech region and vice versa.
Higher detection is obtained, as shown in Tab. 1. SMM-NICA
achieves a significant 99.4% correct decision for S2 in the
babble noise case with variance σ2

ω = 0.5.

5. CONCLUSION
We examined multi-speaker VAD as a non-negative energy
separation problem for a mixture of speech signals. Our pro-
posed technique improves the M-NICA algorithm by integrat-
ing sparse SVD features. The decorrelation of the sparse fea-
ture mixture is maximized with a more robust median-based
multiplicative update that retains non-negativity. Since the
subspace spanned by the rows of the well separated energies
does not change after the initialization, our technique does
not require a subsequent subspace projection correction step.
VAD reduces to determining the non-zero energies.

Case 1: Additive white Gaussian noise

Variance Source Method Performance measure

NRMSE RMSE ρ l1-norm l2-norm VAD (%)

σ
2 ω

=
0
.1 S1

M-NICA 0.974 97.1 0.78 4.6× 104 3.1× 103 63.3

SMeM-NICA 0.972 0.97 0.77 403.45 30.79 92.8

SMM-NICA 0.972 0.97 0.83 401.89 30.76 92.8

S2

M-NICA 0.97 1.7× 103 0.8 6× 105 5.2× 104 26.1

SMeM-NICA 0.97 0.97 0.8 321.46 30.8 82

SMM-NICA 0.97 0.97 0.8 321.78 30.8 82

σ
2 ω

=
0
.5 S1

M-NICA 0.97 180.3 0.78 9.22× 104 5.7× 103 62.9

SMeM-NICA 0.97 0.973 0.78 403.32 30.79 89.6

SMM-NICA 0.97 0.97 0.83 401.51 30.76 89.6

S2

M-NICA 0.97 1.7× 103 0.8 6.49× 105 5.34× 104 26.1

SMeM-NICA 0.97 0.974 0.8 321.47 30.8 81.4

SMM-NICA 0.97 0.97 0.8 321.79 30.8 81.4

Case 2: Babble noise

σ
2 ω

=
0
.1 S1

M-NICA 0.974 10 0.78 4.7× 103 316 63.8

SMeM-NICA 0.972 0.974 0.83 401.3 30.74 92.9

SMM-NICA 0.972 0.973 0.83 402.6 30.76 98.1

S2

M-NICA 0.974 1.6× 103 0.8 5.5× 105 5.2× 104 26.1

SMeM-NICA 0.973 0.97 0.81 321.4 30.78 84.7

SMM-NICA 0.973 0.97 0.8 321.7 30.79 99.3

σ
2 ω

=
0
.5 S1

M-NICA 0.973 78.1 0.78 4× 104 2.5× 103 62.7

SMeM-NICA 0.972 0.97 0.84 401 30.74 88.2

SMM-NICA 0.972 0.97 0.83 401.9 30.76 99.3

S2

M-NICA 0.97 1.7× 103 0.8 6× 105 5.3× 104 26.1

SMeM-NICA 0.97 0.973 0.8 321.5 30.8 85.7

SMM-NICA 0.97 0.974 0.8 321.7 30.79 99.4

Table 1. Comparison of the energy separation performance of
the original M-NICA algorithm and the proposed approaches:
the sparse mean-based M-NICA (SMeM-NICA), and the
median-based M-NICA (SMM-NICA) for two sources (S1
and S2). Case 1: additive white Gaussian noise and Case 2:
Babble noise of variance σ2

ω = 0.1 and σ2
ω = 0.5.
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Fig. 3. (a)-(b) Energy ground truth for the speech sources
in Fig. 1. The corresponding energy estimates using the M-
NICA algorithm (c)-(d), and (e)-(f) the energy estimates us-
ing the proposed sparse and median based multiplicative non-
negative component analysis (SMM-NICA) approach, under
additive white Gaussian noise with variance σ2 = 0.5.
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