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ABSTRACT

We consider the problem of detecting whether a high
dimensional signal lies in a given low dimensional sub-
space using only a few compressive measurements of
it. By leveraging modern random matrix theory, we
show that, even when we are short on information, a re-
liable detector can be constructed via a properly defined
measure of energy of the signal outside the subspace.
Our results extend those in [1] to a more general sam-
pling framework. Moreover, the test statistic we define
is much simpler than that required by [1], and it results
in more efficient computation, which is crucial for high-
dimensional data processing.

Index Terms —-High dimension, compressive mea-
surements, random matrix theory.

1. INTRODUCTION

We focus on testing whether a signal vector v € R"
lies in a known d-dimensional subspace S C R"(d <«
n), given few compressive measurements of the vec-
tor. This problem arises in a wide range of applica-
tions including medical imaging [2], hyperspectral tar-
get detection [3], anomaly detection [4], radar signal
processing [5, 6, 7] and inference estimation [8]. Among
these applications they either aim at finding the signal
within some low-dimensional subspace or leverage the
subspace as a model to detect signals of interest outside
the subspace.

This problem can be modeled as a binary hypothe-
sis test with hypotheses Ho : v € Sand H; : v ¢ S.
When full observation is available, let v denote the pro-
jection residual of v onto S; then the above test can be
constructed as

HO : ||'UJ_||2 =0 wvs. 7‘[1 : ||'UJ_||2 >0

ey

However, with only compressive measurements of v, we
cannot compute v, directly. Although in recent years
exciting results emerging on successfully recovering the
underlying signal from compressive measurements un-
der mild assumptions, the reconstruction can result in
extra expensive computation and it can also be arbitrar-
ily poor when the underlying signal does not belong to
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the given subspace. Therefore, in this paper, we seek to
detect whether the compressively sampled vector lies in
the given subspace without reconstructing it. As we will
show in Section 3, under mild assumptions on the sam-
pling matrix, a reliable detector can be obtained for both
noise-free and noisy data.

In [1], the authors also consider the matched sub-
space detection problem using compressive measure-
ments. However, they require the sampling matrix and
noise to be Gaussian distributed with independent and
identically distributed entries, while we only require
sub-gaussian sampling matrix with independent rows.
Moreover, the test statistic defined in [1] is compli-
cated, requiring extra expensive computations that can
be prohibitive in the high dimensional setting. [9] is also
closely related to our work, where the authors study the
missing data case, where only a few of coordinates are
drawn uniformly at random for each underlying vector.
However, this case can be modeled such that each entry
of the sampling matrix is a Bernoulli random variable
that equals 1 with probability 7 and 0 with probabil-
ity 1 — "% (where m is the number of observed entries).
This is also an instance of sub-gaussian random matrix.
Therefore, our results also generalize that of [9].

2. TEST STATISTIC

Let S be a known d-dimensional subspace in R", de-
scribed by an n x d matrix U whose orthonormal
columns span S. We seek to detect whether the un-
known vector v € R"™ lies in S given only a small num-
ber of compressive measurements of the form:

r=Av+§ 2

where z € R™ is the observed vector, A € R"*"™(m <«
n) is the sampling matrix with independent sub-gaussian
rows, and £ € R™ is additive noise with entries being in-
dependent and identically distributed sub-gaussian ran-
dom variables.

Analogously to [9], we define the test statistic as

o M
T = |[(Im — Pav) zl; 5 Mo

0

3)
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where P4y denotes the orthogonal projection operator
onto the column space of AU. Throughout this pa-
per, we assume AU has full column rank. Note that
for the fully sampled case where the sampling matrix
is the identity matrix, the test statistic defined in (3) is
the projection residual of v onto S. Comparing with
the test statistic T = ||I,, — Py (ATA) 222, B =

(AAT)_% A defined in [1], we do not need the extra

computation of (AAT)~2 which can be expensive in the
high dimensional setting.

Decompose the underlying signal vector as v = v +
v, where v € S and v, € S*t. It then follows that

| (@, = Pav) Avy H2 = 0. Therefore, (3) is equivalent
to

Hi
T = (I, — Pav) (Avy + )2 2 @

0

In Section 3.1, we prove that, when there is no noise con-
tained in the observation, the test statistic defined in (4)
concentrates around ||v ||3 scaled by the sampling den-
sity, m/n. Therefore, it’s natural for us to set 7, = 0 for
noise-free data. When the observation contains noise,
we set 1), to be some positive value that depends on
the noise level. As we present in Section 3.2, with sub-
gaussian distributed noise, a reliable detector can be ob-
tained as long as the energy of the vector outside the
given subspace scales with n.

3. MAIN RESULTS

Sub-gaussian random variables form a quite wide class
whose distributions can be dominated by the distribution
of a centered Gaussian random variable. That is, X is a
sub-gaussian random variable if

P(|X|>t) < 2exp(—ct?) )
where ¢ > 0 is a constant depending on the sub-gaussian
norm of X defined as

| X||w, = inf {K >0:Eexp (X?/K?) <2} (6)
Classical examples of sub-gaussian random variables in-
clude Gaussian, Bernoulli, and all bounded random vari-
ables. Given (6), the ¥, norm of a sub-gaussian random
vector ' Y € R™ is defined as

1Yl

N

sup [[(Y,9)llg,
lyll2=1

Now we call out our main assumptions on the sam-
pling matrix and noise. In this paper, we use M; to de-
note the i** row of the matrix M.

I'Similarly to the definition of Gaussian random vectors, a ran-
dom vector Y € R™ is called sub-gaussian if the one-dimensional
marginals (Y, y) are sub-gaussian random variables for all y € R™.
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Condition 1. The sampling matrix can be generated
as A = ﬁB with the rows of B being independent
sub-gaussian random vectors with mean zero. Let K =
max; || B;||w, denote the maximal sub-gaussian norm of
the rows of B. We also assume that each row of B is
isotropic, i.e., E [BiBiT} =1,,i=1,...,m. This is
equivalent to

E(B;,z)> = |z|*> VzeR"
Condition 2. Suppose the entries of the noise vector
are i.i.d sub-gaussian random variables with E[{;] = 0,

Cov (&) = 0% and ||&||w, < K.

We extend [1] to more general and simpler sampling
framework that is more applicable in practice. For ex-
ample, in applications, sampling matrices are often sparse
0-1 matrices or with bounded entries, both of which are
sub-gaussian random matrices. As we prove in the fol-
lowing section, this generality comes without sacrificing
on the performance of the defined test statistic.

3.1. Noiseless Data

We first consider noise-free data. As we present in The-
orem 1, the test statistic ||(I,, — Pav) AvLﬂg concen-
trates around “*||v, || with high probability.

Theorem 1. Let I'(a) = min {a?/K* a/K?}, then

with probability at least 1 — exp [-mCT(8 —1)] —
exp [-mC (1 — ay)]—exp [—-dCsT(By — 1)] we have

m d m
(al - /30) fo? < T — Pagr) Ava |2 < B "o |
n n n

where 0 < a1 < 1,81,80 > 1, and C1,Cy > 0 are
absolute constants.

This implies the following corollary by setting a; =
2/logn, Bop = 52 and 51 = e.

2ed
Corollary 1. If m > 2ed, then with probability at least
1 — 3exp [—Tam| we obtain

m 9 9 m 5
267”[,”1“_” = ”(Hm AU) UJ-” >e n HUJ_H

1y Ca(s:

where T = min {C’lF(l -2), Feaa

€

We need the following results for the proof of Theo-
rem 1.

Lemma 1. With the same notation as Theorem 1,
m
P (Jl4vL]? < arZfjoL|?) < exp[=mCil(1 - ay)]

P (Jl4vL]? > 81~ o |?) < exp[-mCiD(8: — 1))



Lemma 2. With the same notation as Theorem 1,
[Pav(Av)|> < Bodl|vL|[?/n holds with probability
at least 1 — exp [—dCoT'(By — 1)].

Proof of Theorem 1. Apply the above Lemmas to

2 2
[T = Pav) Avi[|” = |AvL]|? = [[Pav(Avy)|]” <
||Avy||?. Then taking the union bounds of Lemma 1
and Lemma 2 completes the proof. O

3.2. Noisy Data

When the observation contains noise, we set the test
threshold 7, to be some properly chosen positive value.
As we present in Theorem 2, a reliable detector can be
obtained as long as ||v, ||? scales with n under H.

Theorem 2. Let T'y(a) = min {a?c?/K{,a0?/K}}
and 1, = e(m — d)o>. Then

P(T > 770.|H0) <exp[—(m—d)CsT'1(e — 1)].
Additionally suppose m > 2ed and
[oL ][ > 4e(e +2) (1 — d/m) no®
holds for any v ¢ S, then
P (T < no|H1) < 2exp[—73m] + 2exp [—74(m — d)

®)

)

Co(-2) C2B(£-2)

where T3 = min {ClF(l — %), T 72

and 7y = {—Cy0?/K3,C5T1(1 — 1/e)} with Cs,Cy
be absolute constants and C1,Cs,T" be the same as
Theorem 1.

Theorem 2 states that, with sub-gaussian noise, the
probability of false alarm decays exponentially in terms
of m — d. Given v ¢ S, the probability Type II error
also decays exponentially as long as the energy of v
scales with n. This is caused by the fact that || Av ||?
2y, ||? while as we present in the following ||¢]|
mao?.

Now we call out the following lemmas for the proof
of Theorem 2, which quantify the perturbation terms in-
duced by the additive noise.

Q

Lemma 3. With the same notation as that of Theorem
2, letY = ||(I, — Pav)&||?, then

P [Y < as(m— d)02] <exp[—(m—d)C3T'1 (1 — ag)]
PY > fa(m — d)o?®] < exp[—(m — d)CsT1 (B2 — 1)]

where 0 < as < 1, B2 > 1 and Cjs is an absolute
constant.

Lemma 4. Let 7 = (I, — Pay) Av,y. Then for any
v > 0 we have

P77 < —yvVm — da||Z||} < exp |:—C4 j7e
1

where Cy > 0 is an absolute constant.
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7o (m — d)

3

Proof of Theorem 2. Givenv € S,T = ||(L,, — Pav) §||2.

Hence, Lemma 3 directly yields the first part.

Let Z = (I, — Pay) Av,, and set g = 1/e and
v = 1 in Lemma 3 and 4 correspondingly, then with
probability at least 1 — exp [—(m — d)C3I'1 (1 — 1)] —
exp [~Ca(m — d)o? /K| we have

T>|Z||* - 2vVm —do||Z|| + (m — d)o® /e (9)

Therefore, T > e(m — d)o? is equivalent to
1Z2]1? = 2(e + 2)(m — d)o?

Set ay = 1/e and By = 77 for the lower bound in

Theorem 1, then together with (8) we have

2 m 2 2

> — > —
122 = - flos | 2 2(e +2)(m — d)g>  (10)
holds with probability at least 1 —exp [-C1I'(1 — 1)] —
exp [—dCal' (32 — 1)]. The probability bound is ob-
tained by 1 minus the union bounds of those yielding (9)
and (10). O]

4. NUMERICAL RESULTS
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Figure 1: Illustration of Theorem 1 (left) and Theorem
2 (right) with n = 5000 and d = 50. The sampling
matrices for both (a) and (b) are generated as a sparse
matrix such that A;; = +/3/n,w.p. 1/6 and A;; =
0,w.p. 2/3. The entries of noise vectors (for (b)) are
generated as i.i.d uniform random variables with mean
zero and unit covariance.

In this section, we examine our main results with
synthetic data. In order to demonstrate that incoherence
assumptions are not required when sub-gaussian random
matrices are used, both v and U are generated as sparse
ensembles with sparsity on the order of log(n)/n.

Fig (1a) examines Theorem 1 over 100 simulations,
each with a fixed subspace S and different sampling den-
sities m /n. For each sampling density, we sample 50 in-
stances of Av,, and then compute the mean, maximum
and minimum of our defined test statistic. As we can see
the values of our test statistic concentrate well around
m=d||y, ||? as long as m > d. In Fig (1b), Type II er-
ror is averaged over 100 simulations with different sam-
pling densities and different instances of v, that scales

0.8

0.6

0.4

0.2



variational with n. As that predicted in Theorem 2, the
probability of Type II error decays exponentially as long
as ||v ||?/n is bounded from below by some constant.

5. CONCLUSION

We have shown that it is possible to test whether a high
dimensional vector lies in a known subspace with only
few compressive measurements. By leveraging modern
random matrix theory, we extend the results in [1] to a
more general sampling framework with a much simpler
and more efficient test statistic. We prove that when the
sampling matrix has independent sub-gaussian rows, the
energy outside the subspace is preserved. For noisy data,
we show that our defined test statistic is reliable as long
as, under H;, the energy of the underlying signal vector
outside the given subspace scales with n.

Proof of Main Results

We need the following for the proof of our main results.

Lemma 5. [10] A random variable X is sub-gaussian
if and only if X? is sub-exponential. — Moreover,
1X%]w, = X3, and | X* ~EX?|l¢, < C[X?]w,>

Lemma 6. (Hoeffding-type inequality, [10]). Let
X1,..., XN be independent centered sub-gaussian ran-
dom variables, and let K = max; || X;||w,. For every

,an), let Y = Zi\il a;X;, then
P(|Y]|>t) < 2exp (—ct?/K?|al3) Vt>0

a=(aj,

where ¢ > 0 is an absolute constant.

Lemma 7. (Bernstein’s inequality, [10]). Let
X1,..., XN be independent, mean zero, sub-
exponential random variables. Let Y = vazl X, then
VYt > 0 we have

N
Yoim1 1 Xill, and To(X) = max; || X

2 t

P{|lY| >t} <2exp {61 min <21(X)’22(X)

with ¥y (X)

Lemma 8. (Hanson-Wright inequality, [11]). Let X =
(X1,...,X,) € R™ be a random vector with indepen-
dent, mean zero, sub-gaussian coordinates which satisfy
max; || X;l|w, < K . Let M be an n x n matrix and
Y =XTMX —EXTMX, then ¥t > 0 we have

t2 t
4 2 2
K4 M|[E" K2 M]]
2A random variable X with at least an exponential tail decay is
called sub-exponential random variable. The sub-exponential norm of
X is denoted as || X ||y, . For more information, please refer to [10].

P{|Y| >t} <exp {—02 min (

Wy

4604

Proof of Lemma 1. By assumption A; = ﬁBZ- are in-

dependent sub-gaussian random vectors with || B;||w, <

K. Thus X; = (B;,v,) are independent sub-gaussian

random variables with EX? = ||v_||? and || X;|w, =

B )|, osllz < 1By, sl < Kol
2

vill2
LetY; = X? —EX? = X2 — ||v_|% then Lemma 5
implies Y; are independent, mean zero sub-exponential
random variables with ||Y;||¢, < CK?||v, ||
Note that || Av ||* — Doy |2 =L 3"V, hence

P [uAmF < a%umﬂ =P {ZY; <(1- a)mmﬂ
=1

or{ )

Following similar argument for the second part com-
pletes the proof. O

Lemma 7

z m(l—a)® (1—-a)m

C?2K* ' CK?

Proof of Lemma 2. As we argued previously X; = (B;, v )
are independent sub-gaussian random variables with mean
zero and EX? = v ||%, || Xi|lw, < K|lvL]|. Note that
‘Pay is the orthogonal projection operator with rank d,
therefore M = Py = QQT where Pay = QEQT
is thin singular value decomposition of Py. Let X =
(X1,..., Xpm), then EXTMX = Y7 E(X,Q;) =
dvy||?. Let Z; = Pay (Avy) and Zo = XTMX —
EXT M X, it then follows that

d
P11 Z1l2 > Bz llorl*| =P [I122]” > (82 = D]l ||”]

Lemma 8

< exp[-CiT(B2 — 1)d]

where I'(a) = min {a?/K*, a/K?}. O

Proof of Lemma 3. Note that I,,, — Pay is an projec-
tion matrix with rank m — d, which is independent of &.

Therefore E ||(I,, — Pav) €||> = E [tr { (I, — Pav) EEET }]

= (m —d)o?. Then applying Lemma 8 with § = 1 — ap
and 0 = (B — 1 separately yields the results. O

Proof of Lemma 4. LetY = (I, — Pay) Av,, then
E[¢TY] = Ey[E(TY|Y)] = 0. Hence, Lemma 6
yields

O

v?o*(m — d)

P (gTY < —yovm — d||YH) < exp {—04 e
i
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