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ABSTRACT

The sequential analysis of the problem of joint signal detection and
signal-to-noise ratio (SNR) estimation for a linear Gaussian obser-
vation model is considered. The problem is posed as an optimization
setup where the goal is to minimize the number of samples required
to achieve the desired (i) type I and type II error probabilities and (ii)
mean squared error performance. This optimization problem is re-
duced to a more tractable formulation by transforming the observed
signal and noise sequences to a single sequence of Bernoulli random
variables; joint detection and estimation is then performed on the
Bernoulli sequence. This transformation renders the problem easily
solvable, and results in a computationally simpler sufficient statis-
tic compared to the one based on the (untransformed) observation
sequences. Experimental results demonstrate the advantages of the
proposed method, making it feasible for applications having strict
constraints on data storage and computation.

Index Terms— Sequential analysis, Bernoulli transformation,
joint detection and estimation.

1. INTRODUCTION
The joint problem of distinguishing between different hypotheses
and estimating the unknown parameters based on the outcome of
the hypotheses test has received considerable attention in the liter-
ature [1] - [6]. Such a problem arises in a wide range of applica-
tions, including (i) radiographic inspection for detecting anomalies
in manufactured objects and estimating their position and size [7],
(ii) retrospective changepoint hypotheses testing to detect change in
the statistics and simultaneously estimate the time of change [8], [9],
(iii) jointly detecting the presence of multiple objects and estimating
their states using image observations [10], and (iv) distinguishing be-
tween two hypotheses and at the same time estimating the unknown
parameters in the accepted hypothesis in a distributed framework
[11]. Some popular techniques to address this problem include re-
formulating the composite detection problem as a pure estimation
problem [12], while the maximum a posteriori estimate was shown
to provide a solution to the joint detection and estimation problem in
a Bayesian context [13]. The problem has also been addressed in a
sequential setting, where the objective is to minimize the number of
samples subject to a constraint on the combined detection and esti-
mation cost [14], [15]. The generalized sequential probability ratio
test was presented in [16], where a decision was obtained using the
maximum likelihood estimate of the unknown parameter.

There is another class of problems where it is desirable to dis-
tinguish between the hypotheses and simultaneously estimate the
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signal-to-noise ratio (SNR), specifically signal and noise powers, un-
der the “signal present” hypothesis. For example, in speech process-
ing, it was shown in [17], [18] that the performance of voice detec-
tion systems can be drastically improved by jointly estimating the
noise power and a priori SNR. In [19], it was shown that a schedul-
ing scheme performed detection in an energy-efficient manner by
jointly estimating the SNR. However, [20] reported that the tech-
niques developed in some of the papers mentioned above were not
readily applicable to the problem of joint detection and signal and
noise power estimation. For a Bayesian formulation, it was shown
[20, Sec. III] that knowledge of the priors Pr(H0) and Pr(H1) or
of the distribution of the unknown parameters was not amenable for
problems addressed in [17] - [19]. Instead, an optimal solution for
Gaussian observation models was presented using conjugate priors
on the signal and noise powers [20, Sec. IV].

In this paper, we extend the problem of joint signal detection
and SNR estimation, without a priori knowledge of the signal or
noise powers, to a sequential setting and propose a novel method
to address this problem. To the best of our knowledge, the sequen-
tial analysis of this problem has not been reported in the literature.
The problem of distinguishing between two hypotheses (signal ab-
sent and signal present) and at the same time estimating the SNR in a
Gaussian observation model is posed as an optimization setup, where
we seek to minimize the number of samples required to achieve the
desired (i) type I and type II error probabilities and (ii) mean squared
error (MSE) performance. Our approach comprises transforming
the observed signal and noise sequences to a single sequence of
Bernoulli random variables, and then performing the detection-and-
estimation task on the resulting Bernoulli sequence.

One of the main advantages of this transformation is that it sig-
nificantly reduces the complexity of the optimization problem so that
it can be solved more efficiently. Secondly, we obtain a computa-
tionally simpler sufficient statistic compared to the one that emerges
when solving the problem directly. Moreover, we show that the pro-
posed method allows for more degrees of freedom than an equiva-
lent Bayesian solution. Experimental results show that (i) the ex-
pected number of measurements required to achieve the desired per-
formance almost remains constant for increasing values of SNR, and
(ii) many of the constraints in the transformed optimization problem
are inactive which renders the problem easily solvable. As such, the
method developed in this paper is feasible especially for applications
with strict constraints on data storage and computation.

In Section 2, we present the problem statement. In Section 3, we
detail the transformation of the observations to a Bernoulli sequence,
and show how the original optimization problem can be reformulated
into a setup which can be solved efficiently. Results of computer
simulations are presented in Section 4. Concluding remarks are pro-
vided in Section 5.
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2. PROBLEM FORMULATION
The following linear Gaussian signal model is considered:

x[n] = s[n] + w[n], n = 1, 2, . . . , (1)

where x , {x[1], x[2], . . . } denotes the set of observations, while
s , {s[1], s[2], . . . } and w , {w[1], w[2], . . . } denote sets of i.i.d.
zero mean Gaussian random variables corresponding to the signal
and noise, respectively. The variances σ2

s ≥ 0 and σ2
w > 0 are

unknown, and the SNR is given by θ =
σ2
s

σ2
w

. The problem is to
distinguish between the two hypotheses{

H0 : θ = 0 (signal absent),
H1 : θ ≥ θmin (signal present),

(2)

and at the same time estimate the SNR under the hypothesis H1

using as few samples as possible, while satisfying predefined con-
straints on the type I and type II error probabilities. In (2), θmin

denotes the minimum SNR for which reliable detection is to be guar-
anteed. We attempt to jointly solve the problem of signal detection
and SNR estimation in a sequential setting. While the latter enables
one to adapt the number of samples to the quality of realizations, the
former ensures that the dual objective of detection and estimation is
achieved with a desired performance. Essentially, the problem can
be formulated as the following optimization setup:

min
ψ,δ,θ̂

Eθ∗ [N ] (3)

subject to
P0(δN = 1) ≤ α, (4)
Pθ(δN = 0) ≤ β(θ), ∀θ ≥ θmin, (5)

Eθ
[
(θ̂N − θ)2

]
≤ γ(θ), ∀θ ≥ θmin, (6)

where N denotes the sample number at which the sequential test is
terminated, ψn, δn ∈ {0, 1} denote the stopping and decision rule
after the nth sample has been observed, and θ̂n is an estimator for
θ. The constant θ∗ is a nominal SNR value under which the average
sample number (ASN) is to be minimum. P0(·) and Pθ(·) denote the
probabilities of an event under hypothesis H0 and H1, respectively.
The type I and type II error probabilities are bounded by α and β,
respectively, with β being allowed to depend on the true SNR. The
mean square error (MSE) of the estimator θ̂ is bounded by a function
γ(·).

We assume knowledge of a sequence of noise-only realizations
w̃ , [w̃1, w̃2, . . . ], that can either be recorded before performing
the test, or can be generated on the fly, for example, via an identical
sensor that is shielded from the external signal, but otherwise ex-
posed to the same environmental conditions. Without w̃, the testing
problem cannot be solved for the setup considered in this paper.

3. SOLUTION METHODOLOGY
Our approach comprises the following two steps: (i) the two se-
quences x and w̃ are transformed to a single sequence of Bernoulli
random variables, whose success probability is determined by the
true SNR, and (ii) a sequential joint detection and estimation proce-
dure is applied to this Bernoulli sequence.

3.1. Transformation to a Bernoulli sequence
The two Gaussian sequences x and w̃ are transformed into a single
Bernoulli sequence b using Birnbaum’s sequential procedure [21] as
follows: At every time step, we calculate the sum of the squares

of the samples from both sequences and take an additional sam-
ple from the one whose sum is smaller. Whenever the additional
sample changes the order of the two sums, the procedure outputs a
0 or 1 depending on which sequence the sample was drawn from.
Essentially, given x and w̃, we define xs[k] ,

∑k
n=1 x[n]2 and

w̃s[k] ,
∑k
n=1 w̃[n]2, and y , {y[1], y[2], . . . }, where y[k] =

min {xs[k], w̃s[k]}. In the sequence y, let the ith transition from xs
to w̃s, or vice versa, occur at the kth

i sample. Then the Bernoulli
sequence is b , {b[1], b[2], . . . }, where

b[m] =

{
0, if w̃s[km] < xs[km],

1, otherwise.
(7)

In [21], it was proved that irrespective of the actual values of σ2
s

and σ2
w, the output b is a sequence of i.i.d. Bernoulli random vari-

ables with success probability ρ = 1
θ+2

, thereby establishing a one-
to-one correspondence between θ and ρ. Therefore, (2) can be re-
hypothesized in terms of ρ, i.e.,{

H0 : ρ = 0.5 (signal absent),
H1 : ρ ≤ ρmax (signal present),

(8)

where ρmax = 1/(θmin + 2). The optimization setup (3) - (6) can
be reformulated as

min
ψ,δ,θ̃

Eρ∗ [M ] (9)

subject to
P0(δM = 1) ≤ α, (10)
Pρ(δM = 0) ≤ β(ρ), ∀ρ ≤ ρmax, (11)

Eρ
[
(θ̃M − 1

ρ
)2
]
≤ γ(ρ), ∀ρ ≤ ρmax, (12)

where θ̃ = θ̂ − 2 is an estimator for θ that is biased in order to
simplify the expression under the expected value. P0(·) and Pρ(·)
denote the probabilities of an event under hypothesis H0 and H1,
respectively, corresponding to (8). M denotes the sample number
of b at which the procedure is terminated. Since it takes multiple
observations of x and w̃ to generate one observation of b, N is in
general larger than M . Moreover, N includes observations of w̃ as
well as x. However, by formulating the problem in terms of b and
ρ, we aim at minimizing the required samples of b, irrespective of
the number of observations of x and w̃ are used to generate these
samples. Due to this difference in the objective, both problem for-
mulations are not strictly equivalent so that the proposed procedure
cannot be guaranteed to be strictly optimal. A more detailed anal-
ysis of the loss incurred by applying Birnbaum’s transformation is
a subject of future research. Also note that, depending on the cost
involved in sampling from x and w̃, one can modify the transforma-
tion to require more or fewer samples from a certain sequence. This
additional potential for optimization is not taken into account in this
work. For more details on the transformation and its near-optimality
properties see [21].

3.2. Joint detection and estimation
In order to solve (9), we first calculate its Lagrangian dual. For fixed
Lagrange multipliers, it results in an unconstrained optimal stopping
problem that can be solved by means of dynamic programming. We
then choose the Lagrange multipliers such that the procedure satis-
fies the constraints on the error probabilities and the desired estima-
tion accuracy. For analytical tractability, we relax the constraints un-
der H1 to hold for all ρ ∈ P, where P , {ρ1, . . . , ρK} is a discrete
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subset of [0, ρmax]. That is, we bound Pρk (d = 0) and Eρk [(θ̃− 1
ρ
)2]

only at a finite number of grid points; β(θ) and γ(θ) will, therefore,
be approximated for points in-between. For the problem considered
in this work, these approximations are shown to be reasonably accu-
rate (see examples in Section 4).

The Lagrangian dual problem of (9), with [0, ρmin] replaced by
P and Lagrange multipliers λ ∈ RK+1 and µ ∈ RK , is given by

max
λ,µ≥0

{
L(λ, µ)− λ0α−

K∑
k=1

(λkβ(ρk) + µkγ(ρk))

}
, (13)

L(λ, µ) = min
ψ,δ,θ̃

{
Eρ∗ [M ] + λ0P0(δM = 1)

+

K∑
k=1

(
λkPρk (δM = 0) + µkEρk

[
(θ̃M − 1

ρk
)2
])}

, (14)

where ρk ∈ P. Following the techniques developed in [22], [23],
(14) can be straightforwardly solved as follows, where we omit the
details in the interest of space: Let m0 and m1 denote the number
of 0’s and 1’s observed. The likelihood-ratios of the corresponding
observations under P0 and Pρk , with respect to Pρ∗ are given by

Zm0,m1
0 =

(
0.5

1− ρ∗
)m0

(
0.5

ρ∗

)m1

, (15)

Zm0,m1
k =

(
1− ρk
1− ρ∗

)m0
(
ρk
ρ∗

)m1

. (16)

We define, ∀i ≥ 0, Em0,m1
λ ,

∑K
k=1 λkZ

m0,m1
k and Em0,m1

µ,i ,∑K
k=1 ρ

−i
k µkZ

m0,m1
k . The optimal decision rule δ∗ is given by

δ∗m0,m1
=

{
1, λ0Z

m0,m1
0 ≤ Em0,m1

λ ,

0, λ0Z
m0,m1
0 > Em0,m1

λ ,
(17)

and the optimal estimator θ̃∗ by

θ̃∗m0,m1
=
Em0,m1
µ,1

Em0,m1
µ,0

. (18)

The optimal stopping rule ψ∗ is obtained as

ψ∗
m0,m1

=

{
1, Gm0,m1 = Rm0,m1 ,

0, Gm0,m1 > Rm0,m1 ,
(19)

where

Gm0,m1 = min [λ0Z
m0,m1
0 , Em0,m1

λ ]

+ Em0,m1
µ,2 −

(Em0,m1
µ,1 )2

Em0,m1
µ,0

(20)

and Rm0,m1 is defined recursively as follows

Rm0,m1 = min [Gm0,m1 ,

1 + ρ∗Rm0,m1+1 + (1− ρ∗)Rm0+1,m1 ] . (21)

The quantities Gm0,m1 and Rm0,m1 correspond to the cost in-
curred for stopping immediately, or stopping at the optimal time in-
stant, given that m0 0’s and m1 1’s have been observed. The pro-
cedure is stopped for the first time when Gm0,m1 = Rm0,m1 . The

min term in (20) signifies the detection cost if the decision rule (17)
is employed, while the last two terms correspond to the estimation
cost, i.e., the deviation of the estimator θ̃∗ from the true SNR. At
first glance, the optimal decision rule as well as the optimal estima-
tor seem equivalent to Bayesian solutions because of the following
reason: The term Em0,m1

λ can be interpreted as the posterior prob-
ability of H1 given the observations {b[1], . . . , b[m]} and the prior
λ(ρ) that has been scaled by a cost coefficient. Similarly, ∀i ≥ 0,
the terms Em0,m1

µ,i can be interpreted as the conditional moments of
the posterior distribution of ρ (or, θ) with prior µ, and the optimal
estimator θ̃∗ as the posterior expected value of θ − 2.

However, the proposed scheme is not equivalent to the Bayesian
procedure. Note that, λ and µ both behave as “priors” for ρ, but can
be chosen independently. For the proposed approach to be Bayesian,
one would require λ = µ. In the case of a single constraint under
either hypothesis, the corresponding Lagrange multiplier can always
be interpreted as a prior density scaled by a cost coefficient, so that
the optimal method necessarily has a Bayesian equivalent; compare
the classic likelihood-ratio test [24]. In our approach, however, the
two Lagrange multipliers λ and µ correspond to two different con-
straints under the same distribution, so that there is no equivalence
to the Bayesian setup.

Returning to the solution of (14), the main advantage of trans-
forming Gaussian sequences into Bernoulli sequences is that the pair
(m0,m1) becomes a sufficient statistic of {b[1], . . . , b[m]}. In com-
parison, directly solving the problem in the SNR-domain requires
a more complicated sufficient statistic, which will include obser-
vations from x and w̃ as well as their empirical variances. Given
a maximum sample number m̄, the matrices R,G ∈ Rm̄×m̄ can
be calculated via backward recursion with starting point Gm̄,m̄ =
Rm̄,m̄. Since the state variables are integers, this recursion is nu-
merically stable for moderately large values of m0 and m1. The
final element of the recursion is R0,0, which is the cost at the begin-
ning of the test (i.e., m0 = m1 = 0) when the optimal decision and
stopping rules, given by (17) and (19), respectively, are used and
λ and µ are given, i.e., L(λ, µ) = R0,0(λ, µ). Once we are able
to evaluate L(λ, µ), the Lagrange multiplies can be determined by
solving (13) for λ and µ. Since by construction L(λ, µ) is jointly
concave in λ and µ, this is a convex optimization problem that can
be solved using standard algorithms, as shown in the next section.

4. EXPERIMENTAL RESULTS
In this section, we present results of two numerical experiments.
which provide interesting insights into the structure of the joint de-
tection and estimation problem. The SNR is chosen in the range
[−3 dB, 10 dB] with grid points at integer values, i.e., θk = 10

k−4
10 ,

k = 1, . . . , 14. The nominal SNR value θ∗ is set at 3 dB. The
target error probabilities are identical for both experiments, with
α = β(θ) = 0.05. As a measure for the estimation accuracy, the
relative (or normalized) MSE is used and bounded by a constant. In
order to match the problem formulation in Section 2, the constraint
can be expressed in terms of the absolute MSE and an SNR depen-
dent bound γ(θ) = c θ2 or, in terms of ρ, as γ(ρ) = c (1/ρ − 2)2.
For the first experiment, c = 0.1, while for the second c = 0.25.

For the numerical solution of (13), we employed the Subplex
algorithm [25] as implemented in [26]. It applies the Nelder–Meat
simplex algorithm [27] in a repeated fashion on suitably chosen low-
dimensional subspaces and does not require the calculation of gradi-
ents, which is computationally intensive for the recursively-defined
cost function (13). By limiting the search to subspaces, the algo-
rithm can exploit the sparsity in the optimal Lagrange multipliers.
Since there is no formal proof of convergence, the Subplex solu-
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Fig. 1: Optimal Lagrange multipliers for α = β(θ) = 0.05
and c ∈ {0.1, 0.25}. The multipliers are plotted in the order
λ0, . . . , λ14, µ1, . . . , µ14. The two clipped values are µ1 = 502.77
and µ3 = 307.37.
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Fig. 2: Detection and estimation performance of the proposed algo-
rithm for α = β(θ) = 0.05 and c ∈ {0.1, 0.25}.

tion was subsequently verified by evaluating its first-order optimality
conditions. The maximum number of Bernoulli samples was set to
m̄ = 400, which proved to be sufficient.

In Fig. 1, the optimal Lagrange multipliers are depicted for both
experiments. It is interesting to note that in both cases the solution
is sparse, which implies that most of the performance constraints
are inactive. Considering the very coarse SNR grid, this outcome is
rather unexpected and suggests that in practice very few constrains
can be sufficient to bound the performance over large SNR intervals.
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Fig. 3: The average number of samples drawn from the observation
reference sequences versus SNR.

This can also be seen in Fig. 2, where the type II error probabilities
and the relative MSE are plotted over the range of SNRs. The results
were obtained by averaging over 104 Monte Carlo simulations and
the SNR interval was sampled at intervals of size 0.1 dB. Within
the numerical accuracy, the performance requirements are met or
exceeded for all SNR values in the feasible interval. Especially the
type II error probabilities are well below the required 5% for all SNR
values. For c = 0.1, the estimation constraint is so much tighter
than the detection constraint that the latter is virtually deactivated,
i.e., the corresponding Lagrange multipliers are close to zero (see
Fig. 1). The constraints on the relative MSE are stricter so that the
bound is reached over large regions of the SNR interval. Considering
that the performance is restricted to integer values of the SNR, it is
remarkable that the requirements are satisfied over the entire interval.

The average number of samples drawn from the observation se-
quence x and the reference sequence w̃ is shown in Fig. 3. As ex-
pected, ASNs for both cases are high for low SNRs and decrease for
higher SNRs. Both ASNs reach a minimum at around 3 dB, which
corresponds to the nominal SNR that was targeted in the minimiza-
tion procedure. For large SNR values, the number of samples drawn
from the reference sequence increases again, while the number of
samples generated by the signal itself stays almost constant. This
is a desirable property, considering that generating training samples
is usually easier than taking physical measurements. The modes at
low and high SNR values are due the detection and estimation con-
straints, respectively.

5. CONCLUDING REMARKS

We have considered the problem of joint signal detection and SNR
estimation for a linear Gaussian model in a sequential framework.
The central idea of our approach is to transform the observed se-
quences to a sequence of Bernoulli random variables. This trans-
formation leads to a simpler reformulation of the main optimization
problem, which can be efficiently solved. The expected minimum
number of samples required to achieve the desired performance re-
mains almost constant for increasing values of SNR. We also obtain
a sufficient statistic for the test which is very easy to compute. Ex-
perimental results indicate that many constraints on the optimization
setup are inactive, which renders the problem easily solvable. These
results indicate the feasibility of the proposed method to practical
applications. Understanding the implications of non-stationary noise
processes on the performance of the proposed approach especially in
the high-SNR regime is one of the main avenues for future research.
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